MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rprege0 Structured version   Visualization version   GIF version

Theorem rprege0 12906
Description: A positive real is a nonnegative real number. (Contributed by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
rprege0 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))

Proof of Theorem rprege0
StepHypRef Expression
1 rpre 12899 . 2 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2 rpge0 12904 . 2 (𝐴 ∈ ℝ+ → 0 ≤ 𝐴)
31, 2jca 511 1 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111   class class class wbr 5091  cr 11005  0cc0 11006  cle 11147  +crp 12890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-addrcl 11067  ax-rnegex 11077  ax-cnre 11079  ax-pre-lttri 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-rp 12891
This theorem is referenced by:  resqrex  15157  sqrtdiv  15172  o1fsum  15720  prmreclem3  16830  aaliou3lem3  26280  pige3ALT  26457  rpcxpcl  26613  cxprec  26623  harmoniclbnd  26947  harmonicbnd4  26949  basellem4  27022  logfaclbnd  27161  logfacrlim  27163  logexprlim  27164  bposlem7  27229  vmadivsum  27421  dchrisum0lem2a  27456  dchrisum0lem2  27457  dchrisum0  27459  mudivsum  27469  mulogsumlem  27470  selberglem2  27485  selberg2lem  27489  pntrsumo1  27504  minvecolem3  30854  ehl2eudis0lt  48764  itsclc0  48809  itsclc0b  48810
  Copyright terms: Public domain W3C validator