MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logfacrlim Structured version   Visualization version   GIF version

Theorem logfacrlim 27172
Description: Combine the estimates logfacubnd 27169 and logfaclbnd 27170, to get log(𝑥!) = 𝑥log𝑥 + 𝑂(𝑥). Equation 9.2.9 of [Shapiro], p. 329. This is a weak form of the even stronger statement, log(𝑥!) = 𝑥log𝑥𝑥 + 𝑂(log𝑥). (Contributed by Mario Carneiro, 16-Apr-2016.) (Revised by Mario Carneiro, 21-May-2016.)
Assertion
Ref Expression
logfacrlim (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ⇝𝑟 1

Proof of Theorem logfacrlim
StepHypRef Expression
1 1red 11123 . . 3 (⊤ → 1 ∈ ℝ)
2 1cnd 11117 . . 3 (⊤ → 1 ∈ ℂ)
3 relogcl 26521 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
43adantl 481 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
54recnd 11150 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
6 1cnd 11117 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℂ)
7 rpcnne0 12919 . . . . . . . 8 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
87adantl 481 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
9 divdir 11811 . . . . . . 7 (((log‘𝑥) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((log‘𝑥) + 1) / 𝑥) = (((log‘𝑥) / 𝑥) + (1 / 𝑥)))
105, 6, 8, 9syl3anc 1373 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥) + 1) / 𝑥) = (((log‘𝑥) / 𝑥) + (1 / 𝑥)))
1110mpteq2dva 5188 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥) + 1) / 𝑥)) = (𝑥 ∈ ℝ+ ↦ (((log‘𝑥) / 𝑥) + (1 / 𝑥))))
12 simpr 484 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
134, 12rerpdivcld 12975 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) / 𝑥) ∈ ℝ)
14 rpreccl 12928 . . . . . . . 8 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+)
1514adantl 481 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
1615rpred 12944 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ)
178simpld 494 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
1817cxp1d 26652 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → (𝑥𝑐1) = 𝑥)
1918oveq2d 7371 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) / (𝑥𝑐1)) = ((log‘𝑥) / 𝑥))
2019mpteq2dva 5188 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐1))) = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥)))
21 1rp 12904 . . . . . . . 8 1 ∈ ℝ+
22 cxploglim 26925 . . . . . . . 8 (1 ∈ ℝ+ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐1))) ⇝𝑟 0)
2321, 22mp1i 13 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐1))) ⇝𝑟 0)
2420, 23eqbrtrrd 5119 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥)) ⇝𝑟 0)
25 ax-1cn 11074 . . . . . . 7 1 ∈ ℂ
26 divrcnv 15769 . . . . . . 7 (1 ∈ ℂ → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ⇝𝑟 0)
2725, 26mp1i 13 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ⇝𝑟 0)
2813, 16, 24, 27rlimadd 15560 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥) / 𝑥) + (1 / 𝑥))) ⇝𝑟 (0 + 0))
2911, 28eqbrtrd 5117 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥) + 1) / 𝑥)) ⇝𝑟 (0 + 0))
30 00id 11298 . . . 4 (0 + 0) = 0
3129, 30breqtrdi 5136 . . 3 (⊤ → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥) + 1) / 𝑥)) ⇝𝑟 0)
32 peano2re 11296 . . . . . 6 ((log‘𝑥) ∈ ℝ → ((log‘𝑥) + 1) ∈ ℝ)
334, 32syl 17 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) + 1) ∈ ℝ)
3433, 12rerpdivcld 12975 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥) + 1) / 𝑥) ∈ ℝ)
3534recnd 11150 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥) + 1) / 𝑥) ∈ ℂ)
36 rprege0 12916 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
3736adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
38 flge0nn0 13734 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
39 faccl 14200 . . . . . . . . 9 ((⌊‘𝑥) ∈ ℕ0 → (!‘(⌊‘𝑥)) ∈ ℕ)
4037, 38, 393syl 18 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (!‘(⌊‘𝑥)) ∈ ℕ)
4140nnrpd 12942 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (!‘(⌊‘𝑥)) ∈ ℝ+)
42 relogcl 26521 . . . . . . 7 ((!‘(⌊‘𝑥)) ∈ ℝ+ → (log‘(!‘(⌊‘𝑥))) ∈ ℝ)
4341, 42syl 17 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘(!‘(⌊‘𝑥))) ∈ ℝ)
4443, 12rerpdivcld 12975 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘(!‘(⌊‘𝑥))) / 𝑥) ∈ ℝ)
4544recnd 11150 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘(!‘(⌊‘𝑥))) / 𝑥) ∈ ℂ)
465, 45subcld 11482 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) ∈ ℂ)
47 logfacbnd3 27171 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ≤ ((log‘𝑥) + 1))
4847adantl 481 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ≤ ((log‘𝑥) + 1))
4943recnd 11150 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘(!‘(⌊‘𝑥))) ∈ ℂ)
5049adantrr 717 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘(!‘(⌊‘𝑥))) ∈ ℂ)
517ad2antrl 728 . . . . . . . . . 10 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
5251simpld 494 . . . . . . . . 9 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℂ)
535adantrr 717 . . . . . . . . . 10 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℂ)
54 subcl 11369 . . . . . . . . . 10 (((log‘𝑥) ∈ ℂ ∧ 1 ∈ ℂ) → ((log‘𝑥) − 1) ∈ ℂ)
5553, 25, 54sylancl 586 . . . . . . . . 9 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) − 1) ∈ ℂ)
5652, 55mulcld 11142 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 · ((log‘𝑥) − 1)) ∈ ℂ)
5750, 56subcld 11482 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1))) ∈ ℂ)
5857abscld 15356 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ∈ ℝ)
594adantrr 717 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℝ)
6059, 32syl 17 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) + 1) ∈ ℝ)
61 rpregt0 12915 . . . . . . 7 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
6261ad2antrl 728 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
63 lediv1 11997 . . . . . 6 (((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ∈ ℝ ∧ ((log‘𝑥) + 1) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ≤ ((log‘𝑥) + 1) ↔ ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) / 𝑥) ≤ (((log‘𝑥) + 1) / 𝑥)))
6458, 60, 62, 63syl3anc 1373 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ≤ ((log‘𝑥) + 1) ↔ ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) / 𝑥) ≤ (((log‘𝑥) + 1) / 𝑥)))
6548, 64mpbid 232 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) / 𝑥) ≤ (((log‘𝑥) + 1) / 𝑥))
6651simprd 495 . . . . . . . . 9 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ≠ 0)
6755, 52, 66divcan3d 11912 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑥 · ((log‘𝑥) − 1)) / 𝑥) = ((log‘𝑥) − 1))
6867oveq1d 7370 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((𝑥 · ((log‘𝑥) − 1)) / 𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) = (((log‘𝑥) − 1) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))
69 divsubdir 11825 . . . . . . . 8 (((𝑥 · ((log‘𝑥) − 1)) ∈ ℂ ∧ (log‘(!‘(⌊‘𝑥))) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) = (((𝑥 · ((log‘𝑥) − 1)) / 𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))
7056, 50, 51, 69syl3anc 1373 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) = (((𝑥 · ((log‘𝑥) − 1)) / 𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))
7145adantrr 717 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘(!‘(⌊‘𝑥))) / 𝑥) ∈ ℂ)
72 1cnd 11117 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈ ℂ)
7353, 71, 72sub32d 11514 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − 1) = (((log‘𝑥) − 1) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))
7468, 70, 733eqtr4rd 2779 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − 1) = (((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥)))) / 𝑥))
7574fveq2d 6835 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − 1)) = (abs‘(((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥)))) / 𝑥)))
7656, 50subcld 11482 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥)))) ∈ ℂ)
7776, 52, 66absdivd 15375 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥)))) / 𝑥)) = ((abs‘((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥))))) / (abs‘𝑥)))
7856, 50abssubd 15373 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥))))) = (abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))))
7936ad2antrl 728 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
80 absid 15213 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (abs‘𝑥) = 𝑥)
8179, 80syl 17 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘𝑥) = 𝑥)
8278, 81oveq12d 7373 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((abs‘((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥))))) / (abs‘𝑥)) = ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) / 𝑥))
8375, 77, 823eqtrd 2772 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − 1)) = ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) / 𝑥))
8435adantrr 717 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) + 1) / 𝑥) ∈ ℂ)
8584subid1d 11471 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((((log‘𝑥) + 1) / 𝑥) − 0) = (((log‘𝑥) + 1) / 𝑥))
8685fveq2d 6835 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((((log‘𝑥) + 1) / 𝑥) − 0)) = (abs‘(((log‘𝑥) + 1) / 𝑥)))
87 log1 26531 . . . . . . . . 9 (log‘1) = 0
88 simprr 772 . . . . . . . . . 10 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
8912adantrr 717 . . . . . . . . . . 11 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
90 logleb 26549 . . . . . . . . . . 11 ((1 ∈ ℝ+𝑥 ∈ ℝ+) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
9121, 89, 90sylancr 587 . . . . . . . . . 10 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
9288, 91mpbid 232 . . . . . . . . 9 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘1) ≤ (log‘𝑥))
9387, 92eqbrtrrid 5131 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (log‘𝑥))
9459, 93ge0p1rpd 12974 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) + 1) ∈ ℝ+)
9594, 89rpdivcld 12961 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) + 1) / 𝑥) ∈ ℝ+)
96 rprege0 12916 . . . . . 6 ((((log‘𝑥) + 1) / 𝑥) ∈ ℝ+ → ((((log‘𝑥) + 1) / 𝑥) ∈ ℝ ∧ 0 ≤ (((log‘𝑥) + 1) / 𝑥)))
97 absid 15213 . . . . . 6 (((((log‘𝑥) + 1) / 𝑥) ∈ ℝ ∧ 0 ≤ (((log‘𝑥) + 1) / 𝑥)) → (abs‘(((log‘𝑥) + 1) / 𝑥)) = (((log‘𝑥) + 1) / 𝑥))
9895, 96, 973syl 18 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((log‘𝑥) + 1) / 𝑥)) = (((log‘𝑥) + 1) / 𝑥))
9986, 98eqtrd 2768 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((((log‘𝑥) + 1) / 𝑥) − 0)) = (((log‘𝑥) + 1) / 𝑥))
10065, 83, 993brtr4d 5127 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − 1)) ≤ (abs‘((((log‘𝑥) + 1) / 𝑥) − 0)))
1011, 2, 31, 35, 46, 100rlimsqzlem 15566 . 2 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ⇝𝑟 1)
102101mptru 1548 1 (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ⇝𝑟 1
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wtru 1542  wcel 2113  wne 2930   class class class wbr 5095  cmpt 5176  cfv 6489  (class class class)co 7355  cc 11014  cr 11015  0cc0 11016  1c1 11017   + caddc 11019   · cmul 11021   < clt 11156  cle 11157  cmin 11354   / cdiv 11784  cn 12135  0cn0 12391  +crp 12900  cfl 13704  !cfa 14190  abscabs 15151  𝑟 crli 15402  logclog 26500  𝑐ccxp 26501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094  ax-addf 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8831  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-fsupp 9256  df-fi 9305  df-sup 9336  df-inf 9337  df-oi 9406  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-z 12479  df-dec 12599  df-uz 12743  df-q 12857  df-rp 12901  df-xneg 13021  df-xadd 13022  df-xmul 13023  df-ioo 13259  df-ioc 13260  df-ico 13261  df-icc 13262  df-fz 13418  df-fzo 13565  df-fl 13706  df-mod 13784  df-seq 13919  df-exp 13979  df-fac 14191  df-bc 14220  df-hash 14248  df-shft 14984  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153  df-limsup 15388  df-clim 15405  df-rlim 15406  df-sum 15604  df-ef 15984  df-sin 15986  df-cos 15987  df-pi 15989  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-starv 17186  df-sca 17187  df-vsca 17188  df-ip 17189  df-tset 17190  df-ple 17191  df-ds 17193  df-unif 17194  df-hom 17195  df-cco 17196  df-rest 17336  df-topn 17337  df-0g 17355  df-gsum 17356  df-topgen 17357  df-pt 17358  df-prds 17361  df-xrs 17416  df-qtop 17421  df-imas 17422  df-xps 17424  df-mre 17498  df-mrc 17499  df-acs 17501  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-submnd 18702  df-mulg 18991  df-cntz 19239  df-cmn 19704  df-psmet 21293  df-xmet 21294  df-met 21295  df-bl 21296  df-mopn 21297  df-fbas 21298  df-fg 21299  df-cnfld 21302  df-top 22819  df-topon 22836  df-topsp 22858  df-bases 22871  df-cld 22944  df-ntr 22945  df-cls 22946  df-nei 23023  df-lp 23061  df-perf 23062  df-cn 23152  df-cnp 23153  df-haus 23240  df-cmp 23312  df-tx 23487  df-hmeo 23680  df-fil 23771  df-fm 23863  df-flim 23864  df-flf 23865  df-xms 24245  df-ms 24246  df-tms 24247  df-cncf 24808  df-limc 25804  df-dv 25805  df-log 26502  df-cxp 26503
This theorem is referenced by:  vmadivsum  27430
  Copyright terms: Public domain W3C validator