MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulogsumlem Structured version   Visualization version   GIF version

Theorem mulogsumlem 26879
Description: Lemma for mulogsum 26880. (Contributed by Mario Carneiro, 14-May-2016.)
Assertion
Ref Expression
mulogsumlem (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))))) ∈ 𝑂(1)
Distinct variable group:   𝑚,𝑛,𝑥

Proof of Theorem mulogsumlem
StepHypRef Expression
1 fzfid 13878 . . . . . 6 (𝑥 ∈ ℝ+ → (1...(⌊‘𝑥)) ∈ Fin)
2 elfznn 13470 . . . . . . . . . . 11 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
32adantl 482 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
4 mucl 26490 . . . . . . . . . 10 (𝑛 ∈ ℕ → (μ‘𝑛) ∈ ℤ)
53, 4syl 17 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℤ)
65zred 12607 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℝ)
76, 3nndivred 12207 . . . . . . 7 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℝ)
87recnd 11183 . . . . . 6 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℂ)
91, 8fsumcl 15618 . . . . 5 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) ∈ ℂ)
109adantl 482 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) ∈ ℂ)
11 emre 26355 . . . . . 6 γ ∈ ℝ
1211recni 11169 . . . . 5 γ ∈ ℂ
1312a1i 11 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → γ ∈ ℂ)
14 mudivsum 26878 . . . . 5 (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ 𝑂(1)
1514a1i 11 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ 𝑂(1))
16 rpssre 12922 . . . . . 6 + ⊆ ℝ
17 o1const 15502 . . . . . 6 ((ℝ+ ⊆ ℝ ∧ γ ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ γ) ∈ 𝑂(1))
1816, 12, 17mp2an 690 . . . . 5 (𝑥 ∈ ℝ+ ↦ γ) ∈ 𝑂(1)
1918a1i 11 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ γ) ∈ 𝑂(1))
2010, 13, 15, 19o1mul2 15507 . . 3 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · γ)) ∈ 𝑂(1))
21 fzfid 13878 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑛))) ∈ Fin)
22 elfznn 13470 . . . . . . . . . . . 12 (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛))) → 𝑚 ∈ ℕ)
2322adantl 482 . . . . . . . . . . 11 (((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ ℕ)
2423nnrecred 12204 . . . . . . . . . 10 (((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (1 / 𝑚) ∈ ℝ)
2521, 24fsumrecl 15619 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) ∈ ℝ)
262nnrpd 12955 . . . . . . . . . . 11 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℝ+)
27 rpdivcl 12940 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑥 / 𝑛) ∈ ℝ+)
2826, 27sylan2 593 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
2928relogcld 25978 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℝ)
3025, 29resubcld 11583 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))) ∈ ℝ)
317, 30remulcld 11185 . . . . . . 7 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) ∈ ℝ)
321, 31fsumrecl 15619 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) ∈ ℝ)
3332recnd 11183 . . . . 5 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) ∈ ℂ)
3433adantl 482 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) ∈ ℂ)
35 mulcl 11135 . . . . . 6 ((Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) ∈ ℂ ∧ γ ∈ ℂ) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · γ) ∈ ℂ)
369, 12, 35sylancl 586 . . . . 5 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · γ) ∈ ℂ)
3736adantl 482 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · γ) ∈ ℂ)
38 nnrecre 12195 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → (1 / 𝑚) ∈ ℝ)
3938recnd 11183 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (1 / 𝑚) ∈ ℂ)
4023, 39syl 17 . . . . . . . . . . 11 (((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (1 / 𝑚) ∈ ℂ)
4121, 40fsumcl 15618 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) ∈ ℂ)
4229recnd 11183 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℂ)
4341, 42subcld 11512 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))) ∈ ℂ)
448, 43mulcld 11175 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) ∈ ℂ)
45 mulcl 11135 . . . . . . . . 9 ((((μ‘𝑛) / 𝑛) ∈ ℂ ∧ γ ∈ ℂ) → (((μ‘𝑛) / 𝑛) · γ) ∈ ℂ)
468, 12, 45sylancl 586 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · γ) ∈ ℂ)
471, 44, 46fsumsub 15673 . . . . . . 7 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) − (((μ‘𝑛) / 𝑛) · γ)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · γ)))
4812a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → γ ∈ ℂ)
4941, 42, 48subsub4d 11543 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))) − γ) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))
5049oveq2d 7373 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))) − γ)) = (((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ))))
518, 43, 48subdid 11611 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))) − γ)) = ((((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) − (((μ‘𝑛) / 𝑛) · γ)))
5250, 51eqtr3d 2778 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ))) = ((((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) − (((μ‘𝑛) / 𝑛) · γ)))
5352sumeq2dv 15588 . . . . . . 7 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) − (((μ‘𝑛) / 𝑛) · γ)))
5412a1i 11 . . . . . . . . 9 (𝑥 ∈ ℝ+ → γ ∈ ℂ)
551, 54, 8fsummulc1 15670 . . . . . . . 8 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · γ) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · γ))
5655oveq2d 7373 . . . . . . 7 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · γ)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · γ)))
5747, 53, 563eqtr4d 2786 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · γ)))
5857mpteq2ia 5208 . . . . 5 (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · γ)))
5916a1i 11 . . . . . 6 (⊤ → ℝ+ ⊆ ℝ)
6042, 48addcld 11174 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛)) + γ) ∈ ℂ)
6141, 60subcld 11512 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)) ∈ ℂ)
628, 61mulcld 11175 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ))) ∈ ℂ)
631, 62fsumcl 15618 . . . . . . 7 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ))) ∈ ℂ)
6463adantl 482 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ))) ∈ ℂ)
65 1red 11156 . . . . . 6 (⊤ → 1 ∈ ℝ)
6663abscld 15321 . . . . . . . 8 (𝑥 ∈ ℝ+ → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))) ∈ ℝ)
6762abscld 15321 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))) ∈ ℝ)
681, 67fsumrecl 15619 . . . . . . . 8 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))) ∈ ℝ)
69 1red 11156 . . . . . . . 8 (𝑥 ∈ ℝ+ → 1 ∈ ℝ)
701, 62fsumabs 15686 . . . . . . . 8 (𝑥 ∈ ℝ+ → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))))
71 rprege0 12930 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
72 flge0nn0 13725 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
7371, 72syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (⌊‘𝑥) ∈ ℕ0)
7473nn0red 12474 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (⌊‘𝑥) ∈ ℝ)
75 rerpdivcl 12945 . . . . . . . . . 10 (((⌊‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((⌊‘𝑥) / 𝑥) ∈ ℝ)
7674, 75mpancom 686 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((⌊‘𝑥) / 𝑥) ∈ ℝ)
77 rpreccl 12941 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+)
7877adantr 481 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑥) ∈ ℝ+)
7978rpred 12957 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑥) ∈ ℝ)
808abscld 15321 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑛) / 𝑛)) ∈ ℝ)
813nnrecred 12204 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℝ)
8261abscld 15321 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ))) ∈ ℝ)
83 id 22 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℝ+)
84 rpdivcl 12940 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℝ+𝑥 ∈ ℝ+) → (𝑛 / 𝑥) ∈ ℝ+)
8526, 83, 84syl2anr 597 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 / 𝑥) ∈ ℝ+)
8685rpred 12957 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 / 𝑥) ∈ ℝ)
878absge0d 15329 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((μ‘𝑛) / 𝑛)))
8861absge0d 15329 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ))))
896recnd 11183 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℂ)
903nncnd 12169 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
913nnne0d 12203 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ≠ 0)
9289, 90, 91absdivd 15340 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑛) / 𝑛)) = ((abs‘(μ‘𝑛)) / (abs‘𝑛)))
933nnrpd 12955 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
94 rprege0 12930 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℝ+ → (𝑛 ∈ ℝ ∧ 0 ≤ 𝑛))
9593, 94syl 17 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 ∈ ℝ ∧ 0 ≤ 𝑛))
96 absid 15181 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℝ ∧ 0 ≤ 𝑛) → (abs‘𝑛) = 𝑛)
9795, 96syl 17 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘𝑛) = 𝑛)
9897oveq2d 7373 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(μ‘𝑛)) / (abs‘𝑛)) = ((abs‘(μ‘𝑛)) / 𝑛))
9992, 98eqtrd 2776 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑛) / 𝑛)) = ((abs‘(μ‘𝑛)) / 𝑛))
10089abscld 15321 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(μ‘𝑛)) ∈ ℝ)
101 1red 11156 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
102 mule1 26497 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (abs‘(μ‘𝑛)) ≤ 1)
1033, 102syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(μ‘𝑛)) ≤ 1)
104100, 101, 93, 103lediv1dd 13015 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(μ‘𝑛)) / 𝑛) ≤ (1 / 𝑛))
10599, 104eqbrtrd 5127 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑛) / 𝑛)) ≤ (1 / 𝑛))
106 harmonicbnd4 26360 . . . . . . . . . . . . . . 15 ((𝑥 / 𝑛) ∈ ℝ+ → (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ))) ≤ (1 / (𝑥 / 𝑛)))
10728, 106syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ))) ≤ (1 / (𝑥 / 𝑛)))
108 rpcnne0 12933 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
109108adantr 481 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
110 rpcnne0 12933 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℝ+ → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
11193, 110syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
112 recdiv 11861 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (1 / (𝑥 / 𝑛)) = (𝑛 / 𝑥))
113109, 111, 112syl2anc 584 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (1 / (𝑥 / 𝑛)) = (𝑛 / 𝑥))
114107, 113breqtrd 5131 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ))) ≤ (𝑛 / 𝑥))
11580, 81, 82, 86, 87, 88, 105, 114lemul12ad 12097 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘((μ‘𝑛) / 𝑛)) · (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))) ≤ ((1 / 𝑛) · (𝑛 / 𝑥)))
1168, 61absmuld 15339 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))) = ((abs‘((μ‘𝑛) / 𝑛)) · (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))))
117 1cnd 11150 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℂ)
118 dmdcan 11865 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℂ ∧ 𝑛 ≠ 0) ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ 1 ∈ ℂ) → ((𝑛 / 𝑥) · (1 / 𝑛)) = (1 / 𝑥))
119111, 109, 117, 118syl3anc 1371 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 / 𝑥) · (1 / 𝑛)) = (1 / 𝑥))
12085rpcnd 12959 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 / 𝑥) ∈ ℂ)
12181recnd 11183 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℂ)
122120, 121mulcomd 11176 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 / 𝑥) · (1 / 𝑛)) = ((1 / 𝑛) · (𝑛 / 𝑥)))
123119, 122eqtr3d 2778 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑥) = ((1 / 𝑛) · (𝑛 / 𝑥)))
124115, 116, 1233brtr4d 5137 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))) ≤ (1 / 𝑥))
1251, 67, 79, 124fsumle 15684 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑥))
126 hashfz1 14246 . . . . . . . . . . . . 13 ((⌊‘𝑥) ∈ ℕ0 → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
12773, 126syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
128127oveq1d 7372 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → ((♯‘(1...(⌊‘𝑥))) · (1 / 𝑥)) = ((⌊‘𝑥) · (1 / 𝑥)))
12977rpcnd 12959 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℂ)
130 fsumconst 15675 . . . . . . . . . . . 12 (((1...(⌊‘𝑥)) ∈ Fin ∧ (1 / 𝑥) ∈ ℂ) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑥) = ((♯‘(1...(⌊‘𝑥))) · (1 / 𝑥)))
1311, 129, 130syl2anc 584 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑥) = ((♯‘(1...(⌊‘𝑥))) · (1 / 𝑥)))
13273nn0cnd 12475 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (⌊‘𝑥) ∈ ℂ)
133 rpcn 12925 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
134 rpne0 12931 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ≠ 0)
135132, 133, 134divrecd 11934 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → ((⌊‘𝑥) / 𝑥) = ((⌊‘𝑥) · (1 / 𝑥)))
136128, 131, 1353eqtr4d 2786 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑥) = ((⌊‘𝑥) / 𝑥))
137125, 136breqtrd 5131 . . . . . . . . 9 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))) ≤ ((⌊‘𝑥) / 𝑥))
138 rpre 12923 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
139 flle 13704 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (⌊‘𝑥) ≤ 𝑥)
140138, 139syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (⌊‘𝑥) ≤ 𝑥)
141133mulid1d 11172 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 · 1) = 𝑥)
142140, 141breqtrrd 5133 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (⌊‘𝑥) ≤ (𝑥 · 1))
143 reflcl 13701 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
144138, 143syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (⌊‘𝑥) ∈ ℝ)
145 rpregt0 12929 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
146 ledivmul 12031 . . . . . . . . . . 11 (((⌊‘𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (((⌊‘𝑥) / 𝑥) ≤ 1 ↔ (⌊‘𝑥) ≤ (𝑥 · 1)))
147144, 69, 145, 146syl3anc 1371 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (((⌊‘𝑥) / 𝑥) ≤ 1 ↔ (⌊‘𝑥) ≤ (𝑥 · 1)))
148142, 147mpbird 256 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((⌊‘𝑥) / 𝑥) ≤ 1)
14968, 76, 69, 137, 148letrd 11312 . . . . . . . 8 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))) ≤ 1)
15066, 68, 69, 70, 149letrd 11312 . . . . . . 7 (𝑥 ∈ ℝ+ → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))) ≤ 1)
151150ad2antrl 726 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))) ≤ 1)
15259, 64, 65, 65, 151elo1d 15418 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))) ∈ 𝑂(1))
15358, 152eqeltrrid 2843 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · γ))) ∈ 𝑂(1))
15434, 37, 153o1dif 15512 . . 3 (⊤ → ((𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))))) ∈ 𝑂(1) ↔ (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · γ)) ∈ 𝑂(1)))
15520, 154mpbird 256 . 2 (⊤ → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))))) ∈ 𝑂(1))
156155mptru 1548 1 (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))))) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1541  wtru 1542  wcel 2106  wne 2943  wss 3910   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  Fincfn 8883  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  0cn0 12413  cz 12499  +crp 12915  ...cfz 13424  cfl 13695  chash 14230  abscabs 15119  𝑂(1)co1 15368  Σcsu 15570  logclog 25910  γcem 26341  μcmu 26444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-o1 15372  df-lo1 15373  df-sum 15571  df-ef 15950  df-e 15951  df-sin 15952  df-cos 15953  df-tan 15954  df-pi 15955  df-dvds 16137  df-gcd 16375  df-prm 16548  df-pc 16709  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-ulm 25736  df-log 25912  df-atan 26217  df-em 26342  df-mu 26450
This theorem is referenced by:  mulogsum  26880
  Copyright terms: Public domain W3C validator