MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg2lem Structured version   Visualization version   GIF version

Theorem selberg2lem 27437
Description: Lemma for selberg2 27438. Equation 10.4.12 of [Shapiro], p. 420. (Contributed by Mario Carneiro, 23-May-2016.)
Assertion
Ref Expression
selberg2lem (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥)) ∈ 𝑂(1)
Distinct variable group:   𝑥,𝑛

Proof of Theorem selberg2lem
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 rpre 12936 . . . . . . . . 9 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
2 chpcl 27010 . . . . . . . . 9 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
31, 2syl 17 . . . . . . . 8 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℝ)
43recnd 11178 . . . . . . 7 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℂ)
5 rprege0 12943 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
6 flge0nn0 13758 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
75, 6syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (⌊‘𝑥) ∈ ℕ0)
8 nn0p1nn 12457 . . . . . . . . . . . 12 ((⌊‘𝑥) ∈ ℕ0 → ((⌊‘𝑥) + 1) ∈ ℕ)
97, 8syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → ((⌊‘𝑥) + 1) ∈ ℕ)
109nnrpd 12969 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → ((⌊‘𝑥) + 1) ∈ ℝ+)
1110relogcld 26508 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (log‘((⌊‘𝑥) + 1)) ∈ ℝ)
1211recnd 11178 . . . . . . . 8 (𝑥 ∈ ℝ+ → (log‘((⌊‘𝑥) + 1)) ∈ ℂ)
13 relogcl 26460 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
1413recnd 11178 . . . . . . . 8 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℂ)
1512, 14subcld 11509 . . . . . . 7 (𝑥 ∈ ℝ+ → ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ∈ ℂ)
164, 15mulcld 11170 . . . . . 6 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) ∈ ℂ)
17 fzfid 13914 . . . . . . 7 (𝑥 ∈ ℝ+ → (1...(⌊‘𝑥)) ∈ Fin)
18 elfznn 13490 . . . . . . . . . 10 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
1918adantl 481 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
2019nnrpd 12969 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
21 1rp 12931 . . . . . . . . . . . . 13 1 ∈ ℝ+
22 rpaddcl 12951 . . . . . . . . . . . . 13 ((𝑛 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝑛 + 1) ∈ ℝ+)
2321, 22mpan2 691 . . . . . . . . . . . 12 (𝑛 ∈ ℝ+ → (𝑛 + 1) ∈ ℝ+)
2423relogcld 26508 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → (log‘(𝑛 + 1)) ∈ ℝ)
25 relogcl 26460 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → (log‘𝑛) ∈ ℝ)
2624, 25resubcld 11582 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → ((log‘(𝑛 + 1)) − (log‘𝑛)) ∈ ℝ)
27 rpre 12936 . . . . . . . . . . 11 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
28 chpcl 27010 . . . . . . . . . . 11 (𝑛 ∈ ℝ → (ψ‘𝑛) ∈ ℝ)
2927, 28syl 17 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → (ψ‘𝑛) ∈ ℝ)
3026, 29remulcld 11180 . . . . . . . . 9 (𝑛 ∈ ℝ+ → (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) ∈ ℝ)
3130recnd 11178 . . . . . . . 8 (𝑛 ∈ ℝ+ → (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) ∈ ℂ)
3220, 31syl 17 . . . . . . 7 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) ∈ ℂ)
3317, 32fsumcl 15675 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) ∈ ℂ)
34 rpcnne0 12946 . . . . . 6 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
35 divsubdir 11852 . . . . . 6 ((((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) ∈ ℂ ∧ Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → ((((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) / 𝑥) = ((((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) / 𝑥) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥)))
3616, 33, 34, 35syl3anc 1373 . . . . 5 (𝑥 ∈ ℝ+ → ((((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) / 𝑥) = ((((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) / 𝑥) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥)))
374, 12mulcld 11170 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) ∈ ℂ)
384, 14mulcld 11170 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) · (log‘𝑥)) ∈ ℂ)
3937, 38, 33sub32d 11541 . . . . . . 7 (𝑥 ∈ ℝ+ → ((((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − ((ψ‘𝑥) · (log‘𝑥))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) = ((((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) − ((ψ‘𝑥) · (log‘𝑥))))
404, 12, 14subdid 11610 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) = (((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − ((ψ‘𝑥) · (log‘𝑥))))
4140oveq1d 7384 . . . . . . 7 (𝑥 ∈ ℝ+ → (((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) = ((((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − ((ψ‘𝑥) · (log‘𝑥))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))))
42 fveq2 6840 . . . . . . . . . . 11 (𝑚 = 𝑛 → (log‘𝑚) = (log‘𝑛))
43 fvoveq1 7392 . . . . . . . . . . 11 (𝑚 = 𝑛 → (ψ‘(𝑚 − 1)) = (ψ‘(𝑛 − 1)))
4442, 43jca 511 . . . . . . . . . 10 (𝑚 = 𝑛 → ((log‘𝑚) = (log‘𝑛) ∧ (ψ‘(𝑚 − 1)) = (ψ‘(𝑛 − 1))))
45 fveq2 6840 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → (log‘𝑚) = (log‘(𝑛 + 1)))
46 fvoveq1 7392 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → (ψ‘(𝑚 − 1)) = (ψ‘((𝑛 + 1) − 1)))
4745, 46jca 511 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → ((log‘𝑚) = (log‘(𝑛 + 1)) ∧ (ψ‘(𝑚 − 1)) = (ψ‘((𝑛 + 1) − 1))))
48 fveq2 6840 . . . . . . . . . . . 12 (𝑚 = 1 → (log‘𝑚) = (log‘1))
49 log1 26470 . . . . . . . . . . . 12 (log‘1) = 0
5048, 49eqtrdi 2780 . . . . . . . . . . 11 (𝑚 = 1 → (log‘𝑚) = 0)
51 oveq1 7376 . . . . . . . . . . . . . 14 (𝑚 = 1 → (𝑚 − 1) = (1 − 1))
52 1m1e0 12234 . . . . . . . . . . . . . 14 (1 − 1) = 0
5351, 52eqtrdi 2780 . . . . . . . . . . . . 13 (𝑚 = 1 → (𝑚 − 1) = 0)
5453fveq2d 6844 . . . . . . . . . . . 12 (𝑚 = 1 → (ψ‘(𝑚 − 1)) = (ψ‘0))
55 2pos 12265 . . . . . . . . . . . . 13 0 < 2
56 0re 11152 . . . . . . . . . . . . . 14 0 ∈ ℝ
57 chpeq0 27095 . . . . . . . . . . . . . 14 (0 ∈ ℝ → ((ψ‘0) = 0 ↔ 0 < 2))
5856, 57ax-mp 5 . . . . . . . . . . . . 13 ((ψ‘0) = 0 ↔ 0 < 2)
5955, 58mpbir 231 . . . . . . . . . . . 12 (ψ‘0) = 0
6054, 59eqtrdi 2780 . . . . . . . . . . 11 (𝑚 = 1 → (ψ‘(𝑚 − 1)) = 0)
6150, 60jca 511 . . . . . . . . . 10 (𝑚 = 1 → ((log‘𝑚) = 0 ∧ (ψ‘(𝑚 − 1)) = 0))
62 fveq2 6840 . . . . . . . . . . 11 (𝑚 = ((⌊‘𝑥) + 1) → (log‘𝑚) = (log‘((⌊‘𝑥) + 1)))
63 fvoveq1 7392 . . . . . . . . . . 11 (𝑚 = ((⌊‘𝑥) + 1) → (ψ‘(𝑚 − 1)) = (ψ‘(((⌊‘𝑥) + 1) − 1)))
6462, 63jca 511 . . . . . . . . . 10 (𝑚 = ((⌊‘𝑥) + 1) → ((log‘𝑚) = (log‘((⌊‘𝑥) + 1)) ∧ (ψ‘(𝑚 − 1)) = (ψ‘(((⌊‘𝑥) + 1) − 1))))
65 nnuz 12812 . . . . . . . . . . 11 ℕ = (ℤ‘1)
669, 65eleqtrdi 2838 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → ((⌊‘𝑥) + 1) ∈ (ℤ‘1))
67 elfznn 13490 . . . . . . . . . . . . . 14 (𝑚 ∈ (1...((⌊‘𝑥) + 1)) → 𝑚 ∈ ℕ)
6867adantl 481 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑚 ∈ ℕ)
6968nnrpd 12969 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑚 ∈ ℝ+)
7069relogcld 26508 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (log‘𝑚) ∈ ℝ)
7170recnd 11178 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (log‘𝑚) ∈ ℂ)
7268nnred 12177 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑚 ∈ ℝ)
73 peano2rem 11465 . . . . . . . . . . . . 13 (𝑚 ∈ ℝ → (𝑚 − 1) ∈ ℝ)
7472, 73syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (𝑚 − 1) ∈ ℝ)
75 chpcl 27010 . . . . . . . . . . . 12 ((𝑚 − 1) ∈ ℝ → (ψ‘(𝑚 − 1)) ∈ ℝ)
7674, 75syl 17 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (ψ‘(𝑚 − 1)) ∈ ℝ)
7776recnd 11178 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (ψ‘(𝑚 − 1)) ∈ ℂ)
7844, 47, 61, 64, 66, 71, 77fsumparts 15748 . . . . . . . . 9 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))((log‘𝑛) · ((ψ‘((𝑛 + 1) − 1)) − (ψ‘(𝑛 − 1)))) = ((((log‘((⌊‘𝑥) + 1)) · (ψ‘(((⌊‘𝑥) + 1) − 1))) − (0 · 0)) − Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘((𝑛 + 1) − 1)))))
797nn0zd 12531 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (⌊‘𝑥) ∈ ℤ)
80 fzval3 13671 . . . . . . . . . . . 12 ((⌊‘𝑥) ∈ ℤ → (1...(⌊‘𝑥)) = (1..^((⌊‘𝑥) + 1)))
8179, 80syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (1...(⌊‘𝑥)) = (1..^((⌊‘𝑥) + 1)))
8281eqcomd 2735 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (1..^((⌊‘𝑥) + 1)) = (1...(⌊‘𝑥)))
83 nnm1nn0 12459 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
8419, 83syl 17 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 − 1) ∈ ℕ0)
8584nn0red 12480 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 − 1) ∈ ℝ)
86 chpcl 27010 . . . . . . . . . . . . . . 15 ((𝑛 − 1) ∈ ℝ → (ψ‘(𝑛 − 1)) ∈ ℝ)
8785, 86syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑛 − 1)) ∈ ℝ)
8887recnd 11178 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑛 − 1)) ∈ ℂ)
89 vmacl 27004 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
9019, 89syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
9190recnd 11178 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℂ)
9219nncnd 12178 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
93 ax-1cn 11102 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
94 pncan 11403 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
9592, 93, 94sylancl 586 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 + 1) − 1) = 𝑛)
96 npcan 11406 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 − 1) + 1) = 𝑛)
9792, 93, 96sylancl 586 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 − 1) + 1) = 𝑛)
9895, 97eqtr4d 2767 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 + 1) − 1) = ((𝑛 − 1) + 1))
9998fveq2d 6844 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘((𝑛 + 1) − 1)) = (ψ‘((𝑛 − 1) + 1)))
100 chpp1 27041 . . . . . . . . . . . . . . 15 ((𝑛 − 1) ∈ ℕ0 → (ψ‘((𝑛 − 1) + 1)) = ((ψ‘(𝑛 − 1)) + (Λ‘((𝑛 − 1) + 1))))
10184, 100syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘((𝑛 − 1) + 1)) = ((ψ‘(𝑛 − 1)) + (Λ‘((𝑛 − 1) + 1))))
10297fveq2d 6844 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘((𝑛 − 1) + 1)) = (Λ‘𝑛))
103102oveq2d 7385 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑛 − 1)) + (Λ‘((𝑛 − 1) + 1))) = ((ψ‘(𝑛 − 1)) + (Λ‘𝑛)))
10499, 101, 1033eqtrd 2768 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘((𝑛 + 1) − 1)) = ((ψ‘(𝑛 − 1)) + (Λ‘𝑛)))
10588, 91, 104mvrladdd 11567 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘((𝑛 + 1) − 1)) − (ψ‘(𝑛 − 1))) = (Λ‘𝑛))
106105oveq2d 7385 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘𝑛) · ((ψ‘((𝑛 + 1) − 1)) − (ψ‘(𝑛 − 1)))) = ((log‘𝑛) · (Λ‘𝑛)))
10720relogcld 26508 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ)
108107recnd 11178 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℂ)
10991, 108mulcomd 11171 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (log‘𝑛)) = ((log‘𝑛) · (Λ‘𝑛)))
110106, 109eqtr4d 2767 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘𝑛) · ((ψ‘((𝑛 + 1) − 1)) − (ψ‘(𝑛 − 1)))) = ((Λ‘𝑛) · (log‘𝑛)))
11182, 110sumeq12rdv 15649 . . . . . . . . 9 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))((log‘𝑛) · ((ψ‘((𝑛 + 1) − 1)) − (ψ‘(𝑛 − 1)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)))
1127nn0cnd 12481 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ+ → (⌊‘𝑥) ∈ ℂ)
113 pncan 11403 . . . . . . . . . . . . . . . . 17 (((⌊‘𝑥) ∈ ℂ ∧ 1 ∈ ℂ) → (((⌊‘𝑥) + 1) − 1) = (⌊‘𝑥))
114112, 93, 113sylancl 586 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+ → (((⌊‘𝑥) + 1) − 1) = (⌊‘𝑥))
115114fveq2d 6844 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → (ψ‘(((⌊‘𝑥) + 1) − 1)) = (ψ‘(⌊‘𝑥)))
116 chpfl 27036 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → (ψ‘(⌊‘𝑥)) = (ψ‘𝑥))
1171, 116syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → (ψ‘(⌊‘𝑥)) = (ψ‘𝑥))
118115, 117eqtrd 2764 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ → (ψ‘(((⌊‘𝑥) + 1) − 1)) = (ψ‘𝑥))
119118oveq2d 7385 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → ((log‘((⌊‘𝑥) + 1)) · (ψ‘(((⌊‘𝑥) + 1) − 1))) = ((log‘((⌊‘𝑥) + 1)) · (ψ‘𝑥)))
12012, 4mulcomd 11171 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → ((log‘((⌊‘𝑥) + 1)) · (ψ‘𝑥)) = ((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))))
121119, 120eqtrd 2764 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → ((log‘((⌊‘𝑥) + 1)) · (ψ‘(((⌊‘𝑥) + 1) − 1))) = ((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))))
122 0cn 11142 . . . . . . . . . . . . . 14 0 ∈ ℂ
123122mul01i 11340 . . . . . . . . . . . . 13 (0 · 0) = 0
124123a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (0 · 0) = 0)
125121, 124oveq12d 7387 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (((log‘((⌊‘𝑥) + 1)) · (ψ‘(((⌊‘𝑥) + 1) − 1))) − (0 · 0)) = (((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − 0))
12637subid1d 11498 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − 0) = ((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))))
127125, 126eqtrd 2764 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (((log‘((⌊‘𝑥) + 1)) · (ψ‘(((⌊‘𝑥) + 1) − 1))) − (0 · 0)) = ((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))))
12895fveq2d 6844 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘((𝑛 + 1) − 1)) = (ψ‘𝑛))
129128oveq2d 7385 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘((𝑛 + 1) − 1))) = (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)))
13082, 129sumeq12rdv 15649 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘((𝑛 + 1) − 1))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)))
131127, 130oveq12d 7387 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((((log‘((⌊‘𝑥) + 1)) · (ψ‘(((⌊‘𝑥) + 1) − 1))) − (0 · 0)) − Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘((𝑛 + 1) − 1)))) = (((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))))
13278, 111, 1313eqtr3d 2772 . . . . . . . 8 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) = (((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))))
133132oveq1d 7384 . . . . . . 7 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) = ((((ψ‘𝑥) · (log‘((⌊‘𝑥) + 1))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) − ((ψ‘𝑥) · (log‘𝑥))))
13439, 41, 1333eqtr4d 2774 . . . . . 6 (𝑥 ∈ ℝ+ → (((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))))
135134oveq1d 7384 . . . . 5 (𝑥 ∈ ℝ+ → ((((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥))
136 div23 11832 . . . . . . 7 (((ψ‘𝑥) ∈ ℂ ∧ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) / 𝑥) = (((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))))
1374, 15, 34, 136syl3anc 1373 . . . . . 6 (𝑥 ∈ ℝ+ → (((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) / 𝑥) = (((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))))
138137oveq1d 7384 . . . . 5 (𝑥 ∈ ℝ+ → ((((ψ‘𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) / 𝑥) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥)) = ((((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥)))
13936, 135, 1383eqtr3rd 2773 . . . 4 (𝑥 ∈ ℝ+ → ((((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥)) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥))
140139mpteq2ia 5197 . . 3 (𝑥 ∈ ℝ+ ↦ ((((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥))
141 ovexd 7404 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) ∈ V)
142 ovexd 7404 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥) ∈ V)
143 reex 11135 . . . . . . . 8 ℝ ∈ V
144 rpssre 12935 . . . . . . . 8 + ⊆ ℝ
145143, 144ssexi 5272 . . . . . . 7 + ∈ V
146145a1i 11 . . . . . 6 (⊤ → ℝ+ ∈ V)
147 ovexd 7404 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ V)
14815adantl 481 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ∈ ℂ)
149 eqidd 2730 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) = (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)))
150 eqidd 2730 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))))
151146, 147, 148, 149, 150offval2 7653 . . . . 5 (⊤ → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)))))
152 chpo1ub 27367 . . . . . 6 (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1)
153 0red 11153 . . . . . . . 8 (⊤ → 0 ∈ ℝ)
154 1red 11151 . . . . . . . 8 (⊤ → 1 ∈ ℝ)
155 divrcnv 15794 . . . . . . . . 9 (1 ∈ ℂ → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ⇝𝑟 0)
15693, 155mp1i 13 . . . . . . . 8 (⊤ → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ⇝𝑟 0)
157 rpreccl 12955 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+)
158157rpred 12971 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ)
159158adantl 481 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ)
16011, 13resubcld 11582 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ∈ ℝ)
161160adantl 481 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ∈ ℝ)
162 rpaddcl 12951 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝑥 + 1) ∈ ℝ+)
16321, 162mpan2 691 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (𝑥 + 1) ∈ ℝ+)
164163relogcld 26508 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (log‘(𝑥 + 1)) ∈ ℝ)
165164, 13resubcld 11582 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → ((log‘(𝑥 + 1)) − (log‘𝑥)) ∈ ℝ)
1667nn0red 12480 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → (⌊‘𝑥) ∈ ℝ)
167 1red 11151 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → 1 ∈ ℝ)
168 flle 13737 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (⌊‘𝑥) ≤ 𝑥)
1691, 168syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → (⌊‘𝑥) ≤ 𝑥)
170166, 1, 167, 169leadd1dd 11768 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → ((⌊‘𝑥) + 1) ≤ (𝑥 + 1))
17110, 163logled 26512 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (((⌊‘𝑥) + 1) ≤ (𝑥 + 1) ↔ (log‘((⌊‘𝑥) + 1)) ≤ (log‘(𝑥 + 1))))
172170, 171mpbid 232 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (log‘((⌊‘𝑥) + 1)) ≤ (log‘(𝑥 + 1)))
17311, 164, 13, 172lesub1dd 11770 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ≤ ((log‘(𝑥 + 1)) − (log‘𝑥)))
174 logdifbnd 26880 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → ((log‘(𝑥 + 1)) − (log‘𝑥)) ≤ (1 / 𝑥))
175160, 165, 158, 173, 174letrd 11307 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ≤ (1 / 𝑥))
176175ad2antrl 728 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ≤ (1 / 𝑥))
177 fllep1 13739 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ≤ ((⌊‘𝑥) + 1))
1781, 177syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ≤ ((⌊‘𝑥) + 1))
179 logleb 26488 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ ((⌊‘𝑥) + 1) ∈ ℝ+) → (𝑥 ≤ ((⌊‘𝑥) + 1) ↔ (log‘𝑥) ≤ (log‘((⌊‘𝑥) + 1))))
18010, 179mpdan 687 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 ≤ ((⌊‘𝑥) + 1) ↔ (log‘𝑥) ≤ (log‘((⌊‘𝑥) + 1))))
181178, 180mpbid 232 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (log‘𝑥) ≤ (log‘((⌊‘𝑥) + 1)))
18211, 13subge0d 11744 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (0 ≤ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)) ↔ (log‘𝑥) ≤ (log‘((⌊‘𝑥) + 1))))
183181, 182mpbird 257 . . . . . . . . 9 (𝑥 ∈ ℝ+ → 0 ≤ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)))
184183ad2antrl 728 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)))
185153, 154, 156, 159, 161, 176, 184rlimsqz2 15593 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) ⇝𝑟 0)
186 rlimo1 15559 . . . . . . 7 ((𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) ⇝𝑟 0 → (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) ∈ 𝑂(1))
187185, 186syl 17 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) ∈ 𝑂(1))
188 o1mul 15557 . . . . . 6 (((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1) ∧ (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) ∈ 𝑂(1)) → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)))) ∈ 𝑂(1))
189152, 187, 188sylancr 587 . . . . 5 (⊤ → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ ℝ+ ↦ ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)))) ∈ 𝑂(1))
190151, 189eqeltrrd 2829 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ (((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥)))) ∈ 𝑂(1))
191 nnrp 12939 . . . . . . . . 9 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ+)
192191ssriv 3947 . . . . . . . 8 ℕ ⊆ ℝ+
193192a1i 11 . . . . . . 7 (⊤ → ℕ ⊆ ℝ+)
194193sselda 3943 . . . . . 6 ((⊤ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
195194, 31syl 17 . . . . 5 ((⊤ ∧ 𝑛 ∈ ℕ) → (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) ∈ ℂ)
196 chpo1ub 27367 . . . . . . . 8 (𝑛 ∈ ℝ+ ↦ ((ψ‘𝑛) / 𝑛)) ∈ 𝑂(1)
197196a1i 11 . . . . . . 7 (⊤ → (𝑛 ∈ ℝ+ ↦ ((ψ‘𝑛) / 𝑛)) ∈ 𝑂(1))
198 rerpdivcl 12959 . . . . . . . . 9 (((ψ‘𝑛) ∈ ℝ ∧ 𝑛 ∈ ℝ+) → ((ψ‘𝑛) / 𝑛) ∈ ℝ)
19929, 198mpancom 688 . . . . . . . 8 (𝑛 ∈ ℝ+ → ((ψ‘𝑛) / 𝑛) ∈ ℝ)
200199adantl 481 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ ℝ+) → ((ψ‘𝑛) / 𝑛) ∈ ℝ)
20131adantl 481 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ ℝ+) → (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) ∈ ℂ)
202 rpreccl 12955 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → (1 / 𝑛) ∈ ℝ+)
203202rpred 12971 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → (1 / 𝑛) ∈ ℝ)
204 chpge0 27012 . . . . . . . . . . 11 (𝑛 ∈ ℝ → 0 ≤ (ψ‘𝑛))
20527, 204syl 17 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → 0 ≤ (ψ‘𝑛))
206 logdifbnd 26880 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → ((log‘(𝑛 + 1)) − (log‘𝑛)) ≤ (1 / 𝑛))
20726, 203, 29, 205, 206lemul1ad 12098 . . . . . . . . 9 (𝑛 ∈ ℝ+ → (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) ≤ ((1 / 𝑛) · (ψ‘𝑛)))
20827lep1d 12090 . . . . . . . . . . . . 13 (𝑛 ∈ ℝ+𝑛 ≤ (𝑛 + 1))
209 logleb 26488 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℝ+ ∧ (𝑛 + 1) ∈ ℝ+) → (𝑛 ≤ (𝑛 + 1) ↔ (log‘𝑛) ≤ (log‘(𝑛 + 1))))
21023, 209mpdan 687 . . . . . . . . . . . . 13 (𝑛 ∈ ℝ+ → (𝑛 ≤ (𝑛 + 1) ↔ (log‘𝑛) ≤ (log‘(𝑛 + 1))))
211208, 210mpbid 232 . . . . . . . . . . . 12 (𝑛 ∈ ℝ+ → (log‘𝑛) ≤ (log‘(𝑛 + 1)))
21224, 25subge0d 11744 . . . . . . . . . . . 12 (𝑛 ∈ ℝ+ → (0 ≤ ((log‘(𝑛 + 1)) − (log‘𝑛)) ↔ (log‘𝑛) ≤ (log‘(𝑛 + 1))))
213211, 212mpbird 257 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → 0 ≤ ((log‘(𝑛 + 1)) − (log‘𝑛)))
21426, 29, 213, 205mulge0d 11731 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → 0 ≤ (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)))
21530, 214absidd 15365 . . . . . . . . 9 (𝑛 ∈ ℝ+ → (abs‘(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) = (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)))
216 rpregt0 12942 . . . . . . . . . . . 12 (𝑛 ∈ ℝ+ → (𝑛 ∈ ℝ ∧ 0 < 𝑛))
217 divge0 12028 . . . . . . . . . . . 12 ((((ψ‘𝑛) ∈ ℝ ∧ 0 ≤ (ψ‘𝑛)) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → 0 ≤ ((ψ‘𝑛) / 𝑛))
21829, 205, 216, 217syl21anc 837 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → 0 ≤ ((ψ‘𝑛) / 𝑛))
219199, 218absidd 15365 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → (abs‘((ψ‘𝑛) / 𝑛)) = ((ψ‘𝑛) / 𝑛))
22029recnd 11178 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → (ψ‘𝑛) ∈ ℂ)
221 rpcn 12938 . . . . . . . . . . 11 (𝑛 ∈ ℝ+𝑛 ∈ ℂ)
222 rpne0 12944 . . . . . . . . . . 11 (𝑛 ∈ ℝ+𝑛 ≠ 0)
223220, 221, 222divrec2d 11938 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → ((ψ‘𝑛) / 𝑛) = ((1 / 𝑛) · (ψ‘𝑛)))
224219, 223eqtrd 2764 . . . . . . . . 9 (𝑛 ∈ ℝ+ → (abs‘((ψ‘𝑛) / 𝑛)) = ((1 / 𝑛) · (ψ‘𝑛)))
225207, 215, 2243brtr4d 5134 . . . . . . . 8 (𝑛 ∈ ℝ+ → (abs‘(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) ≤ (abs‘((ψ‘𝑛) / 𝑛)))
226225ad2antrl 728 . . . . . . 7 ((⊤ ∧ (𝑛 ∈ ℝ+ ∧ 1 ≤ 𝑛)) → (abs‘(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) ≤ (abs‘((ψ‘𝑛) / 𝑛)))
227154, 197, 200, 201, 226o1le 15595 . . . . . 6 (⊤ → (𝑛 ∈ ℝ+ ↦ (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) ∈ 𝑂(1))
228193, 227o1res2 15505 . . . . 5 (⊤ → (𝑛 ∈ ℕ ↦ (((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛))) ∈ 𝑂(1))
229195, 228o1fsum 15755 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥)) ∈ 𝑂(1))
230141, 142, 190, 229o1sub2 15568 . . 3 (⊤ → (𝑥 ∈ ℝ+ ↦ ((((ψ‘𝑥) / 𝑥) · ((log‘((⌊‘𝑥) + 1)) − (log‘𝑥))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑛 + 1)) − (log‘𝑛)) · (ψ‘𝑛)) / 𝑥))) ∈ 𝑂(1))
231140, 230eqeltrrid 2833 . 2 (⊤ → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥)) ∈ 𝑂(1))
232231mptru 1547 1 (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥)) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2925  Vcvv 3444  wss 3911   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  f cof 7631  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  2c2 12217  0cn0 12418  cz 12505  cuz 12769  +crp 12927  ...cfz 13444  ..^cfzo 13591  cfl 13728  abscabs 15176  𝑟 crli 15427  𝑂(1)co1 15428  Σcsu 15628  logclog 26439  Λcvma 26978  ψcchp 26979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-o1 15432  df-lo1 15433  df-sum 15629  df-ef 16009  df-e 16010  df-sin 16011  df-cos 16012  df-pi 16014  df-dvds 16199  df-gcd 16441  df-prm 16618  df-pc 16784  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744  df-log 26441  df-cxp 26442  df-cht 26983  df-vma 26984  df-chp 26985  df-ppi 26986
This theorem is referenced by:  selberg2  27438  selberg3lem2  27445
  Copyright terms: Public domain W3C validator