| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rprege0 | Structured version Visualization version GIF version | ||
| Description: A positive real is a nonnegative real number. (Contributed by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| rprege0 | ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 13022 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 2 | rpge0 13027 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 ≤ 𝐴) | |
| 3 | 1, 2 | jca 511 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5124 ℝcr 11133 0cc0 11134 ≤ cle 11275 ℝ+crp 13013 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-addrcl 11195 ax-rnegex 11205 ax-cnre 11207 ax-pre-lttri 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-rp 13014 |
| This theorem is referenced by: resqrex 15274 sqrtdiv 15289 o1fsum 15834 prmreclem3 16943 aaliou3lem3 26309 pige3ALT 26486 rpcxpcl 26642 cxprec 26652 harmoniclbnd 26976 harmonicbnd4 26978 basellem4 27051 logfaclbnd 27190 logfacrlim 27192 logexprlim 27193 bposlem7 27258 vmadivsum 27450 dchrisum0lem2a 27485 dchrisum0lem2 27486 dchrisum0 27488 mudivsum 27498 mulogsumlem 27499 selberglem2 27514 selberg2lem 27518 pntrsumo1 27533 minvecolem3 30862 ehl2eudis0lt 48673 itsclc0 48718 itsclc0b 48719 |
| Copyright terms: Public domain | W3C validator |