Proof of Theorem logfacrlim
Step | Hyp | Ref
| Expression |
1 | | 1red 10693 |
. . 3
⊢ (⊤
→ 1 ∈ ℝ) |
2 | | 1cnd 10687 |
. . 3
⊢ (⊤
→ 1 ∈ ℂ) |
3 | | relogcl 25279 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (log‘𝑥) ∈
ℝ) |
4 | 3 | adantl 485 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (log‘𝑥) ∈ ℝ) |
5 | 4 | recnd 10720 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (log‘𝑥) ∈ ℂ) |
6 | | 1cnd 10687 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → 1 ∈ ℂ) |
7 | | rpcnne0 12461 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ∈ ℂ
∧ 𝑥 ≠
0)) |
8 | 7 | adantl 485 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) |
9 | | divdir 11374 |
. . . . . . 7
⊢
(((log‘𝑥)
∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((log‘𝑥) + 1) / 𝑥) = (((log‘𝑥) / 𝑥) + (1 / 𝑥))) |
10 | 5, 6, 8, 9 | syl3anc 1368 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (((log‘𝑥) + 1) / 𝑥) = (((log‘𝑥) / 𝑥) + (1 / 𝑥))) |
11 | 10 | mpteq2dva 5131 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ (((log‘𝑥) + 1) / 𝑥)) = (𝑥 ∈ ℝ+ ↦
(((log‘𝑥) / 𝑥) + (1 / 𝑥)))) |
12 | | simpr 488 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → 𝑥 ∈ ℝ+) |
13 | 4, 12 | rerpdivcld 12516 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → ((log‘𝑥) / 𝑥) ∈ ℝ) |
14 | | rpreccl 12469 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ (1 / 𝑥) ∈
ℝ+) |
15 | 14 | adantl 485 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (1 / 𝑥) ∈
ℝ+) |
16 | 15 | rpred 12485 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (1 / 𝑥) ∈ ℝ) |
17 | 8 | simpld 498 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → 𝑥 ∈ ℂ) |
18 | 17 | cxp1d 25409 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (𝑥↑𝑐1) = 𝑥) |
19 | 18 | oveq2d 7172 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → ((log‘𝑥) / (𝑥↑𝑐1)) =
((log‘𝑥) / 𝑥)) |
20 | 19 | mpteq2dva 5131 |
. . . . . . 7
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ ((log‘𝑥) / (𝑥↑𝑐1))) = (𝑥 ∈ ℝ+
↦ ((log‘𝑥) /
𝑥))) |
21 | | 1rp 12447 |
. . . . . . . 8
⊢ 1 ∈
ℝ+ |
22 | | cxploglim 25675 |
. . . . . . . 8
⊢ (1 ∈
ℝ+ → (𝑥 ∈ ℝ+ ↦
((log‘𝑥) / (𝑥↑𝑐1)))
⇝𝑟 0) |
23 | 21, 22 | mp1i 13 |
. . . . . . 7
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ ((log‘𝑥) / (𝑥↑𝑐1)))
⇝𝑟 0) |
24 | 20, 23 | eqbrtrrd 5060 |
. . . . . 6
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ ((log‘𝑥) / 𝑥)) ⇝𝑟
0) |
25 | | ax-1cn 10646 |
. . . . . . 7
⊢ 1 ∈
ℂ |
26 | | divrcnv 15268 |
. . . . . . 7
⊢ (1 ∈
ℂ → (𝑥 ∈
ℝ+ ↦ (1 / 𝑥)) ⇝𝑟
0) |
27 | 25, 26 | mp1i 13 |
. . . . . 6
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ (1 / 𝑥)) ⇝𝑟
0) |
28 | 13, 16, 24, 27 | rlimadd 15060 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ (((log‘𝑥) / 𝑥) + (1 / 𝑥))) ⇝𝑟 (0 +
0)) |
29 | 11, 28 | eqbrtrd 5058 |
. . . 4
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ (((log‘𝑥) + 1) / 𝑥)) ⇝𝑟 (0 +
0)) |
30 | | 00id 10866 |
. . . 4
⊢ (0 + 0) =
0 |
31 | 29, 30 | breqtrdi 5077 |
. . 3
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ (((log‘𝑥) + 1) / 𝑥)) ⇝𝑟
0) |
32 | | peano2re 10864 |
. . . . . 6
⊢
((log‘𝑥)
∈ ℝ → ((log‘𝑥) + 1) ∈ ℝ) |
33 | 4, 32 | syl 17 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → ((log‘𝑥) + 1) ∈ ℝ) |
34 | 33, 12 | rerpdivcld 12516 |
. . . 4
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (((log‘𝑥) + 1) / 𝑥) ∈ ℝ) |
35 | 34 | recnd 10720 |
. . 3
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (((log‘𝑥) + 1) / 𝑥) ∈ ℂ) |
36 | | rprege0 12458 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ∈ ℝ
∧ 0 ≤ 𝑥)) |
37 | 36 | adantl 485 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) |
38 | | flge0nn0 13252 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ 0 ≤
𝑥) →
(⌊‘𝑥) ∈
ℕ0) |
39 | | faccl 13706 |
. . . . . . . . 9
⊢
((⌊‘𝑥)
∈ ℕ0 → (!‘(⌊‘𝑥)) ∈ ℕ) |
40 | 37, 38, 39 | 3syl 18 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (!‘(⌊‘𝑥)) ∈ ℕ) |
41 | 40 | nnrpd 12483 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (!‘(⌊‘𝑥)) ∈
ℝ+) |
42 | | relogcl 25279 |
. . . . . . 7
⊢
((!‘(⌊‘𝑥)) ∈ ℝ+ →
(log‘(!‘(⌊‘𝑥))) ∈ ℝ) |
43 | 41, 42 | syl 17 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (log‘(!‘(⌊‘𝑥))) ∈
ℝ) |
44 | 43, 12 | rerpdivcld 12516 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → ((log‘(!‘(⌊‘𝑥))) / 𝑥) ∈ ℝ) |
45 | 44 | recnd 10720 |
. . . 4
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → ((log‘(!‘(⌊‘𝑥))) / 𝑥) ∈ ℂ) |
46 | 5, 45 | subcld 11048 |
. . 3
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → ((log‘𝑥) −
((log‘(!‘(⌊‘𝑥))) / 𝑥)) ∈ ℂ) |
47 | | logfacbnd3 25919 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ+
∧ 1 ≤ 𝑥) →
(abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ≤ ((log‘𝑥) + 1)) |
48 | 47 | adantl 485 |
. . . . 5
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) →
(abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ≤ ((log‘𝑥) + 1)) |
49 | 43 | recnd 10720 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (log‘(!‘(⌊‘𝑥))) ∈
ℂ) |
50 | 49 | adantrr 716 |
. . . . . . . 8
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) →
(log‘(!‘(⌊‘𝑥))) ∈ ℂ) |
51 | 7 | ad2antrl 727 |
. . . . . . . . . 10
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) |
52 | 51 | simpld 498 |
. . . . . . . . 9
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℂ) |
53 | 5 | adantrr 716 |
. . . . . . . . . 10
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℂ) |
54 | | subcl 10936 |
. . . . . . . . . 10
⊢
(((log‘𝑥)
∈ ℂ ∧ 1 ∈ ℂ) → ((log‘𝑥) − 1) ∈ ℂ) |
55 | 53, 25, 54 | sylancl 589 |
. . . . . . . . 9
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) − 1) ∈ ℂ) |
56 | 52, 55 | mulcld 10712 |
. . . . . . . 8
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 · ((log‘𝑥) − 1)) ∈
ℂ) |
57 | 50, 56 | subcld 11048 |
. . . . . . 7
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) →
((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1))) ∈
ℂ) |
58 | 57 | abscld 14857 |
. . . . . 6
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) →
(abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ∈
ℝ) |
59 | 4 | adantrr 716 |
. . . . . . 7
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℝ) |
60 | 59, 32 | syl 17 |
. . . . . 6
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) + 1) ∈ ℝ) |
61 | | rpregt0 12457 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ∈ ℝ
∧ 0 < 𝑥)) |
62 | 61 | ad2antrl 727 |
. . . . . 6
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℝ ∧ 0 < 𝑥)) |
63 | | lediv1 11556 |
. . . . . 6
⊢
(((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ∈ ℝ ∧
((log‘𝑥) + 1) ∈
ℝ ∧ (𝑥 ∈
ℝ ∧ 0 < 𝑥))
→ ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ≤ ((log‘𝑥) + 1) ↔
((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) / 𝑥) ≤ (((log‘𝑥) + 1) / 𝑥))) |
64 | 58, 60, 62, 63 | syl3anc 1368 |
. . . . 5
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) →
((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ≤ ((log‘𝑥) + 1) ↔
((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) / 𝑥) ≤ (((log‘𝑥) + 1) / 𝑥))) |
65 | 48, 64 | mpbid 235 |
. . . 4
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) →
((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) / 𝑥) ≤ (((log‘𝑥) + 1) / 𝑥)) |
66 | 51 | simprd 499 |
. . . . . . . . 9
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ≠ 0) |
67 | 55, 52, 66 | divcan3d 11472 |
. . . . . . . 8
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑥 · ((log‘𝑥) − 1)) / 𝑥) = ((log‘𝑥) − 1)) |
68 | 67 | oveq1d 7171 |
. . . . . . 7
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((𝑥 · ((log‘𝑥) − 1)) / 𝑥) −
((log‘(!‘(⌊‘𝑥))) / 𝑥)) = (((log‘𝑥) − 1) −
((log‘(!‘(⌊‘𝑥))) / 𝑥))) |
69 | | divsubdir 11385 |
. . . . . . . 8
⊢ (((𝑥 · ((log‘𝑥) − 1)) ∈ ℂ
∧ (log‘(!‘(⌊‘𝑥))) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((𝑥 · ((log‘𝑥) − 1)) −
(log‘(!‘(⌊‘𝑥)))) / 𝑥) = (((𝑥 · ((log‘𝑥) − 1)) / 𝑥) −
((log‘(!‘(⌊‘𝑥))) / 𝑥))) |
70 | 56, 50, 51, 69 | syl3anc 1368 |
. . . . . . 7
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((𝑥 · ((log‘𝑥) − 1)) −
(log‘(!‘(⌊‘𝑥)))) / 𝑥) = (((𝑥 · ((log‘𝑥) − 1)) / 𝑥) −
((log‘(!‘(⌊‘𝑥))) / 𝑥))) |
71 | 45 | adantrr 716 |
. . . . . . . 8
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) →
((log‘(!‘(⌊‘𝑥))) / 𝑥) ∈ ℂ) |
72 | | 1cnd 10687 |
. . . . . . . 8
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈ ℂ) |
73 | 53, 71, 72 | sub32d 11080 |
. . . . . . 7
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) −
((log‘(!‘(⌊‘𝑥))) / 𝑥)) − 1) = (((log‘𝑥) − 1) −
((log‘(!‘(⌊‘𝑥))) / 𝑥))) |
74 | 68, 70, 73 | 3eqtr4rd 2804 |
. . . . . 6
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) −
((log‘(!‘(⌊‘𝑥))) / 𝑥)) − 1) = (((𝑥 · ((log‘𝑥) − 1)) −
(log‘(!‘(⌊‘𝑥)))) / 𝑥)) |
75 | 74 | fveq2d 6667 |
. . . . 5
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((log‘𝑥) −
((log‘(!‘(⌊‘𝑥))) / 𝑥)) − 1)) = (abs‘(((𝑥 · ((log‘𝑥) − 1)) −
(log‘(!‘(⌊‘𝑥)))) / 𝑥))) |
76 | 56, 50 | subcld 11048 |
. . . . . 6
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑥 · ((log‘𝑥) − 1)) −
(log‘(!‘(⌊‘𝑥)))) ∈ ℂ) |
77 | 76, 52, 66 | absdivd 14876 |
. . . . 5
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((𝑥 · ((log‘𝑥) − 1)) −
(log‘(!‘(⌊‘𝑥)))) / 𝑥)) = ((abs‘((𝑥 · ((log‘𝑥) − 1)) −
(log‘(!‘(⌊‘𝑥))))) / (abs‘𝑥))) |
78 | 56, 50 | abssubd 14874 |
. . . . . 6
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((𝑥 · ((log‘𝑥) − 1)) −
(log‘(!‘(⌊‘𝑥))))) =
(abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1))))) |
79 | 36 | ad2antrl 727 |
. . . . . . 7
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) |
80 | | absid 14717 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 0 ≤
𝑥) → (abs‘𝑥) = 𝑥) |
81 | 79, 80 | syl 17 |
. . . . . 6
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘𝑥) = 𝑥) |
82 | 78, 81 | oveq12d 7174 |
. . . . 5
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((abs‘((𝑥 · ((log‘𝑥) − 1)) −
(log‘(!‘(⌊‘𝑥))))) / (abs‘𝑥)) =
((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) / 𝑥)) |
83 | 75, 77, 82 | 3eqtrd 2797 |
. . . 4
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((log‘𝑥) −
((log‘(!‘(⌊‘𝑥))) / 𝑥)) − 1)) =
((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) / 𝑥)) |
84 | 35 | adantrr 716 |
. . . . . . 7
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) + 1) / 𝑥) ∈ ℂ) |
85 | 84 | subid1d 11037 |
. . . . . 6
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((((log‘𝑥) + 1) / 𝑥) − 0) = (((log‘𝑥) + 1) / 𝑥)) |
86 | 85 | fveq2d 6667 |
. . . . 5
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((((log‘𝑥) + 1) / 𝑥) − 0)) = (abs‘(((log‘𝑥) + 1) / 𝑥))) |
87 | | log1 25289 |
. . . . . . . . 9
⊢
(log‘1) = 0 |
88 | | simprr 772 |
. . . . . . . . . 10
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥) |
89 | 12 | adantrr 716 |
. . . . . . . . . . 11
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+) |
90 | | logleb 25306 |
. . . . . . . . . . 11
⊢ ((1
∈ ℝ+ ∧ 𝑥 ∈ ℝ+) → (1 ≤
𝑥 ↔ (log‘1) ≤
(log‘𝑥))) |
91 | 21, 89, 90 | sylancr 590 |
. . . . . . . . . 10
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥))) |
92 | 88, 91 | mpbid 235 |
. . . . . . . . 9
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘1) ≤ (log‘𝑥)) |
93 | 87, 92 | eqbrtrrid 5072 |
. . . . . . . 8
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (log‘𝑥)) |
94 | 59, 93 | ge0p1rpd 12515 |
. . . . . . 7
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) + 1) ∈
ℝ+) |
95 | 94, 89 | rpdivcld 12502 |
. . . . . 6
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) + 1) / 𝑥) ∈
ℝ+) |
96 | | rprege0 12458 |
. . . . . 6
⊢
((((log‘𝑥) +
1) / 𝑥) ∈
ℝ+ → ((((log‘𝑥) + 1) / 𝑥) ∈ ℝ ∧ 0 ≤
(((log‘𝑥) + 1) /
𝑥))) |
97 | | absid 14717 |
. . . . . 6
⊢
(((((log‘𝑥) +
1) / 𝑥) ∈ ℝ
∧ 0 ≤ (((log‘𝑥) + 1) / 𝑥)) → (abs‘(((log‘𝑥) + 1) / 𝑥)) = (((log‘𝑥) + 1) / 𝑥)) |
98 | 95, 96, 97 | 3syl 18 |
. . . . 5
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((log‘𝑥) + 1) / 𝑥)) = (((log‘𝑥) + 1) / 𝑥)) |
99 | 86, 98 | eqtrd 2793 |
. . . 4
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((((log‘𝑥) + 1) / 𝑥) − 0)) = (((log‘𝑥) + 1) / 𝑥)) |
100 | 65, 83, 99 | 3brtr4d 5068 |
. . 3
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((log‘𝑥) −
((log‘(!‘(⌊‘𝑥))) / 𝑥)) − 1)) ≤
(abs‘((((log‘𝑥)
+ 1) / 𝑥) −
0))) |
101 | 1, 2, 31, 35, 46, 100 | rlimsqzlem 15066 |
. 2
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ ((log‘𝑥) −
((log‘(!‘(⌊‘𝑥))) / 𝑥))) ⇝𝑟
1) |
102 | 101 | mptru 1545 |
1
⊢ (𝑥 ∈ ℝ+
↦ ((log‘𝑥)
− ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ⇝𝑟
1 |