MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logfacrlim Structured version   Visualization version   GIF version

Theorem logfacrlim 27155
Description: Combine the estimates logfacubnd 27152 and logfaclbnd 27153, to get log(𝑥!) = 𝑥log𝑥 + 𝑂(𝑥). Equation 9.2.9 of [Shapiro], p. 329. This is a weak form of the even stronger statement, log(𝑥!) = 𝑥log𝑥𝑥 + 𝑂(log𝑥). (Contributed by Mario Carneiro, 16-Apr-2016.) (Revised by Mario Carneiro, 21-May-2016.)
Assertion
Ref Expression
logfacrlim (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ⇝𝑟 1

Proof of Theorem logfacrlim
StepHypRef Expression
1 1red 11105 . . 3 (⊤ → 1 ∈ ℝ)
2 1cnd 11099 . . 3 (⊤ → 1 ∈ ℂ)
3 relogcl 26504 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
43adantl 481 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
54recnd 11132 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
6 1cnd 11099 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℂ)
7 rpcnne0 12901 . . . . . . . 8 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
87adantl 481 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
9 divdir 11793 . . . . . . 7 (((log‘𝑥) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((log‘𝑥) + 1) / 𝑥) = (((log‘𝑥) / 𝑥) + (1 / 𝑥)))
105, 6, 8, 9syl3anc 1373 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥) + 1) / 𝑥) = (((log‘𝑥) / 𝑥) + (1 / 𝑥)))
1110mpteq2dva 5182 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥) + 1) / 𝑥)) = (𝑥 ∈ ℝ+ ↦ (((log‘𝑥) / 𝑥) + (1 / 𝑥))))
12 simpr 484 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
134, 12rerpdivcld 12957 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) / 𝑥) ∈ ℝ)
14 rpreccl 12910 . . . . . . . 8 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+)
1514adantl 481 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
1615rpred 12926 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ)
178simpld 494 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
1817cxp1d 26635 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → (𝑥𝑐1) = 𝑥)
1918oveq2d 7357 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) / (𝑥𝑐1)) = ((log‘𝑥) / 𝑥))
2019mpteq2dva 5182 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐1))) = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥)))
21 1rp 12886 . . . . . . . 8 1 ∈ ℝ+
22 cxploglim 26908 . . . . . . . 8 (1 ∈ ℝ+ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐1))) ⇝𝑟 0)
2321, 22mp1i 13 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐1))) ⇝𝑟 0)
2420, 23eqbrtrrd 5113 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥)) ⇝𝑟 0)
25 ax-1cn 11056 . . . . . . 7 1 ∈ ℂ
26 divrcnv 15751 . . . . . . 7 (1 ∈ ℂ → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ⇝𝑟 0)
2725, 26mp1i 13 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ⇝𝑟 0)
2813, 16, 24, 27rlimadd 15542 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥) / 𝑥) + (1 / 𝑥))) ⇝𝑟 (0 + 0))
2911, 28eqbrtrd 5111 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥) + 1) / 𝑥)) ⇝𝑟 (0 + 0))
30 00id 11280 . . . 4 (0 + 0) = 0
3129, 30breqtrdi 5130 . . 3 (⊤ → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥) + 1) / 𝑥)) ⇝𝑟 0)
32 peano2re 11278 . . . . . 6 ((log‘𝑥) ∈ ℝ → ((log‘𝑥) + 1) ∈ ℝ)
334, 32syl 17 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) + 1) ∈ ℝ)
3433, 12rerpdivcld 12957 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥) + 1) / 𝑥) ∈ ℝ)
3534recnd 11132 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥) + 1) / 𝑥) ∈ ℂ)
36 rprege0 12898 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
3736adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
38 flge0nn0 13716 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
39 faccl 14182 . . . . . . . . 9 ((⌊‘𝑥) ∈ ℕ0 → (!‘(⌊‘𝑥)) ∈ ℕ)
4037, 38, 393syl 18 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (!‘(⌊‘𝑥)) ∈ ℕ)
4140nnrpd 12924 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (!‘(⌊‘𝑥)) ∈ ℝ+)
42 relogcl 26504 . . . . . . 7 ((!‘(⌊‘𝑥)) ∈ ℝ+ → (log‘(!‘(⌊‘𝑥))) ∈ ℝ)
4341, 42syl 17 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘(!‘(⌊‘𝑥))) ∈ ℝ)
4443, 12rerpdivcld 12957 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘(!‘(⌊‘𝑥))) / 𝑥) ∈ ℝ)
4544recnd 11132 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘(!‘(⌊‘𝑥))) / 𝑥) ∈ ℂ)
465, 45subcld 11464 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) ∈ ℂ)
47 logfacbnd3 27154 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ≤ ((log‘𝑥) + 1))
4847adantl 481 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ≤ ((log‘𝑥) + 1))
4943recnd 11132 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘(!‘(⌊‘𝑥))) ∈ ℂ)
5049adantrr 717 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘(!‘(⌊‘𝑥))) ∈ ℂ)
517ad2antrl 728 . . . . . . . . . 10 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
5251simpld 494 . . . . . . . . 9 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℂ)
535adantrr 717 . . . . . . . . . 10 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℂ)
54 subcl 11351 . . . . . . . . . 10 (((log‘𝑥) ∈ ℂ ∧ 1 ∈ ℂ) → ((log‘𝑥) − 1) ∈ ℂ)
5553, 25, 54sylancl 586 . . . . . . . . 9 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) − 1) ∈ ℂ)
5652, 55mulcld 11124 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 · ((log‘𝑥) − 1)) ∈ ℂ)
5750, 56subcld 11464 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1))) ∈ ℂ)
5857abscld 15338 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ∈ ℝ)
594adantrr 717 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℝ)
6059, 32syl 17 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) + 1) ∈ ℝ)
61 rpregt0 12897 . . . . . . 7 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
6261ad2antrl 728 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
63 lediv1 11979 . . . . . 6 (((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ∈ ℝ ∧ ((log‘𝑥) + 1) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ≤ ((log‘𝑥) + 1) ↔ ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) / 𝑥) ≤ (((log‘𝑥) + 1) / 𝑥)))
6458, 60, 62, 63syl3anc 1373 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ≤ ((log‘𝑥) + 1) ↔ ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) / 𝑥) ≤ (((log‘𝑥) + 1) / 𝑥)))
6548, 64mpbid 232 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) / 𝑥) ≤ (((log‘𝑥) + 1) / 𝑥))
6651simprd 495 . . . . . . . . 9 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ≠ 0)
6755, 52, 66divcan3d 11894 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑥 · ((log‘𝑥) − 1)) / 𝑥) = ((log‘𝑥) − 1))
6867oveq1d 7356 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((𝑥 · ((log‘𝑥) − 1)) / 𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) = (((log‘𝑥) − 1) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))
69 divsubdir 11807 . . . . . . . 8 (((𝑥 · ((log‘𝑥) − 1)) ∈ ℂ ∧ (log‘(!‘(⌊‘𝑥))) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) = (((𝑥 · ((log‘𝑥) − 1)) / 𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))
7056, 50, 51, 69syl3anc 1373 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) = (((𝑥 · ((log‘𝑥) − 1)) / 𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))
7145adantrr 717 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘(!‘(⌊‘𝑥))) / 𝑥) ∈ ℂ)
72 1cnd 11099 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈ ℂ)
7353, 71, 72sub32d 11496 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − 1) = (((log‘𝑥) − 1) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))
7468, 70, 733eqtr4rd 2776 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − 1) = (((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥)))) / 𝑥))
7574fveq2d 6821 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − 1)) = (abs‘(((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥)))) / 𝑥)))
7656, 50subcld 11464 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥)))) ∈ ℂ)
7776, 52, 66absdivd 15357 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥)))) / 𝑥)) = ((abs‘((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥))))) / (abs‘𝑥)))
7856, 50abssubd 15355 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥))))) = (abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))))
7936ad2antrl 728 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
80 absid 15195 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (abs‘𝑥) = 𝑥)
8179, 80syl 17 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘𝑥) = 𝑥)
8278, 81oveq12d 7359 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((abs‘((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥))))) / (abs‘𝑥)) = ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) / 𝑥))
8375, 77, 823eqtrd 2769 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − 1)) = ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) / 𝑥))
8435adantrr 717 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) + 1) / 𝑥) ∈ ℂ)
8584subid1d 11453 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((((log‘𝑥) + 1) / 𝑥) − 0) = (((log‘𝑥) + 1) / 𝑥))
8685fveq2d 6821 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((((log‘𝑥) + 1) / 𝑥) − 0)) = (abs‘(((log‘𝑥) + 1) / 𝑥)))
87 log1 26514 . . . . . . . . 9 (log‘1) = 0
88 simprr 772 . . . . . . . . . 10 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
8912adantrr 717 . . . . . . . . . . 11 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
90 logleb 26532 . . . . . . . . . . 11 ((1 ∈ ℝ+𝑥 ∈ ℝ+) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
9121, 89, 90sylancr 587 . . . . . . . . . 10 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
9288, 91mpbid 232 . . . . . . . . 9 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘1) ≤ (log‘𝑥))
9387, 92eqbrtrrid 5125 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (log‘𝑥))
9459, 93ge0p1rpd 12956 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) + 1) ∈ ℝ+)
9594, 89rpdivcld 12943 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) + 1) / 𝑥) ∈ ℝ+)
96 rprege0 12898 . . . . . 6 ((((log‘𝑥) + 1) / 𝑥) ∈ ℝ+ → ((((log‘𝑥) + 1) / 𝑥) ∈ ℝ ∧ 0 ≤ (((log‘𝑥) + 1) / 𝑥)))
97 absid 15195 . . . . . 6 (((((log‘𝑥) + 1) / 𝑥) ∈ ℝ ∧ 0 ≤ (((log‘𝑥) + 1) / 𝑥)) → (abs‘(((log‘𝑥) + 1) / 𝑥)) = (((log‘𝑥) + 1) / 𝑥))
9895, 96, 973syl 18 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((log‘𝑥) + 1) / 𝑥)) = (((log‘𝑥) + 1) / 𝑥))
9986, 98eqtrd 2765 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((((log‘𝑥) + 1) / 𝑥) − 0)) = (((log‘𝑥) + 1) / 𝑥))
10065, 83, 993brtr4d 5121 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − 1)) ≤ (abs‘((((log‘𝑥) + 1) / 𝑥) − 0)))
1011, 2, 31, 35, 46, 100rlimsqzlem 15548 . 2 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ⇝𝑟 1)
102101mptru 1548 1 (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ⇝𝑟 1
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wtru 1542  wcel 2110  wne 2926   class class class wbr 5089  cmpt 5170  cfv 6477  (class class class)co 7341  cc 10996  cr 10997  0cc0 10998  1c1 10999   + caddc 11001   · cmul 11003   < clt 11138  cle 11139  cmin 11336   / cdiv 11766  cn 12117  0cn0 12373  +crp 12882  cfl 13686  !cfa 14172  abscabs 15133  𝑟 crli 15384  logclog 26483  𝑐ccxp 26484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076  ax-addf 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-ioo 13241  df-ioc 13242  df-ico 13243  df-icc 13244  df-fz 13400  df-fzo 13547  df-fl 13688  df-mod 13766  df-seq 13901  df-exp 13961  df-fac 14173  df-bc 14202  df-hash 14230  df-shft 14966  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-limsup 15370  df-clim 15387  df-rlim 15388  df-sum 15586  df-ef 15966  df-sin 15968  df-cos 15969  df-pi 15971  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-hom 17177  df-cco 17178  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-submnd 18684  df-mulg 18973  df-cntz 19222  df-cmn 19687  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-fbas 21281  df-fg 21282  df-cnfld 21285  df-top 22802  df-topon 22819  df-topsp 22841  df-bases 22854  df-cld 22927  df-ntr 22928  df-cls 22929  df-nei 23006  df-lp 23044  df-perf 23045  df-cn 23135  df-cnp 23136  df-haus 23223  df-cmp 23295  df-tx 23470  df-hmeo 23663  df-fil 23754  df-fm 23846  df-flim 23847  df-flf 23848  df-xms 24228  df-ms 24229  df-tms 24230  df-cncf 24791  df-limc 25787  df-dv 25788  df-log 26485  df-cxp 26486
This theorem is referenced by:  vmadivsum  27413
  Copyright terms: Public domain W3C validator