MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg2lem Structured version   Visualization version   GIF version

Theorem selberg2lem 26698
Description: Lemma for selberg2 26699. Equation 10.4.12 of [Shapiro], p. 420. (Contributed by Mario Carneiro, 23-May-2016.)
Assertion
Ref Expression
selberg2lem (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥)) ∈ 𝑂(1)
Distinct variable group:   𝑥,𝑛

Proof of Theorem selberg2lem
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 rpre 12738 . . . . . . . . 9 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
2 chpcl 26273 . . . . . . . . 9 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
31, 2syl 17 . . . . . . . 8 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℝ)
43recnd 11003 . . . . . . 7 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℂ)
5 rprege0 12745 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
6 flge0nn0 13540 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
75, 6syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (⌊‘𝑥) ∈ ℕ0)
8 nn0p1nn 12272 . . . . . . . . . . . 12 ((⌊‘𝑥) ∈ ℕ0 → ((⌊‘𝑥) + 1) ∈ ℕ)
97, 8syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → ((⌊‘𝑥) + 1) ∈ ℕ)
109nnrpd 12770 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → ((⌊‘𝑥) + 1) ∈ ℝ+)
1110relogcld 25778 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (log‘((⌊‘𝑥) + 1)) ∈ ℝ)
1211recnd 11003 . . . . . . . 8 (𝑥 ∈ ℝ+ → (log‘((⌊‘𝑥) + 1)) ∈ ℂ)
13 relogcl 25731 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
1413recnd 11003 . . . . . . . 8 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℂ)
1512, 14subcld 11332 . . . . . . 7 (𝑥 ∈ ℝ+ → ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ∈ ℂ)
164, 15mulcld 10995 . . . . . 6 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) ∈ ℂ)
17 fzfid 13693 . . . . . . 7 (𝑥 ∈ ℝ+ → (1...(⌊‘𝑥)) ∈ Fin)
18 elfznn 13285 . . . . . . . . . 10 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
1918adantl 482 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
2019nnrpd 12770 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
21 1rp 12734 . . . . . . . . . . . . 13 1 ∈ ℝ+
22 rpaddcl 12752 . . . . . . . . . . . . 13 ((𝑛 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝑛 + 1) ∈ ℝ+)
2321, 22mpan2 688 . . . . . . . . . . . 12 (𝑛 ∈ ℝ+ → (𝑛 + 1) ∈ ℝ+)
2423relogcld 25778 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → (log‘(𝑛 + 1)) ∈ ℝ)
25 relogcl 25731 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → (log‘𝑛) ∈ ℝ)
2624, 25resubcld 11403 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → ((log‘(𝑛 + 1)) − (log‘𝑛)) ∈ ℝ)
27 rpre 12738 . . . . . . . . . . 11 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
28 chpcl 26273 . . . . . . . . . . 11 (𝑛 ∈ ℝ → (ψ‘𝑛) ∈ ℝ)
2927, 28syl 17 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → (ψ‘𝑛) ∈ ℝ)
3026, 29remulcld 11005 . . . . . . . . 9 (𝑛 ∈ ℝ+ → (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) ∈ ℝ)
3130recnd 11003 . . . . . . . 8 (𝑛 ∈ ℝ+ → (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) ∈ ℂ)
3220, 31syl 17 . . . . . . 7 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) ∈ ℂ)
3317, 32fsumcl 15445 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) ∈ ℂ)
34 rpcnne0 12748 . . . . . 6 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
35 divsubdir 11669 . . . . . 6 ((((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) ∈ ℂ ∧ Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → ((((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) / 𝑥) = ((((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) / 𝑥) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥)))
3616, 33, 34, 35syl3anc 1370 . . . . 5 (𝑥 ∈ ℝ+ → ((((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) / 𝑥) = ((((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) / 𝑥) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥)))
374, 12mulcld 10995 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) ∈ ℂ)
384, 14mulcld 10995 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) · (log‘𝑥)) ∈ ℂ)
3937, 38, 33sub32d 11364 . . . . . . 7 (𝑥 ∈ ℝ+ → ((((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − ((ψ‘𝑥) · (log‘𝑥))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) = ((((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) − ((ψ‘𝑥) · (log‘𝑥))))
404, 12, 14subdid 11431 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) = (((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − ((ψ‘𝑥) · (log‘𝑥))))
4140oveq1d 7290 . . . . . . 7 (𝑥 ∈ ℝ+ → (((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) = ((((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − ((ψ‘𝑥) · (log‘𝑥))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))))
42 fveq2 6774 . . . . . . . . . . 11 (𝑚 = 𝑛 → (log‘𝑚) = (log‘𝑛))
43 fvoveq1 7298 . . . . . . . . . . 11 (𝑚 = 𝑛 → (ψ‘(𝑚 − 1)) = (ψ‘(𝑛 − 1)))
4442, 43jca 512 . . . . . . . . . 10 (𝑚 = 𝑛 → ((log‘𝑚) = (log‘𝑛) ∧ (ψ‘(𝑚 − 1)) = (ψ‘(𝑛 − 1))))
45 fveq2 6774 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → (log‘𝑚) = (log‘(𝑛 + 1)))
46 fvoveq1 7298 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → (ψ‘(𝑚 − 1)) = (ψ‘((𝑛 + 1) − 1)))
4745, 46jca 512 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → ((log‘𝑚) = (log‘(𝑛 + 1)) ∧ (ψ‘(𝑚 − 1)) = (ψ‘((𝑛 + 1) − 1))))
48 fveq2 6774 . . . . . . . . . . . 12 (𝑚 = 1 → (log‘𝑚) = (log‘1))
49 log1 25741 . . . . . . . . . . . 12 (log‘1) = 0
5048, 49eqtrdi 2794 . . . . . . . . . . 11 (𝑚 = 1 → (log‘𝑚) = 0)
51 oveq1 7282 . . . . . . . . . . . . . 14 (𝑚 = 1 → (𝑚 − 1) = (1 − 1))
52 1m1e0 12045 . . . . . . . . . . . . . 14 (1 − 1) = 0
5351, 52eqtrdi 2794 . . . . . . . . . . . . 13 (𝑚 = 1 → (𝑚 − 1) = 0)
5453fveq2d 6778 . . . . . . . . . . . 12 (𝑚 = 1 → (ψ‘(𝑚 − 1)) = (ψ‘0))
55 2pos 12076 . . . . . . . . . . . . 13 0 < 2
56 0re 10977 . . . . . . . . . . . . . 14 0 ∈ ℝ
57 chpeq0 26356 . . . . . . . . . . . . . 14 (0 ∈ ℝ → ((ψ‘0) = 0 ↔ 0 < 2))
5856, 57ax-mp 5 . . . . . . . . . . . . 13 ((ψ‘0) = 0 ↔ 0 < 2)
5955, 58mpbir 230 . . . . . . . . . . . 12 (ψ‘0) = 0
6054, 59eqtrdi 2794 . . . . . . . . . . 11 (𝑚 = 1 → (ψ‘(𝑚 − 1)) = 0)
6150, 60jca 512 . . . . . . . . . 10 (𝑚 = 1 → ((log‘𝑚) = 0 ∧ (ψ‘(𝑚 − 1)) = 0))
62 fveq2 6774 . . . . . . . . . . 11 (𝑚 = ((⌊‘𝑥) + 1) → (log‘𝑚) = (log‘((⌊‘𝑥) + 1)))
63 fvoveq1 7298 . . . . . . . . . . 11 (𝑚 = ((⌊‘𝑥) + 1) → (ψ‘(𝑚 − 1)) = (ψ‘(((⌊‘𝑥) + 1) − 1)))
6462, 63jca 512 . . . . . . . . . 10 (𝑚 = ((⌊‘𝑥) + 1) → ((log‘𝑚) = (log‘((⌊‘𝑥) + 1)) ∧ (ψ‘(𝑚 − 1)) = (ψ‘(((⌊‘𝑥) + 1) − 1))))
65 nnuz 12621 . . . . . . . . . . 11 ℕ = (ℤ‘1)
669, 65eleqtrdi 2849 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → ((⌊‘𝑥) + 1) ∈ (ℤ‘1))
67 elfznn 13285 . . . . . . . . . . . . . 14 (𝑚 ∈ (1...((⌊‘𝑥) + 1)) → 𝑚 ∈ ℕ)
6867adantl 482 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑚 ∈ ℕ)
6968nnrpd 12770 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑚 ∈ ℝ+)
7069relogcld 25778 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (log‘𝑚) ∈ ℝ)
7170recnd 11003 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (log‘𝑚) ∈ ℂ)
7268nnred 11988 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑚 ∈ ℝ)
73 peano2rem 11288 . . . . . . . . . . . . 13 (𝑚 ∈ ℝ → (𝑚 − 1) ∈ ℝ)
7472, 73syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (𝑚 − 1) ∈ ℝ)
75 chpcl 26273 . . . . . . . . . . . 12 ((𝑚 − 1) ∈ ℝ → (ψ‘(𝑚 − 1)) ∈ ℝ)
7674, 75syl 17 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (ψ‘(𝑚 − 1)) ∈ ℝ)
7776recnd 11003 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (ψ‘(𝑚 − 1)) ∈ ℂ)
7844, 47, 61, 64, 66, 71, 77fsumparts 15518 . . . . . . . . 9 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))((log‘𝑛) · ((ψ‘((𝑛 + 1) − 1)) − (ψ‘(𝑛 − 1)))) = ((((log‘((⌊‘𝑥) + 1)) · (ψ‘(((⌊‘𝑥) + 1) − 1))) − (0 · 0)) − Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘((𝑛 + 1) − 1)))))
797nn0zd 12424 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (⌊‘𝑥) ∈ ℤ)
80 fzval3 13456 . . . . . . . . . . . 12 ((⌊‘𝑥) ∈ ℤ → (1...(⌊‘𝑥)) = (1..^((⌊‘𝑥) + 1)))
8179, 80syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (1...(⌊‘𝑥)) = (1..^((⌊‘𝑥) + 1)))
8281eqcomd 2744 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (1..^((⌊‘𝑥) + 1)) = (1...(⌊‘𝑥)))
83 nnm1nn0 12274 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
8419, 83syl 17 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 − 1) ∈ ℕ0)
8584nn0red 12294 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 − 1) ∈ ℝ)
86 chpcl 26273 . . . . . . . . . . . . . . 15 ((𝑛 − 1) ∈ ℝ → (ψ‘(𝑛 − 1)) ∈ ℝ)
8785, 86syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑛 − 1)) ∈ ℝ)
8887recnd 11003 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑛 − 1)) ∈ ℂ)
89 vmacl 26267 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
9019, 89syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
9190recnd 11003 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℂ)
9219nncnd 11989 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
93 ax-1cn 10929 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
94 pncan 11227 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
9592, 93, 94sylancl 586 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 + 1) − 1) = 𝑛)
96 npcan 11230 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 − 1) + 1) = 𝑛)
9792, 93, 96sylancl 586 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 − 1) + 1) = 𝑛)
9895, 97eqtr4d 2781 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 + 1) − 1) = ((𝑛 − 1) + 1))
9998fveq2d 6778 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘((𝑛 + 1) − 1)) = (ψ‘((𝑛 − 1) + 1)))
100 chpp1 26304 . . . . . . . . . . . . . . 15 ((𝑛 − 1) ∈ ℕ0 → (ψ‘((𝑛 − 1) + 1)) = ((ψ‘(𝑛 − 1)) + (Λ‘((𝑛 − 1) + 1))))
10184, 100syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘((𝑛 − 1) + 1)) = ((ψ‘(𝑛 − 1)) + (Λ‘((𝑛 − 1) + 1))))
10297fveq2d 6778 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘((𝑛 − 1) + 1)) = (Λ‘𝑛))
103102oveq2d 7291 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑛 − 1)) + (Λ‘((𝑛 − 1) + 1))) = ((ψ‘(𝑛 − 1)) + (Λ‘𝑛)))
10499, 101, 1033eqtrd 2782 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘((𝑛 + 1) − 1)) = ((ψ‘(𝑛 − 1)) + (Λ‘𝑛)))
10588, 91, 104mvrladdd 11388 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘((𝑛 + 1) − 1)) − (ψ‘(𝑛 − 1))) = (Λ‘𝑛))
106105oveq2d 7291 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘𝑛) · ((ψ‘((𝑛 + 1) − 1)) − (ψ‘(𝑛 − 1)))) = ((log‘𝑛) · (Λ‘𝑛)))
10720relogcld 25778 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ)
108107recnd 11003 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℂ)
10991, 108mulcomd 10996 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (log‘𝑛)) = ((log‘𝑛) · (Λ‘𝑛)))
110106, 109eqtr4d 2781 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘𝑛) · ((ψ‘((𝑛 + 1) − 1)) − (ψ‘(𝑛 − 1)))) = ((Λ‘𝑛) · (log‘𝑛)))
11182, 110sumeq12rdv 15419 . . . . . . . . 9 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))((log‘𝑛) · ((ψ‘((𝑛 + 1) − 1)) − (ψ‘(𝑛 − 1)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)))
1127nn0cnd 12295 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ+ → (⌊‘𝑥) ∈ ℂ)
113 pncan 11227 . . . . . . . . . . . . . . . . 17 (((⌊‘𝑥) ∈ ℂ ∧ 1 ∈ ℂ) → (((⌊‘𝑥) + 1) − 1) = (⌊‘𝑥))
114112, 93, 113sylancl 586 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+ → (((⌊‘𝑥) + 1) − 1) = (⌊‘𝑥))
115114fveq2d 6778 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → (ψ‘(((⌊‘𝑥) + 1) − 1)) = (ψ‘(⌊‘𝑥)))
116 chpfl 26299 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → (ψ‘(⌊‘𝑥)) = (ψ‘𝑥))
1171, 116syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → (ψ‘(⌊‘𝑥)) = (ψ‘𝑥))
118115, 117eqtrd 2778 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ → (ψ‘(((⌊‘𝑥) + 1) − 1)) = (ψ‘𝑥))
119118oveq2d 7291 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → ((log‘((⌊‘𝑥) + 1)) · (ψ‘(((⌊‘𝑥) + 1) − 1))) = ((log‘((⌊‘𝑥) + 1)) · (ψ‘𝑥)))
12012, 4mulcomd 10996 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → ((log‘((⌊‘𝑥) + 1)) · (ψ‘𝑥)) = ((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))))
121119, 120eqtrd 2778 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → ((log‘((⌊‘𝑥) + 1)) · (ψ‘(((⌊‘𝑥) + 1) − 1))) = ((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))))
122 0cn 10967 . . . . . . . . . . . . . 14 0 ∈ ℂ
123122mul01i 11165 . . . . . . . . . . . . 13 (0 · 0) = 0
124123a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (0 · 0) = 0)
125121, 124oveq12d 7293 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (((log‘((⌊‘𝑥) + 1)) · (ψ‘(((⌊‘𝑥) + 1) − 1))) − (0 · 0)) = (((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − 0))
12637subid1d 11321 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − 0) = ((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))))
127125, 126eqtrd 2778 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (((log‘((⌊‘𝑥) + 1)) · (ψ‘(((⌊‘𝑥) + 1) − 1))) − (0 · 0)) = ((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))))
12895fveq2d 6778 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘((𝑛 + 1) − 1)) = (ψ‘𝑛))
129128oveq2d 7291 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘((𝑛 + 1) − 1))) = (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)))
13082, 129sumeq12rdv 15419 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘((𝑛 + 1) − 1))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)))
131127, 130oveq12d 7293 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((((log‘((⌊‘𝑥) + 1)) · (ψ‘(((⌊‘𝑥) + 1) − 1))) − (0 · 0)) − Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘((𝑛 + 1) − 1)))) = (((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))))
13278, 111, 1313eqtr3d 2786 . . . . . . . 8 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) = (((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))))
133132oveq1d 7290 . . . . . . 7 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) = ((((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) − ((ψ‘𝑥) · (log‘𝑥))))
13439, 41, 1333eqtr4d 2788 . . . . . 6 (𝑥 ∈ ℝ+ → (((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))))
135134oveq1d 7290 . . . . 5 (𝑥 ∈ ℝ+ → ((((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥))
136 div23 11652 . . . . . . 7 (((ψ‘𝑥) ∈ ℂ ∧ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) / 𝑥) = (((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))))
1374, 15, 34, 136syl3anc 1370 . . . . . 6 (𝑥 ∈ ℝ+ → (((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) / 𝑥) = (((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))))
138137oveq1d 7290 . . . . 5 (𝑥 ∈ ℝ+ → ((((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) / 𝑥) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥)) = ((((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥)))
13936, 135, 1383eqtr3rd 2787 . . . 4 (𝑥 ∈ ℝ+ → ((((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥)) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥))
140139mpteq2ia 5177 . . 3 (𝑥 ∈ ℝ+ ↦ ((((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥))
141 ovexd 7310 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) ∈ V)
142 ovexd 7310 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥) ∈ V)
143 reex 10962 . . . . . . . 8 ℝ ∈ V
144 rpssre 12737 . . . . . . . 8 + ⊆ ℝ
145143, 144ssexi 5246 . . . . . . 7 + ∈ V
146145a1i 11 . . . . . 6 (⊤ → ℝ+ ∈ V)
147 ovexd 7310 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ V)
14815adantl 482 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ∈ ℂ)
149 eqidd 2739 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) = (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)))
150 eqidd 2739 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))))
151146, 147, 148, 149, 150offval2 7553 . . . . 5 (⊤ → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)))))
152 chpo1ub 26628 . . . . . 6 (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1)
153 0red 10978 . . . . . . . 8 (⊤ → 0 ∈ ℝ)
154 1red 10976 . . . . . . . 8 (⊤ → 1 ∈ ℝ)
155 divrcnv 15564 . . . . . . . . 9 (1 ∈ ℂ → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ⇝𝑟 0)
15693, 155mp1i 13 . . . . . . . 8 (⊤ → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ⇝𝑟 0)
157 rpreccl 12756 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+)
158157rpred 12772 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ)
159158adantl 482 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ)
16011, 13resubcld 11403 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ∈ ℝ)
161160adantl 482 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ∈ ℝ)
162 rpaddcl 12752 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝑥 + 1) ∈ ℝ+)
16321, 162mpan2 688 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (𝑥 + 1) ∈ ℝ+)
164163relogcld 25778 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (log‘(𝑥 + 1)) ∈ ℝ)
165164, 13resubcld 11403 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → ((log‘(𝑥 + 1)) − (log‘𝑥)) ∈ ℝ)
1667nn0red 12294 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → (⌊‘𝑥) ∈ ℝ)
167 1red 10976 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → 1 ∈ ℝ)
168 flle 13519 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (⌊‘𝑥) ≤ 𝑥)
1691, 168syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → (⌊‘𝑥) ≤ 𝑥)
170166, 1, 167, 169leadd1dd 11589 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → ((⌊‘𝑥) + 1) ≤ (𝑥 + 1))
17110, 163logled 25782 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (((⌊‘𝑥) + 1) ≤ (𝑥 + 1) ↔ (log‘((⌊‘𝑥) + 1)) ≤ (log‘(𝑥 + 1))))
172170, 171mpbid 231 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (log‘((⌊‘𝑥) + 1)) ≤ (log‘(𝑥 + 1)))
17311, 164, 13, 172lesub1dd 11591 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ≤ ((log‘(𝑥 + 1)) − (log‘𝑥)))
174 logdifbnd 26143 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → ((log‘(𝑥 + 1)) − (log‘𝑥)) ≤ (1 / 𝑥))
175160, 165, 158, 173, 174letrd 11132 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ≤ (1 / 𝑥))
176175ad2antrl 725 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ≤ (1 / 𝑥))
177 fllep1 13521 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ≤ ((⌊‘𝑥) + 1))
1781, 177syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ≤ ((⌊‘𝑥) + 1))
179 logleb 25758 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ ((⌊‘𝑥) + 1) ∈ ℝ+) → (𝑥 ≤ ((⌊‘𝑥) + 1) ↔ (log‘𝑥) ≤ (log‘((⌊‘𝑥) + 1))))
18010, 179mpdan 684 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 ≤ ((⌊‘𝑥) + 1) ↔ (log‘𝑥) ≤ (log‘((⌊‘𝑥) + 1))))
181178, 180mpbid 231 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (log‘𝑥) ≤ (log‘((⌊‘𝑥) + 1)))
18211, 13subge0d 11565 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (0 ≤ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ↔ (log‘𝑥) ≤ (log‘((⌊‘𝑥) + 1))))
183181, 182mpbird 256 . . . . . . . . 9 (𝑥 ∈ ℝ+ → 0 ≤ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)))
184183ad2antrl 725 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)))
185153, 154, 156, 159, 161, 176, 184rlimsqz2 15362 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) ⇝𝑟 0)
186 rlimo1 15326 . . . . . . 7 ((𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) ⇝𝑟 0 → (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) ∈ 𝑂(1))
187185, 186syl 17 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) ∈ 𝑂(1))
188 o1mul 15324 . . . . . 6 (((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1) ∧ (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) ∈ 𝑂(1)) → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)))) ∈ 𝑂(1))
189152, 187, 188sylancr 587 . . . . 5 (⊤ → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)))) ∈ 𝑂(1))
190151, 189eqeltrrd 2840 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ (((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)))) ∈ 𝑂(1))
191 nnrp 12741 . . . . . . . . 9 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ+)
192191ssriv 3925 . . . . . . . 8 ℕ ⊆ ℝ+
193192a1i 11 . . . . . . 7 (⊤ → ℕ ⊆ ℝ+)
194193sselda 3921 . . . . . 6 ((⊤ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
195194, 31syl 17 . . . . 5 ((⊤ ∧ 𝑛 ∈ ℕ) → (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) ∈ ℂ)
196 chpo1ub 26628 . . . . . . . 8 (𝑛 ∈ ℝ+ ↦ ((ψ‘𝑛) / 𝑛)) ∈ 𝑂(1)
197196a1i 11 . . . . . . 7 (⊤ → (𝑛 ∈ ℝ+ ↦ ((ψ‘𝑛) / 𝑛)) ∈ 𝑂(1))
198 rerpdivcl 12760 . . . . . . . . 9 (((ψ‘𝑛) ∈ ℝ ∧ 𝑛 ∈ ℝ+) → ((ψ‘𝑛) / 𝑛) ∈ ℝ)
19929, 198mpancom 685 . . . . . . . 8 (𝑛 ∈ ℝ+ → ((ψ‘𝑛) / 𝑛) ∈ ℝ)
200199adantl 482 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ ℝ+) → ((ψ‘𝑛) / 𝑛) ∈ ℝ)
20131adantl 482 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ ℝ+) → (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) ∈ ℂ)
202 rpreccl 12756 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → (1 / 𝑛) ∈ ℝ+)
203202rpred 12772 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → (1 / 𝑛) ∈ ℝ)
204 chpge0 26275 . . . . . . . . . . 11 (𝑛 ∈ ℝ → 0 ≤ (ψ‘𝑛))
20527, 204syl 17 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → 0 ≤ (ψ‘𝑛))
206 logdifbnd 26143 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → ((log‘(𝑛 + 1)) − (log‘𝑛)) ≤ (1 / 𝑛))
20726, 203, 29, 205, 206lemul1ad 11914 . . . . . . . . 9 (𝑛 ∈ ℝ+ → (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) ≤ ((1 / 𝑛) · (ψ‘𝑛)))
20827lep1d 11906 . . . . . . . . . . . . 13 (𝑛 ∈ ℝ+𝑛 ≤ (𝑛 + 1))
209 logleb 25758 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℝ+ ∧ (𝑛 + 1) ∈ ℝ+) → (𝑛 ≤ (𝑛 + 1) ↔ (log‘𝑛) ≤ (log‘(𝑛 + 1))))
21023, 209mpdan 684 . . . . . . . . . . . . 13 (𝑛 ∈ ℝ+ → (𝑛 ≤ (𝑛 + 1) ↔ (log‘𝑛) ≤ (log‘(𝑛 + 1))))
211208, 210mpbid 231 . . . . . . . . . . . 12 (𝑛 ∈ ℝ+ → (log‘𝑛) ≤ (log‘(𝑛 + 1)))
21224, 25subge0d 11565 . . . . . . . . . . . 12 (𝑛 ∈ ℝ+ → (0 ≤ ((log‘(𝑛 + 1)) − (log‘𝑛)) ↔ (log‘𝑛) ≤ (log‘(𝑛 + 1))))
213211, 212mpbird 256 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → 0 ≤ ((log‘(𝑛 + 1)) − (log‘𝑛)))
21426, 29, 213, 205mulge0d 11552 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → 0 ≤ (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)))
21530, 214absidd 15134 . . . . . . . . 9 (𝑛 ∈ ℝ+ → (abs‘(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) = (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)))
216 rpregt0 12744 . . . . . . . . . . . 12 (𝑛 ∈ ℝ+ → (𝑛 ∈ ℝ ∧ 0 < 𝑛))
217 divge0 11844 . . . . . . . . . . . 12 ((((ψ‘𝑛) ∈ ℝ ∧ 0 ≤ (ψ‘𝑛)) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → 0 ≤ ((ψ‘𝑛) / 𝑛))
21829, 205, 216, 217syl21anc 835 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → 0 ≤ ((ψ‘𝑛) / 𝑛))
219199, 218absidd 15134 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → (abs‘((ψ‘𝑛) / 𝑛)) = ((ψ‘𝑛) / 𝑛))
22029recnd 11003 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → (ψ‘𝑛) ∈ ℂ)
221 rpcn 12740 . . . . . . . . . . 11 (𝑛 ∈ ℝ+𝑛 ∈ ℂ)
222 rpne0 12746 . . . . . . . . . . 11 (𝑛 ∈ ℝ+𝑛 ≠ 0)
223220, 221, 222divrec2d 11755 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → ((ψ‘𝑛) / 𝑛) = ((1 / 𝑛) · (ψ‘𝑛)))
224219, 223eqtrd 2778 . . . . . . . . 9 (𝑛 ∈ ℝ+ → (abs‘((ψ‘𝑛) / 𝑛)) = ((1 / 𝑛) · (ψ‘𝑛)))
225207, 215, 2243brtr4d 5106 . . . . . . . 8 (𝑛 ∈ ℝ+ → (abs‘(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) ≤ (abs‘((ψ‘𝑛) / 𝑛)))
226225ad2antrl 725 . . . . . . 7 ((⊤ ∧ (𝑛 ∈ ℝ+ ∧ 1 ≤ 𝑛)) → (abs‘(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) ≤ (abs‘((ψ‘𝑛) / 𝑛)))
227154, 197, 200, 201, 226o1le 15364 . . . . . 6 (⊤ → (𝑛 ∈ ℝ+ ↦ (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) ∈ 𝑂(1))
228193, 227o1res2 15272 . . . . 5 (⊤ → (𝑛 ∈ ℕ ↦ (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) ∈ 𝑂(1))
229195, 228o1fsum 15525 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥)) ∈ 𝑂(1))
230141, 142, 190, 229o1sub2 15335 . . 3 (⊤ → (𝑥 ∈ ℝ+ ↦ ((((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥))) ∈ 𝑂(1))
231140, 230eqeltrrid 2844 . 2 (⊤ → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥)) ∈ 𝑂(1))
232231mptru 1546 1 (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥)) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wtru 1540  wcel 2106  wne 2943  Vcvv 3432  wss 3887   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  f cof 7531  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  cz 12319  cuz 12582  +crp 12730  ...cfz 13239  ..^cfzo 13382  cfl 13510  abscabs 14945  𝑟 crli 15194  𝑂(1)co1 15195  Σcsu 15397  logclog 25710  Λcvma 26241  ψcchp 26242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-o1 15199  df-lo1 15200  df-sum 15398  df-ef 15777  df-e 15778  df-sin 15779  df-cos 15780  df-pi 15782  df-dvds 15964  df-gcd 16202  df-prm 16377  df-pc 16538  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712  df-cxp 25713  df-cht 26246  df-vma 26247  df-chp 26248  df-ppi 26249
This theorem is referenced by:  selberg2  26699  selberg3lem2  26706
  Copyright terms: Public domain W3C validator