![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divle1le | Structured version Visualization version GIF version |
Description: A real number divided by a positive real number is less than or equal to 1 iff the real number is less than or equal to the positive real number. (Contributed by AV, 29-Jun-2021.) |
Ref | Expression |
---|---|
divle1le | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) ≤ 1 ↔ 𝐴 ≤ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 484 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℝ) | |
2 | rpregt0 12930 | . . . 4 ⊢ (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 0 < 𝐵)) | |
3 | 2 | adantl 483 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 ∈ ℝ ∧ 0 < 𝐵)) |
4 | 1re 11156 | . . . . 5 ⊢ 1 ∈ ℝ | |
5 | 0lt1 11678 | . . . . 5 ⊢ 0 < 1 | |
6 | 4, 5 | pm3.2i 472 | . . . 4 ⊢ (1 ∈ ℝ ∧ 0 < 1) |
7 | 6 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (1 ∈ ℝ ∧ 0 < 1)) |
8 | lediv23 12048 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (1 ∈ ℝ ∧ 0 < 1)) → ((𝐴 / 𝐵) ≤ 1 ↔ (𝐴 / 1) ≤ 𝐵)) | |
9 | 1, 3, 7, 8 | syl3anc 1372 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) ≤ 1 ↔ (𝐴 / 1) ≤ 𝐵)) |
10 | recn 11142 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
11 | 10 | div1d 11924 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 / 1) = 𝐴) |
12 | 11 | adantr 482 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 1) = 𝐴) |
13 | 12 | breq1d 5116 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 1) ≤ 𝐵 ↔ 𝐴 ≤ 𝐵)) |
14 | 9, 13 | bitrd 279 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) ≤ 1 ↔ 𝐴 ≤ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 class class class wbr 5106 (class class class)co 7358 ℝcr 11051 0cc0 11052 1c1 11053 < clt 11190 ≤ cle 11191 / cdiv 11813 ℝ+crp 12916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 ax-pre-mulgt0 11129 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3354 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-po 5546 df-so 5547 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 df-sub 11388 df-neg 11389 df-div 11814 df-rp 12917 |
This theorem is referenced by: ledivge1le 12987 lighneallem2 45805 |
Copyright terms: Public domain | W3C validator |