MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg2lem Structured version   Visualization version   GIF version

Theorem selberg2lem 27468
Description: Lemma for selberg2 27469. Equation 10.4.12 of [Shapiro], p. 420. (Contributed by Mario Carneiro, 23-May-2016.)
Assertion
Ref Expression
selberg2lem (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥)) ∈ 𝑂(1)
Distinct variable group:   𝑥,𝑛

Proof of Theorem selberg2lem
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 rpre 12967 . . . . . . . . 9 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
2 chpcl 27041 . . . . . . . . 9 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
31, 2syl 17 . . . . . . . 8 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℝ)
43recnd 11209 . . . . . . 7 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℂ)
5 rprege0 12974 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
6 flge0nn0 13789 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
75, 6syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (⌊‘𝑥) ∈ ℕ0)
8 nn0p1nn 12488 . . . . . . . . . . . 12 ((⌊‘𝑥) ∈ ℕ0 → ((⌊‘𝑥) + 1) ∈ ℕ)
97, 8syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → ((⌊‘𝑥) + 1) ∈ ℕ)
109nnrpd 13000 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → ((⌊‘𝑥) + 1) ∈ ℝ+)
1110relogcld 26539 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (log‘((⌊‘𝑥) + 1)) ∈ ℝ)
1211recnd 11209 . . . . . . . 8 (𝑥 ∈ ℝ+ → (log‘((⌊‘𝑥) + 1)) ∈ ℂ)
13 relogcl 26491 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
1413recnd 11209 . . . . . . . 8 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℂ)
1512, 14subcld 11540 . . . . . . 7 (𝑥 ∈ ℝ+ → ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ∈ ℂ)
164, 15mulcld 11201 . . . . . 6 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) ∈ ℂ)
17 fzfid 13945 . . . . . . 7 (𝑥 ∈ ℝ+ → (1...(⌊‘𝑥)) ∈ Fin)
18 elfznn 13521 . . . . . . . . . 10 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
1918adantl 481 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
2019nnrpd 13000 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
21 1rp 12962 . . . . . . . . . . . . 13 1 ∈ ℝ+
22 rpaddcl 12982 . . . . . . . . . . . . 13 ((𝑛 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝑛 + 1) ∈ ℝ+)
2321, 22mpan2 691 . . . . . . . . . . . 12 (𝑛 ∈ ℝ+ → (𝑛 + 1) ∈ ℝ+)
2423relogcld 26539 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → (log‘(𝑛 + 1)) ∈ ℝ)
25 relogcl 26491 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → (log‘𝑛) ∈ ℝ)
2624, 25resubcld 11613 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → ((log‘(𝑛 + 1)) − (log‘𝑛)) ∈ ℝ)
27 rpre 12967 . . . . . . . . . . 11 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
28 chpcl 27041 . . . . . . . . . . 11 (𝑛 ∈ ℝ → (ψ‘𝑛) ∈ ℝ)
2927, 28syl 17 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → (ψ‘𝑛) ∈ ℝ)
3026, 29remulcld 11211 . . . . . . . . 9 (𝑛 ∈ ℝ+ → (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) ∈ ℝ)
3130recnd 11209 . . . . . . . 8 (𝑛 ∈ ℝ+ → (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) ∈ ℂ)
3220, 31syl 17 . . . . . . 7 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) ∈ ℂ)
3317, 32fsumcl 15706 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) ∈ ℂ)
34 rpcnne0 12977 . . . . . 6 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
35 divsubdir 11883 . . . . . 6 ((((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) ∈ ℂ ∧ Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → ((((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) / 𝑥) = ((((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) / 𝑥) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥)))
3616, 33, 34, 35syl3anc 1373 . . . . 5 (𝑥 ∈ ℝ+ → ((((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) / 𝑥) = ((((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) / 𝑥) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥)))
374, 12mulcld 11201 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) ∈ ℂ)
384, 14mulcld 11201 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) · (log‘𝑥)) ∈ ℂ)
3937, 38, 33sub32d 11572 . . . . . . 7 (𝑥 ∈ ℝ+ → ((((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − ((ψ‘𝑥) · (log‘𝑥))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) = ((((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) − ((ψ‘𝑥) · (log‘𝑥))))
404, 12, 14subdid 11641 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) = (((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − ((ψ‘𝑥) · (log‘𝑥))))
4140oveq1d 7405 . . . . . . 7 (𝑥 ∈ ℝ+ → (((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) = ((((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − ((ψ‘𝑥) · (log‘𝑥))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))))
42 fveq2 6861 . . . . . . . . . . 11 (𝑚 = 𝑛 → (log‘𝑚) = (log‘𝑛))
43 fvoveq1 7413 . . . . . . . . . . 11 (𝑚 = 𝑛 → (ψ‘(𝑚 − 1)) = (ψ‘(𝑛 − 1)))
4442, 43jca 511 . . . . . . . . . 10 (𝑚 = 𝑛 → ((log‘𝑚) = (log‘𝑛) ∧ (ψ‘(𝑚 − 1)) = (ψ‘(𝑛 − 1))))
45 fveq2 6861 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → (log‘𝑚) = (log‘(𝑛 + 1)))
46 fvoveq1 7413 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → (ψ‘(𝑚 − 1)) = (ψ‘((𝑛 + 1) − 1)))
4745, 46jca 511 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → ((log‘𝑚) = (log‘(𝑛 + 1)) ∧ (ψ‘(𝑚 − 1)) = (ψ‘((𝑛 + 1) − 1))))
48 fveq2 6861 . . . . . . . . . . . 12 (𝑚 = 1 → (log‘𝑚) = (log‘1))
49 log1 26501 . . . . . . . . . . . 12 (log‘1) = 0
5048, 49eqtrdi 2781 . . . . . . . . . . 11 (𝑚 = 1 → (log‘𝑚) = 0)
51 oveq1 7397 . . . . . . . . . . . . . 14 (𝑚 = 1 → (𝑚 − 1) = (1 − 1))
52 1m1e0 12265 . . . . . . . . . . . . . 14 (1 − 1) = 0
5351, 52eqtrdi 2781 . . . . . . . . . . . . 13 (𝑚 = 1 → (𝑚 − 1) = 0)
5453fveq2d 6865 . . . . . . . . . . . 12 (𝑚 = 1 → (ψ‘(𝑚 − 1)) = (ψ‘0))
55 2pos 12296 . . . . . . . . . . . . 13 0 < 2
56 0re 11183 . . . . . . . . . . . . . 14 0 ∈ ℝ
57 chpeq0 27126 . . . . . . . . . . . . . 14 (0 ∈ ℝ → ((ψ‘0) = 0 ↔ 0 < 2))
5856, 57ax-mp 5 . . . . . . . . . . . . 13 ((ψ‘0) = 0 ↔ 0 < 2)
5955, 58mpbir 231 . . . . . . . . . . . 12 (ψ‘0) = 0
6054, 59eqtrdi 2781 . . . . . . . . . . 11 (𝑚 = 1 → (ψ‘(𝑚 − 1)) = 0)
6150, 60jca 511 . . . . . . . . . 10 (𝑚 = 1 → ((log‘𝑚) = 0 ∧ (ψ‘(𝑚 − 1)) = 0))
62 fveq2 6861 . . . . . . . . . . 11 (𝑚 = ((⌊‘𝑥) + 1) → (log‘𝑚) = (log‘((⌊‘𝑥) + 1)))
63 fvoveq1 7413 . . . . . . . . . . 11 (𝑚 = ((⌊‘𝑥) + 1) → (ψ‘(𝑚 − 1)) = (ψ‘(((⌊‘𝑥) + 1) − 1)))
6462, 63jca 511 . . . . . . . . . 10 (𝑚 = ((⌊‘𝑥) + 1) → ((log‘𝑚) = (log‘((⌊‘𝑥) + 1)) ∧ (ψ‘(𝑚 − 1)) = (ψ‘(((⌊‘𝑥) + 1) − 1))))
65 nnuz 12843 . . . . . . . . . . 11 ℕ = (ℤ‘1)
669, 65eleqtrdi 2839 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → ((⌊‘𝑥) + 1) ∈ (ℤ‘1))
67 elfznn 13521 . . . . . . . . . . . . . 14 (𝑚 ∈ (1...((⌊‘𝑥) + 1)) → 𝑚 ∈ ℕ)
6867adantl 481 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑚 ∈ ℕ)
6968nnrpd 13000 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑚 ∈ ℝ+)
7069relogcld 26539 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (log‘𝑚) ∈ ℝ)
7170recnd 11209 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (log‘𝑚) ∈ ℂ)
7268nnred 12208 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑚 ∈ ℝ)
73 peano2rem 11496 . . . . . . . . . . . . 13 (𝑚 ∈ ℝ → (𝑚 − 1) ∈ ℝ)
7472, 73syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (𝑚 − 1) ∈ ℝ)
75 chpcl 27041 . . . . . . . . . . . 12 ((𝑚 − 1) ∈ ℝ → (ψ‘(𝑚 − 1)) ∈ ℝ)
7674, 75syl 17 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (ψ‘(𝑚 − 1)) ∈ ℝ)
7776recnd 11209 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (ψ‘(𝑚 − 1)) ∈ ℂ)
7844, 47, 61, 64, 66, 71, 77fsumparts 15779 . . . . . . . . 9 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))((log‘𝑛) · ((ψ‘((𝑛 + 1) − 1)) − (ψ‘(𝑛 − 1)))) = ((((log‘((⌊‘𝑥) + 1)) · (ψ‘(((⌊‘𝑥) + 1) − 1))) − (0 · 0)) − Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘((𝑛 + 1) − 1)))))
797nn0zd 12562 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (⌊‘𝑥) ∈ ℤ)
80 fzval3 13702 . . . . . . . . . . . 12 ((⌊‘𝑥) ∈ ℤ → (1...(⌊‘𝑥)) = (1..^((⌊‘𝑥) + 1)))
8179, 80syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (1...(⌊‘𝑥)) = (1..^((⌊‘𝑥) + 1)))
8281eqcomd 2736 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (1..^((⌊‘𝑥) + 1)) = (1...(⌊‘𝑥)))
83 nnm1nn0 12490 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
8419, 83syl 17 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 − 1) ∈ ℕ0)
8584nn0red 12511 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 − 1) ∈ ℝ)
86 chpcl 27041 . . . . . . . . . . . . . . 15 ((𝑛 − 1) ∈ ℝ → (ψ‘(𝑛 − 1)) ∈ ℝ)
8785, 86syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑛 − 1)) ∈ ℝ)
8887recnd 11209 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑛 − 1)) ∈ ℂ)
89 vmacl 27035 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
9019, 89syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
9190recnd 11209 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℂ)
9219nncnd 12209 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
93 ax-1cn 11133 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
94 pncan 11434 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
9592, 93, 94sylancl 586 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 + 1) − 1) = 𝑛)
96 npcan 11437 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 − 1) + 1) = 𝑛)
9792, 93, 96sylancl 586 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 − 1) + 1) = 𝑛)
9895, 97eqtr4d 2768 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 + 1) − 1) = ((𝑛 − 1) + 1))
9998fveq2d 6865 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘((𝑛 + 1) − 1)) = (ψ‘((𝑛 − 1) + 1)))
100 chpp1 27072 . . . . . . . . . . . . . . 15 ((𝑛 − 1) ∈ ℕ0 → (ψ‘((𝑛 − 1) + 1)) = ((ψ‘(𝑛 − 1)) + (Λ‘((𝑛 − 1) + 1))))
10184, 100syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘((𝑛 − 1) + 1)) = ((ψ‘(𝑛 − 1)) + (Λ‘((𝑛 − 1) + 1))))
10297fveq2d 6865 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘((𝑛 − 1) + 1)) = (Λ‘𝑛))
103102oveq2d 7406 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑛 − 1)) + (Λ‘((𝑛 − 1) + 1))) = ((ψ‘(𝑛 − 1)) + (Λ‘𝑛)))
10499, 101, 1033eqtrd 2769 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘((𝑛 + 1) − 1)) = ((ψ‘(𝑛 − 1)) + (Λ‘𝑛)))
10588, 91, 104mvrladdd 11598 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘((𝑛 + 1) − 1)) − (ψ‘(𝑛 − 1))) = (Λ‘𝑛))
106105oveq2d 7406 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘𝑛) · ((ψ‘((𝑛 + 1) − 1)) − (ψ‘(𝑛 − 1)))) = ((log‘𝑛) · (Λ‘𝑛)))
10720relogcld 26539 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ)
108107recnd 11209 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℂ)
10991, 108mulcomd 11202 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (log‘𝑛)) = ((log‘𝑛) · (Λ‘𝑛)))
110106, 109eqtr4d 2768 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘𝑛) · ((ψ‘((𝑛 + 1) − 1)) − (ψ‘(𝑛 − 1)))) = ((Λ‘𝑛) · (log‘𝑛)))
11182, 110sumeq12rdv 15680 . . . . . . . . 9 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))((log‘𝑛) · ((ψ‘((𝑛 + 1) − 1)) − (ψ‘(𝑛 − 1)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)))
1127nn0cnd 12512 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ+ → (⌊‘𝑥) ∈ ℂ)
113 pncan 11434 . . . . . . . . . . . . . . . . 17 (((⌊‘𝑥) ∈ ℂ ∧ 1 ∈ ℂ) → (((⌊‘𝑥) + 1) − 1) = (⌊‘𝑥))
114112, 93, 113sylancl 586 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+ → (((⌊‘𝑥) + 1) − 1) = (⌊‘𝑥))
115114fveq2d 6865 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → (ψ‘(((⌊‘𝑥) + 1) − 1)) = (ψ‘(⌊‘𝑥)))
116 chpfl 27067 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → (ψ‘(⌊‘𝑥)) = (ψ‘𝑥))
1171, 116syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → (ψ‘(⌊‘𝑥)) = (ψ‘𝑥))
118115, 117eqtrd 2765 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ → (ψ‘(((⌊‘𝑥) + 1) − 1)) = (ψ‘𝑥))
119118oveq2d 7406 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → ((log‘((⌊‘𝑥) + 1)) · (ψ‘(((⌊‘𝑥) + 1) − 1))) = ((log‘((⌊‘𝑥) + 1)) · (ψ‘𝑥)))
12012, 4mulcomd 11202 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → ((log‘((⌊‘𝑥) + 1)) · (ψ‘𝑥)) = ((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))))
121119, 120eqtrd 2765 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → ((log‘((⌊‘𝑥) + 1)) · (ψ‘(((⌊‘𝑥) + 1) − 1))) = ((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))))
122 0cn 11173 . . . . . . . . . . . . . 14 0 ∈ ℂ
123122mul01i 11371 . . . . . . . . . . . . 13 (0 · 0) = 0
124123a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (0 · 0) = 0)
125121, 124oveq12d 7408 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (((log‘((⌊‘𝑥) + 1)) · (ψ‘(((⌊‘𝑥) + 1) − 1))) − (0 · 0)) = (((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − 0))
12637subid1d 11529 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − 0) = ((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))))
127125, 126eqtrd 2765 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (((log‘((⌊‘𝑥) + 1)) · (ψ‘(((⌊‘𝑥) + 1) − 1))) − (0 · 0)) = ((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))))
12895fveq2d 6865 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘((𝑛 + 1) − 1)) = (ψ‘𝑛))
129128oveq2d 7406 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘((𝑛 + 1) − 1))) = (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)))
13082, 129sumeq12rdv 15680 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘((𝑛 + 1) − 1))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)))
131127, 130oveq12d 7408 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((((log‘((⌊‘𝑥) + 1)) · (ψ‘(((⌊‘𝑥) + 1) − 1))) − (0 · 0)) − Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘((𝑛 + 1) − 1)))) = (((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))))
13278, 111, 1313eqtr3d 2773 . . . . . . . 8 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) = (((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))))
133132oveq1d 7405 . . . . . . 7 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) = ((((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) − ((ψ‘𝑥) · (log‘𝑥))))
13439, 41, 1333eqtr4d 2775 . . . . . 6 (𝑥 ∈ ℝ+ → (((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))))
135134oveq1d 7405 . . . . 5 (𝑥 ∈ ℝ+ → ((((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥))
136 div23 11863 . . . . . . 7 (((ψ‘𝑥) ∈ ℂ ∧ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) / 𝑥) = (((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))))
1374, 15, 34, 136syl3anc 1373 . . . . . 6 (𝑥 ∈ ℝ+ → (((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) / 𝑥) = (((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))))
138137oveq1d 7405 . . . . 5 (𝑥 ∈ ℝ+ → ((((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) / 𝑥) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥)) = ((((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥)))
13936, 135, 1383eqtr3rd 2774 . . . 4 (𝑥 ∈ ℝ+ → ((((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥)) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥))
140139mpteq2ia 5205 . . 3 (𝑥 ∈ ℝ+ ↦ ((((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥))
141 ovexd 7425 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) ∈ V)
142 ovexd 7425 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥) ∈ V)
143 reex 11166 . . . . . . . 8 ℝ ∈ V
144 rpssre 12966 . . . . . . . 8 + ⊆ ℝ
145143, 144ssexi 5280 . . . . . . 7 + ∈ V
146145a1i 11 . . . . . 6 (⊤ → ℝ+ ∈ V)
147 ovexd 7425 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ V)
14815adantl 481 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ∈ ℂ)
149 eqidd 2731 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) = (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)))
150 eqidd 2731 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))))
151146, 147, 148, 149, 150offval2 7676 . . . . 5 (⊤ → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)))))
152 chpo1ub 27398 . . . . . 6 (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1)
153 0red 11184 . . . . . . . 8 (⊤ → 0 ∈ ℝ)
154 1red 11182 . . . . . . . 8 (⊤ → 1 ∈ ℝ)
155 divrcnv 15825 . . . . . . . . 9 (1 ∈ ℂ → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ⇝𝑟 0)
15693, 155mp1i 13 . . . . . . . 8 (⊤ → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ⇝𝑟 0)
157 rpreccl 12986 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+)
158157rpred 13002 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ)
159158adantl 481 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ)
16011, 13resubcld 11613 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ∈ ℝ)
161160adantl 481 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ∈ ℝ)
162 rpaddcl 12982 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝑥 + 1) ∈ ℝ+)
16321, 162mpan2 691 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (𝑥 + 1) ∈ ℝ+)
164163relogcld 26539 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (log‘(𝑥 + 1)) ∈ ℝ)
165164, 13resubcld 11613 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → ((log‘(𝑥 + 1)) − (log‘𝑥)) ∈ ℝ)
1667nn0red 12511 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → (⌊‘𝑥) ∈ ℝ)
167 1red 11182 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → 1 ∈ ℝ)
168 flle 13768 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (⌊‘𝑥) ≤ 𝑥)
1691, 168syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → (⌊‘𝑥) ≤ 𝑥)
170166, 1, 167, 169leadd1dd 11799 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → ((⌊‘𝑥) + 1) ≤ (𝑥 + 1))
17110, 163logled 26543 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (((⌊‘𝑥) + 1) ≤ (𝑥 + 1) ↔ (log‘((⌊‘𝑥) + 1)) ≤ (log‘(𝑥 + 1))))
172170, 171mpbid 232 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (log‘((⌊‘𝑥) + 1)) ≤ (log‘(𝑥 + 1)))
17311, 164, 13, 172lesub1dd 11801 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ≤ ((log‘(𝑥 + 1)) − (log‘𝑥)))
174 logdifbnd 26911 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → ((log‘(𝑥 + 1)) − (log‘𝑥)) ≤ (1 / 𝑥))
175160, 165, 158, 173, 174letrd 11338 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ≤ (1 / 𝑥))
176175ad2antrl 728 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ≤ (1 / 𝑥))
177 fllep1 13770 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ≤ ((⌊‘𝑥) + 1))
1781, 177syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ≤ ((⌊‘𝑥) + 1))
179 logleb 26519 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ ((⌊‘𝑥) + 1) ∈ ℝ+) → (𝑥 ≤ ((⌊‘𝑥) + 1) ↔ (log‘𝑥) ≤ (log‘((⌊‘𝑥) + 1))))
18010, 179mpdan 687 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 ≤ ((⌊‘𝑥) + 1) ↔ (log‘𝑥) ≤ (log‘((⌊‘𝑥) + 1))))
181178, 180mpbid 232 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (log‘𝑥) ≤ (log‘((⌊‘𝑥) + 1)))
18211, 13subge0d 11775 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (0 ≤ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ↔ (log‘𝑥) ≤ (log‘((⌊‘𝑥) + 1))))
183181, 182mpbird 257 . . . . . . . . 9 (𝑥 ∈ ℝ+ → 0 ≤ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)))
184183ad2antrl 728 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)))
185153, 154, 156, 159, 161, 176, 184rlimsqz2 15624 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) ⇝𝑟 0)
186 rlimo1 15590 . . . . . . 7 ((𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) ⇝𝑟 0 → (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) ∈ 𝑂(1))
187185, 186syl 17 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) ∈ 𝑂(1))
188 o1mul 15588 . . . . . 6 (((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1) ∧ (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) ∈ 𝑂(1)) → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)))) ∈ 𝑂(1))
189152, 187, 188sylancr 587 . . . . 5 (⊤ → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)))) ∈ 𝑂(1))
190151, 189eqeltrrd 2830 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ (((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)))) ∈ 𝑂(1))
191 nnrp 12970 . . . . . . . . 9 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ+)
192191ssriv 3953 . . . . . . . 8 ℕ ⊆ ℝ+
193192a1i 11 . . . . . . 7 (⊤ → ℕ ⊆ ℝ+)
194193sselda 3949 . . . . . 6 ((⊤ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
195194, 31syl 17 . . . . 5 ((⊤ ∧ 𝑛 ∈ ℕ) → (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) ∈ ℂ)
196 chpo1ub 27398 . . . . . . . 8 (𝑛 ∈ ℝ+ ↦ ((ψ‘𝑛) / 𝑛)) ∈ 𝑂(1)
197196a1i 11 . . . . . . 7 (⊤ → (𝑛 ∈ ℝ+ ↦ ((ψ‘𝑛) / 𝑛)) ∈ 𝑂(1))
198 rerpdivcl 12990 . . . . . . . . 9 (((ψ‘𝑛) ∈ ℝ ∧ 𝑛 ∈ ℝ+) → ((ψ‘𝑛) / 𝑛) ∈ ℝ)
19929, 198mpancom 688 . . . . . . . 8 (𝑛 ∈ ℝ+ → ((ψ‘𝑛) / 𝑛) ∈ ℝ)
200199adantl 481 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ ℝ+) → ((ψ‘𝑛) / 𝑛) ∈ ℝ)
20131adantl 481 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ ℝ+) → (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) ∈ ℂ)
202 rpreccl 12986 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → (1 / 𝑛) ∈ ℝ+)
203202rpred 13002 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → (1 / 𝑛) ∈ ℝ)
204 chpge0 27043 . . . . . . . . . . 11 (𝑛 ∈ ℝ → 0 ≤ (ψ‘𝑛))
20527, 204syl 17 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → 0 ≤ (ψ‘𝑛))
206 logdifbnd 26911 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → ((log‘(𝑛 + 1)) − (log‘𝑛)) ≤ (1 / 𝑛))
20726, 203, 29, 205, 206lemul1ad 12129 . . . . . . . . 9 (𝑛 ∈ ℝ+ → (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) ≤ ((1 / 𝑛) · (ψ‘𝑛)))
20827lep1d 12121 . . . . . . . . . . . . 13 (𝑛 ∈ ℝ+𝑛 ≤ (𝑛 + 1))
209 logleb 26519 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℝ+ ∧ (𝑛 + 1) ∈ ℝ+) → (𝑛 ≤ (𝑛 + 1) ↔ (log‘𝑛) ≤ (log‘(𝑛 + 1))))
21023, 209mpdan 687 . . . . . . . . . . . . 13 (𝑛 ∈ ℝ+ → (𝑛 ≤ (𝑛 + 1) ↔ (log‘𝑛) ≤ (log‘(𝑛 + 1))))
211208, 210mpbid 232 . . . . . . . . . . . 12 (𝑛 ∈ ℝ+ → (log‘𝑛) ≤ (log‘(𝑛 + 1)))
21224, 25subge0d 11775 . . . . . . . . . . . 12 (𝑛 ∈ ℝ+ → (0 ≤ ((log‘(𝑛 + 1)) − (log‘𝑛)) ↔ (log‘𝑛) ≤ (log‘(𝑛 + 1))))
213211, 212mpbird 257 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → 0 ≤ ((log‘(𝑛 + 1)) − (log‘𝑛)))
21426, 29, 213, 205mulge0d 11762 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → 0 ≤ (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)))
21530, 214absidd 15396 . . . . . . . . 9 (𝑛 ∈ ℝ+ → (abs‘(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) = (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)))
216 rpregt0 12973 . . . . . . . . . . . 12 (𝑛 ∈ ℝ+ → (𝑛 ∈ ℝ ∧ 0 < 𝑛))
217 divge0 12059 . . . . . . . . . . . 12 ((((ψ‘𝑛) ∈ ℝ ∧ 0 ≤ (ψ‘𝑛)) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → 0 ≤ ((ψ‘𝑛) / 𝑛))
21829, 205, 216, 217syl21anc 837 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → 0 ≤ ((ψ‘𝑛) / 𝑛))
219199, 218absidd 15396 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → (abs‘((ψ‘𝑛) / 𝑛)) = ((ψ‘𝑛) / 𝑛))
22029recnd 11209 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → (ψ‘𝑛) ∈ ℂ)
221 rpcn 12969 . . . . . . . . . . 11 (𝑛 ∈ ℝ+𝑛 ∈ ℂ)
222 rpne0 12975 . . . . . . . . . . 11 (𝑛 ∈ ℝ+𝑛 ≠ 0)
223220, 221, 222divrec2d 11969 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → ((ψ‘𝑛) / 𝑛) = ((1 / 𝑛) · (ψ‘𝑛)))
224219, 223eqtrd 2765 . . . . . . . . 9 (𝑛 ∈ ℝ+ → (abs‘((ψ‘𝑛) / 𝑛)) = ((1 / 𝑛) · (ψ‘𝑛)))
225207, 215, 2243brtr4d 5142 . . . . . . . 8 (𝑛 ∈ ℝ+ → (abs‘(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) ≤ (abs‘((ψ‘𝑛) / 𝑛)))
226225ad2antrl 728 . . . . . . 7 ((⊤ ∧ (𝑛 ∈ ℝ+ ∧ 1 ≤ 𝑛)) → (abs‘(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) ≤ (abs‘((ψ‘𝑛) / 𝑛)))
227154, 197, 200, 201, 226o1le 15626 . . . . . 6 (⊤ → (𝑛 ∈ ℝ+ ↦ (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) ∈ 𝑂(1))
228193, 227o1res2 15536 . . . . 5 (⊤ → (𝑛 ∈ ℕ ↦ (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) ∈ 𝑂(1))
229195, 228o1fsum 15786 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥)) ∈ 𝑂(1))
230141, 142, 190, 229o1sub2 15599 . . 3 (⊤ → (𝑥 ∈ ℝ+ ↦ ((((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥))) ∈ 𝑂(1))
231140, 230eqeltrrid 2834 . 2 (⊤ → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥)) ∈ 𝑂(1))
232231mptru 1547 1 (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥)) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2926  Vcvv 3450  wss 3917   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  f cof 7654  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  0cn0 12449  cz 12536  cuz 12800  +crp 12958  ...cfz 13475  ..^cfzo 13622  cfl 13759  abscabs 15207  𝑟 crli 15458  𝑂(1)co1 15459  Σcsu 15659  logclog 26470  Λcvma 27009  ψcchp 27010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-o1 15463  df-lo1 15464  df-sum 15660  df-ef 16040  df-e 16041  df-sin 16042  df-cos 16043  df-pi 16045  df-dvds 16230  df-gcd 16472  df-prm 16649  df-pc 16815  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-cxp 26473  df-cht 27014  df-vma 27015  df-chp 27016  df-ppi 27017
This theorem is referenced by:  selberg2  27469  selberg3lem2  27476
  Copyright terms: Public domain W3C validator