MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg2lem Structured version   Visualization version   GIF version

Theorem selberg2lem 25691
Description: Lemma for selberg2 25692. Equation 10.4.12 of [Shapiro], p. 420. (Contributed by Mario Carneiro, 23-May-2016.)
Assertion
Ref Expression
selberg2lem (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥)) ∈ 𝑂(1)
Distinct variable group:   𝑥,𝑛

Proof of Theorem selberg2lem
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 rpre 12145 . . . . . . . . 9 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
2 chpcl 25302 . . . . . . . . 9 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
31, 2syl 17 . . . . . . . 8 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℝ)
43recnd 10405 . . . . . . 7 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℂ)
5 rprege0 12154 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
6 flge0nn0 12940 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
75, 6syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (⌊‘𝑥) ∈ ℕ0)
8 nn0p1nn 11683 . . . . . . . . . . . 12 ((⌊‘𝑥) ∈ ℕ0 → ((⌊‘𝑥) + 1) ∈ ℕ)
97, 8syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → ((⌊‘𝑥) + 1) ∈ ℕ)
109nnrpd 12179 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → ((⌊‘𝑥) + 1) ∈ ℝ+)
1110relogcld 24806 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (log‘((⌊‘𝑥) + 1)) ∈ ℝ)
1211recnd 10405 . . . . . . . 8 (𝑥 ∈ ℝ+ → (log‘((⌊‘𝑥) + 1)) ∈ ℂ)
13 relogcl 24759 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
1413recnd 10405 . . . . . . . 8 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℂ)
1512, 14subcld 10734 . . . . . . 7 (𝑥 ∈ ℝ+ → ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ∈ ℂ)
164, 15mulcld 10397 . . . . . 6 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) ∈ ℂ)
17 fzfid 13091 . . . . . . 7 (𝑥 ∈ ℝ+ → (1...(⌊‘𝑥)) ∈ Fin)
18 elfznn 12687 . . . . . . . . . 10 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
1918adantl 475 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
2019nnrpd 12179 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
21 1rp 12141 . . . . . . . . . . . . 13 1 ∈ ℝ+
22 rpaddcl 12161 . . . . . . . . . . . . 13 ((𝑛 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝑛 + 1) ∈ ℝ+)
2321, 22mpan2 681 . . . . . . . . . . . 12 (𝑛 ∈ ℝ+ → (𝑛 + 1) ∈ ℝ+)
2423relogcld 24806 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → (log‘(𝑛 + 1)) ∈ ℝ)
25 relogcl 24759 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → (log‘𝑛) ∈ ℝ)
2624, 25resubcld 10803 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → ((log‘(𝑛 + 1)) − (log‘𝑛)) ∈ ℝ)
27 rpre 12145 . . . . . . . . . . 11 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
28 chpcl 25302 . . . . . . . . . . 11 (𝑛 ∈ ℝ → (ψ‘𝑛) ∈ ℝ)
2927, 28syl 17 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → (ψ‘𝑛) ∈ ℝ)
3026, 29remulcld 10407 . . . . . . . . 9 (𝑛 ∈ ℝ+ → (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) ∈ ℝ)
3130recnd 10405 . . . . . . . 8 (𝑛 ∈ ℝ+ → (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) ∈ ℂ)
3220, 31syl 17 . . . . . . 7 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) ∈ ℂ)
3317, 32fsumcl 14871 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) ∈ ℂ)
34 rpcnne0 12157 . . . . . 6 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
35 divsubdir 11069 . . . . . 6 ((((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) ∈ ℂ ∧ Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → ((((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) / 𝑥) = ((((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) / 𝑥) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥)))
3616, 33, 34, 35syl3anc 1439 . . . . 5 (𝑥 ∈ ℝ+ → ((((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) / 𝑥) = ((((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) / 𝑥) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥)))
374, 12mulcld 10397 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) ∈ ℂ)
384, 14mulcld 10397 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) · (log‘𝑥)) ∈ ℂ)
3937, 38, 33sub32d 10766 . . . . . . 7 (𝑥 ∈ ℝ+ → ((((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − ((ψ‘𝑥) · (log‘𝑥))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) = ((((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) − ((ψ‘𝑥) · (log‘𝑥))))
404, 12, 14subdid 10831 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) = (((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − ((ψ‘𝑥) · (log‘𝑥))))
4140oveq1d 6937 . . . . . . 7 (𝑥 ∈ ℝ+ → (((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) = ((((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − ((ψ‘𝑥) · (log‘𝑥))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))))
42 fveq2 6446 . . . . . . . . . . 11 (𝑚 = 𝑛 → (log‘𝑚) = (log‘𝑛))
43 fvoveq1 6945 . . . . . . . . . . 11 (𝑚 = 𝑛 → (ψ‘(𝑚 − 1)) = (ψ‘(𝑛 − 1)))
4442, 43jca 507 . . . . . . . . . 10 (𝑚 = 𝑛 → ((log‘𝑚) = (log‘𝑛) ∧ (ψ‘(𝑚 − 1)) = (ψ‘(𝑛 − 1))))
45 fveq2 6446 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → (log‘𝑚) = (log‘(𝑛 + 1)))
46 fvoveq1 6945 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → (ψ‘(𝑚 − 1)) = (ψ‘((𝑛 + 1) − 1)))
4745, 46jca 507 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → ((log‘𝑚) = (log‘(𝑛 + 1)) ∧ (ψ‘(𝑚 − 1)) = (ψ‘((𝑛 + 1) − 1))))
48 fveq2 6446 . . . . . . . . . . . 12 (𝑚 = 1 → (log‘𝑚) = (log‘1))
49 log1 24769 . . . . . . . . . . . 12 (log‘1) = 0
5048, 49syl6eq 2829 . . . . . . . . . . 11 (𝑚 = 1 → (log‘𝑚) = 0)
51 oveq1 6929 . . . . . . . . . . . . . 14 (𝑚 = 1 → (𝑚 − 1) = (1 − 1))
52 1m1e0 11447 . . . . . . . . . . . . . 14 (1 − 1) = 0
5351, 52syl6eq 2829 . . . . . . . . . . . . 13 (𝑚 = 1 → (𝑚 − 1) = 0)
5453fveq2d 6450 . . . . . . . . . . . 12 (𝑚 = 1 → (ψ‘(𝑚 − 1)) = (ψ‘0))
55 2pos 11485 . . . . . . . . . . . . 13 0 < 2
56 0re 10378 . . . . . . . . . . . . . 14 0 ∈ ℝ
57 chpeq0 25385 . . . . . . . . . . . . . 14 (0 ∈ ℝ → ((ψ‘0) = 0 ↔ 0 < 2))
5856, 57ax-mp 5 . . . . . . . . . . . . 13 ((ψ‘0) = 0 ↔ 0 < 2)
5955, 58mpbir 223 . . . . . . . . . . . 12 (ψ‘0) = 0
6054, 59syl6eq 2829 . . . . . . . . . . 11 (𝑚 = 1 → (ψ‘(𝑚 − 1)) = 0)
6150, 60jca 507 . . . . . . . . . 10 (𝑚 = 1 → ((log‘𝑚) = 0 ∧ (ψ‘(𝑚 − 1)) = 0))
62 fveq2 6446 . . . . . . . . . . 11 (𝑚 = ((⌊‘𝑥) + 1) → (log‘𝑚) = (log‘((⌊‘𝑥) + 1)))
63 fvoveq1 6945 . . . . . . . . . . 11 (𝑚 = ((⌊‘𝑥) + 1) → (ψ‘(𝑚 − 1)) = (ψ‘(((⌊‘𝑥) + 1) − 1)))
6462, 63jca 507 . . . . . . . . . 10 (𝑚 = ((⌊‘𝑥) + 1) → ((log‘𝑚) = (log‘((⌊‘𝑥) + 1)) ∧ (ψ‘(𝑚 − 1)) = (ψ‘(((⌊‘𝑥) + 1) − 1))))
65 nnuz 12029 . . . . . . . . . . 11 ℕ = (ℤ‘1)
669, 65syl6eleq 2868 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → ((⌊‘𝑥) + 1) ∈ (ℤ‘1))
67 elfznn 12687 . . . . . . . . . . . . . 14 (𝑚 ∈ (1...((⌊‘𝑥) + 1)) → 𝑚 ∈ ℕ)
6867adantl 475 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑚 ∈ ℕ)
6968nnrpd 12179 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑚 ∈ ℝ+)
7069relogcld 24806 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (log‘𝑚) ∈ ℝ)
7170recnd 10405 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (log‘𝑚) ∈ ℂ)
7268nnred 11391 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑚 ∈ ℝ)
73 peano2rem 10690 . . . . . . . . . . . . 13 (𝑚 ∈ ℝ → (𝑚 − 1) ∈ ℝ)
7472, 73syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (𝑚 − 1) ∈ ℝ)
75 chpcl 25302 . . . . . . . . . . . 12 ((𝑚 − 1) ∈ ℝ → (ψ‘(𝑚 − 1)) ∈ ℝ)
7674, 75syl 17 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (ψ‘(𝑚 − 1)) ∈ ℝ)
7776recnd 10405 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (ψ‘(𝑚 − 1)) ∈ ℂ)
7844, 47, 61, 64, 66, 71, 77fsumparts 14942 . . . . . . . . 9 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))((log‘𝑛) · ((ψ‘((𝑛 + 1) − 1)) − (ψ‘(𝑛 − 1)))) = ((((log‘((⌊‘𝑥) + 1)) · (ψ‘(((⌊‘𝑥) + 1) − 1))) − (0 · 0)) − Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘((𝑛 + 1) − 1)))))
797nn0zd 11832 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (⌊‘𝑥) ∈ ℤ)
80 fzval3 12856 . . . . . . . . . . . 12 ((⌊‘𝑥) ∈ ℤ → (1...(⌊‘𝑥)) = (1..^((⌊‘𝑥) + 1)))
8179, 80syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (1...(⌊‘𝑥)) = (1..^((⌊‘𝑥) + 1)))
8281eqcomd 2783 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (1..^((⌊‘𝑥) + 1)) = (1...(⌊‘𝑥)))
83 nnm1nn0 11685 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
8419, 83syl 17 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 − 1) ∈ ℕ0)
8584nn0red 11703 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 − 1) ∈ ℝ)
86 chpcl 25302 . . . . . . . . . . . . . . 15 ((𝑛 − 1) ∈ ℝ → (ψ‘(𝑛 − 1)) ∈ ℝ)
8785, 86syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑛 − 1)) ∈ ℝ)
8887recnd 10405 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑛 − 1)) ∈ ℂ)
89 vmacl 25296 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
9019, 89syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
9190recnd 10405 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℂ)
9219nncnd 11392 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
93 ax-1cn 10330 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
94 pncan 10628 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
9592, 93, 94sylancl 580 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 + 1) − 1) = 𝑛)
96 npcan 10632 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 − 1) + 1) = 𝑛)
9792, 93, 96sylancl 580 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 − 1) + 1) = 𝑛)
9895, 97eqtr4d 2816 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 + 1) − 1) = ((𝑛 − 1) + 1))
9998fveq2d 6450 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘((𝑛 + 1) − 1)) = (ψ‘((𝑛 − 1) + 1)))
100 chpp1 25333 . . . . . . . . . . . . . . 15 ((𝑛 − 1) ∈ ℕ0 → (ψ‘((𝑛 − 1) + 1)) = ((ψ‘(𝑛 − 1)) + (Λ‘((𝑛 − 1) + 1))))
10184, 100syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘((𝑛 − 1) + 1)) = ((ψ‘(𝑛 − 1)) + (Λ‘((𝑛 − 1) + 1))))
10297fveq2d 6450 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘((𝑛 − 1) + 1)) = (Λ‘𝑛))
103102oveq2d 6938 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑛 − 1)) + (Λ‘((𝑛 − 1) + 1))) = ((ψ‘(𝑛 − 1)) + (Λ‘𝑛)))
10499, 101, 1033eqtrd 2817 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘((𝑛 + 1) − 1)) = ((ψ‘(𝑛 − 1)) + (Λ‘𝑛)))
10588, 91, 104mvrladdd 10788 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘((𝑛 + 1) − 1)) − (ψ‘(𝑛 − 1))) = (Λ‘𝑛))
106105oveq2d 6938 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘𝑛) · ((ψ‘((𝑛 + 1) − 1)) − (ψ‘(𝑛 − 1)))) = ((log‘𝑛) · (Λ‘𝑛)))
10720relogcld 24806 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ)
108107recnd 10405 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℂ)
10991, 108mulcomd 10398 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (log‘𝑛)) = ((log‘𝑛) · (Λ‘𝑛)))
110106, 109eqtr4d 2816 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘𝑛) · ((ψ‘((𝑛 + 1) − 1)) − (ψ‘(𝑛 − 1)))) = ((Λ‘𝑛) · (log‘𝑛)))
11182, 110sumeq12rdv 14845 . . . . . . . . 9 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))((log‘𝑛) · ((ψ‘((𝑛 + 1) − 1)) − (ψ‘(𝑛 − 1)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)))
1127nn0cnd 11704 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ+ → (⌊‘𝑥) ∈ ℂ)
113 pncan 10628 . . . . . . . . . . . . . . . . 17 (((⌊‘𝑥) ∈ ℂ ∧ 1 ∈ ℂ) → (((⌊‘𝑥) + 1) − 1) = (⌊‘𝑥))
114112, 93, 113sylancl 580 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+ → (((⌊‘𝑥) + 1) − 1) = (⌊‘𝑥))
115114fveq2d 6450 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → (ψ‘(((⌊‘𝑥) + 1) − 1)) = (ψ‘(⌊‘𝑥)))
116 chpfl 25328 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → (ψ‘(⌊‘𝑥)) = (ψ‘𝑥))
1171, 116syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → (ψ‘(⌊‘𝑥)) = (ψ‘𝑥))
118115, 117eqtrd 2813 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ → (ψ‘(((⌊‘𝑥) + 1) − 1)) = (ψ‘𝑥))
119118oveq2d 6938 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → ((log‘((⌊‘𝑥) + 1)) · (ψ‘(((⌊‘𝑥) + 1) − 1))) = ((log‘((⌊‘𝑥) + 1)) · (ψ‘𝑥)))
12012, 4mulcomd 10398 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → ((log‘((⌊‘𝑥) + 1)) · (ψ‘𝑥)) = ((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))))
121119, 120eqtrd 2813 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → ((log‘((⌊‘𝑥) + 1)) · (ψ‘(((⌊‘𝑥) + 1) − 1))) = ((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))))
122 0cn 10368 . . . . . . . . . . . . . 14 0 ∈ ℂ
123122mul01i 10566 . . . . . . . . . . . . 13 (0 · 0) = 0
124123a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (0 · 0) = 0)
125121, 124oveq12d 6940 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (((log‘((⌊‘𝑥) + 1)) · (ψ‘(((⌊‘𝑥) + 1) − 1))) − (0 · 0)) = (((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − 0))
12637subid1d 10723 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − 0) = ((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))))
127125, 126eqtrd 2813 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (((log‘((⌊‘𝑥) + 1)) · (ψ‘(((⌊‘𝑥) + 1) − 1))) − (0 · 0)) = ((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))))
12895fveq2d 6450 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘((𝑛 + 1) − 1)) = (ψ‘𝑛))
129128oveq2d 6938 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘((𝑛 + 1) − 1))) = (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)))
13082, 129sumeq12rdv 14845 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘((𝑛 + 1) − 1))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)))
131127, 130oveq12d 6940 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((((log‘((⌊‘𝑥) + 1)) · (ψ‘(((⌊‘𝑥) + 1) − 1))) − (0 · 0)) − Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘((𝑛 + 1) − 1)))) = (((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))))
13278, 111, 1313eqtr3d 2821 . . . . . . . 8 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) = (((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))))
133132oveq1d 6937 . . . . . . 7 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) = ((((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) − ((ψ‘𝑥) · (log‘𝑥))))
13439, 41, 1333eqtr4d 2823 . . . . . 6 (𝑥 ∈ ℝ+ → (((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))))
135134oveq1d 6937 . . . . 5 (𝑥 ∈ ℝ+ → ((((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥))
136 div23 11052 . . . . . . 7 (((ψ‘𝑥) ∈ ℂ ∧ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) / 𝑥) = (((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))))
1374, 15, 34, 136syl3anc 1439 . . . . . 6 (𝑥 ∈ ℝ+ → (((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) / 𝑥) = (((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))))
138137oveq1d 6937 . . . . 5 (𝑥 ∈ ℝ+ → ((((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) / 𝑥) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥)) = ((((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥)))
13936, 135, 1383eqtr3rd 2822 . . . 4 (𝑥 ∈ ℝ+ → ((((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥)) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥))
140139mpteq2ia 4975 . . 3 (𝑥 ∈ ℝ+ ↦ ((((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥))
141 ovexd 6956 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) ∈ V)
142 ovexd 6956 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥) ∈ V)
143 reex 10363 . . . . . . . 8 ℝ ∈ V
144 rpssre 12144 . . . . . . . 8 + ⊆ ℝ
145143, 144ssexi 5040 . . . . . . 7 + ∈ V
146145a1i 11 . . . . . 6 (⊤ → ℝ+ ∈ V)
147 ovexd 6956 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ V)
14815adantl 475 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ∈ ℂ)
149 eqidd 2778 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) = (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)))
150 eqidd 2778 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))))
151146, 147, 148, 149, 150offval2 7191 . . . . 5 (⊤ → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∘𝑓 · (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)))))
152 chpo1ub 25621 . . . . . 6 (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1)
153 0red 10380 . . . . . . . 8 (⊤ → 0 ∈ ℝ)
154 1red 10377 . . . . . . . 8 (⊤ → 1 ∈ ℝ)
155 divrcnv 14988 . . . . . . . . 9 (1 ∈ ℂ → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ⇝𝑟 0)
15693, 155mp1i 13 . . . . . . . 8 (⊤ → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ⇝𝑟 0)
157 rpreccl 12165 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+)
158157rpred 12181 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ)
159158adantl 475 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ)
16011, 13resubcld 10803 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ∈ ℝ)
161160adantl 475 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ∈ ℝ)
162 rpaddcl 12161 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝑥 + 1) ∈ ℝ+)
16321, 162mpan2 681 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (𝑥 + 1) ∈ ℝ+)
164163relogcld 24806 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (log‘(𝑥 + 1)) ∈ ℝ)
165164, 13resubcld 10803 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → ((log‘(𝑥 + 1)) − (log‘𝑥)) ∈ ℝ)
1667nn0red 11703 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → (⌊‘𝑥) ∈ ℝ)
167 1red 10377 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → 1 ∈ ℝ)
168 flle 12919 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (⌊‘𝑥) ≤ 𝑥)
1691, 168syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → (⌊‘𝑥) ≤ 𝑥)
170166, 1, 167, 169leadd1dd 10989 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → ((⌊‘𝑥) + 1) ≤ (𝑥 + 1))
17110, 163logled 24810 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (((⌊‘𝑥) + 1) ≤ (𝑥 + 1) ↔ (log‘((⌊‘𝑥) + 1)) ≤ (log‘(𝑥 + 1))))
172170, 171mpbid 224 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (log‘((⌊‘𝑥) + 1)) ≤ (log‘(𝑥 + 1)))
17311, 164, 13, 172lesub1dd 10991 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ≤ ((log‘(𝑥 + 1)) − (log‘𝑥)))
174 logdifbnd 25172 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → ((log‘(𝑥 + 1)) − (log‘𝑥)) ≤ (1 / 𝑥))
175160, 165, 158, 173, 174letrd 10533 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ≤ (1 / 𝑥))
176175ad2antrl 718 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ≤ (1 / 𝑥))
177 fllep1 12921 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ≤ ((⌊‘𝑥) + 1))
1781, 177syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ≤ ((⌊‘𝑥) + 1))
179 logleb 24786 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ ((⌊‘𝑥) + 1) ∈ ℝ+) → (𝑥 ≤ ((⌊‘𝑥) + 1) ↔ (log‘𝑥) ≤ (log‘((⌊‘𝑥) + 1))))
18010, 179mpdan 677 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 ≤ ((⌊‘𝑥) + 1) ↔ (log‘𝑥) ≤ (log‘((⌊‘𝑥) + 1))))
181178, 180mpbid 224 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (log‘𝑥) ≤ (log‘((⌊‘𝑥) + 1)))
18211, 13subge0d 10965 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (0 ≤ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ↔ (log‘𝑥) ≤ (log‘((⌊‘𝑥) + 1))))
183181, 182mpbird 249 . . . . . . . . 9 (𝑥 ∈ ℝ+ → 0 ≤ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)))
184183ad2antrl 718 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)))
185153, 154, 156, 159, 161, 176, 184rlimsqz2 14789 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) ⇝𝑟 0)
186 rlimo1 14755 . . . . . . 7 ((𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) ⇝𝑟 0 → (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) ∈ 𝑂(1))
187185, 186syl 17 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) ∈ 𝑂(1))
188 o1mul 14753 . . . . . 6 (((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1) ∧ (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) ∈ 𝑂(1)) → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∘𝑓 · (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)))) ∈ 𝑂(1))
189152, 187, 188sylancr 581 . . . . 5 (⊤ → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∘𝑓 · (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)))) ∈ 𝑂(1))
190151, 189eqeltrrd 2859 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ (((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)))) ∈ 𝑂(1))
191 nnrp 12150 . . . . . . . . 9 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ+)
192191ssriv 3824 . . . . . . . 8 ℕ ⊆ ℝ+
193192a1i 11 . . . . . . 7 (⊤ → ℕ ⊆ ℝ+)
194193sselda 3820 . . . . . 6 ((⊤ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
195194, 31syl 17 . . . . 5 ((⊤ ∧ 𝑛 ∈ ℕ) → (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) ∈ ℂ)
196 chpo1ub 25621 . . . . . . . 8 (𝑛 ∈ ℝ+ ↦ ((ψ‘𝑛) / 𝑛)) ∈ 𝑂(1)
197196a1i 11 . . . . . . 7 (⊤ → (𝑛 ∈ ℝ+ ↦ ((ψ‘𝑛) / 𝑛)) ∈ 𝑂(1))
198 rerpdivcl 12169 . . . . . . . . 9 (((ψ‘𝑛) ∈ ℝ ∧ 𝑛 ∈ ℝ+) → ((ψ‘𝑛) / 𝑛) ∈ ℝ)
19929, 198mpancom 678 . . . . . . . 8 (𝑛 ∈ ℝ+ → ((ψ‘𝑛) / 𝑛) ∈ ℝ)
200199adantl 475 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ ℝ+) → ((ψ‘𝑛) / 𝑛) ∈ ℝ)
20131adantl 475 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ ℝ+) → (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) ∈ ℂ)
202 rpreccl 12165 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → (1 / 𝑛) ∈ ℝ+)
203202rpred 12181 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → (1 / 𝑛) ∈ ℝ)
204 chpge0 25304 . . . . . . . . . . 11 (𝑛 ∈ ℝ → 0 ≤ (ψ‘𝑛))
20527, 204syl 17 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → 0 ≤ (ψ‘𝑛))
206 logdifbnd 25172 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → ((log‘(𝑛 + 1)) − (log‘𝑛)) ≤ (1 / 𝑛))
20726, 203, 29, 205, 206lemul1ad 11317 . . . . . . . . 9 (𝑛 ∈ ℝ+ → (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) ≤ ((1 / 𝑛) · (ψ‘𝑛)))
20827lep1d 11309 . . . . . . . . . . . . 13 (𝑛 ∈ ℝ+𝑛 ≤ (𝑛 + 1))
209 logleb 24786 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℝ+ ∧ (𝑛 + 1) ∈ ℝ+) → (𝑛 ≤ (𝑛 + 1) ↔ (log‘𝑛) ≤ (log‘(𝑛 + 1))))
21023, 209mpdan 677 . . . . . . . . . . . . 13 (𝑛 ∈ ℝ+ → (𝑛 ≤ (𝑛 + 1) ↔ (log‘𝑛) ≤ (log‘(𝑛 + 1))))
211208, 210mpbid 224 . . . . . . . . . . . 12 (𝑛 ∈ ℝ+ → (log‘𝑛) ≤ (log‘(𝑛 + 1)))
21224, 25subge0d 10965 . . . . . . . . . . . 12 (𝑛 ∈ ℝ+ → (0 ≤ ((log‘(𝑛 + 1)) − (log‘𝑛)) ↔ (log‘𝑛) ≤ (log‘(𝑛 + 1))))
213211, 212mpbird 249 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → 0 ≤ ((log‘(𝑛 + 1)) − (log‘𝑛)))
21426, 29, 213, 205mulge0d 10952 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → 0 ≤ (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)))
21530, 214absidd 14569 . . . . . . . . 9 (𝑛 ∈ ℝ+ → (abs‘(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) = (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)))
216 rpregt0 12153 . . . . . . . . . . . 12 (𝑛 ∈ ℝ+ → (𝑛 ∈ ℝ ∧ 0 < 𝑛))
217 divge0 11246 . . . . . . . . . . . 12 ((((ψ‘𝑛) ∈ ℝ ∧ 0 ≤ (ψ‘𝑛)) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → 0 ≤ ((ψ‘𝑛) / 𝑛))
21829, 205, 216, 217syl21anc 828 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → 0 ≤ ((ψ‘𝑛) / 𝑛))
219199, 218absidd 14569 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → (abs‘((ψ‘𝑛) / 𝑛)) = ((ψ‘𝑛) / 𝑛))
22029recnd 10405 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → (ψ‘𝑛) ∈ ℂ)
221 rpcn 12149 . . . . . . . . . . 11 (𝑛 ∈ ℝ+𝑛 ∈ ℂ)
222 rpne0 12155 . . . . . . . . . . 11 (𝑛 ∈ ℝ+𝑛 ≠ 0)
223220, 221, 222divrec2d 11155 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → ((ψ‘𝑛) / 𝑛) = ((1 / 𝑛) · (ψ‘𝑛)))
224219, 223eqtrd 2813 . . . . . . . . 9 (𝑛 ∈ ℝ+ → (abs‘((ψ‘𝑛) / 𝑛)) = ((1 / 𝑛) · (ψ‘𝑛)))
225207, 215, 2243brtr4d 4918 . . . . . . . 8 (𝑛 ∈ ℝ+ → (abs‘(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) ≤ (abs‘((ψ‘𝑛) / 𝑛)))
226225ad2antrl 718 . . . . . . 7 ((⊤ ∧ (𝑛 ∈ ℝ+ ∧ 1 ≤ 𝑛)) → (abs‘(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) ≤ (abs‘((ψ‘𝑛) / 𝑛)))
227154, 197, 200, 201, 226o1le 14791 . . . . . 6 (⊤ → (𝑛 ∈ ℝ+ ↦ (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) ∈ 𝑂(1))
228193, 227o1res2 14702 . . . . 5 (⊤ → (𝑛 ∈ ℕ ↦ (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) ∈ 𝑂(1))
229195, 228o1fsum 14949 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥)) ∈ 𝑂(1))
230141, 142, 190, 229o1sub2 14764 . . 3 (⊤ → (𝑥 ∈ ℝ+ ↦ ((((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥))) ∈ 𝑂(1))
231140, 230syl5eqelr 2863 . 2 (⊤ → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥)) ∈ 𝑂(1))
232231mptru 1609 1 (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥)) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 386   = wceq 1601  wtru 1602  wcel 2106  wne 2968  Vcvv 3397  wss 3791   class class class wbr 4886  cmpt 4965  cfv 6135  (class class class)co 6922  𝑓 cof 7172  cc 10270  cr 10271  0cc0 10272  1c1 10273   + caddc 10275   · cmul 10277   < clt 10411  cle 10412  cmin 10606   / cdiv 11032  cn 11374  2c2 11430  0cn0 11642  cz 11728  cuz 11992  +crp 12137  ...cfz 12643  ..^cfzo 12784  cfl 12910  abscabs 14381  𝑟 crli 14624  𝑂(1)co1 14625  Σcsu 14824  logclog 24738  Λcvma 25270  ψcchp 25271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-xnn0 11715  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ioc 12492  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-fl 12912  df-mod 12988  df-seq 13120  df-exp 13179  df-fac 13379  df-bc 13408  df-hash 13436  df-shft 14214  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-limsup 14610  df-clim 14627  df-rlim 14628  df-o1 14629  df-lo1 14630  df-sum 14825  df-ef 15200  df-e 15201  df-sin 15202  df-cos 15203  df-pi 15205  df-dvds 15388  df-gcd 15623  df-prm 15791  df-pc 15946  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-xrs 16548  df-qtop 16553  df-imas 16554  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-mulg 17928  df-cntz 18133  df-cmn 18581  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-fbas 20139  df-fg 20140  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cld 21231  df-ntr 21232  df-cls 21233  df-nei 21310  df-lp 21348  df-perf 21349  df-cn 21439  df-cnp 21440  df-haus 21527  df-tx 21774  df-hmeo 21967  df-fil 22058  df-fm 22150  df-flim 22151  df-flf 22152  df-xms 22533  df-ms 22534  df-tms 22535  df-cncf 23089  df-limc 24067  df-dv 24068  df-log 24740  df-cxp 24741  df-cht 25275  df-vma 25276  df-chp 25277  df-ppi 25278
This theorem is referenced by:  selberg2  25692  selberg3lem2  25699
  Copyright terms: Public domain W3C validator