MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logfacrlim Structured version   Visualization version   GIF version

Theorem logfacrlim 25794
Description: Combine the estimates logfacubnd 25791 and logfaclbnd 25792, to get log(𝑥!) = 𝑥log𝑥 + 𝑂(𝑥). Equation 9.2.9 of [Shapiro], p. 329. This is a weak form of the even stronger statement, log(𝑥!) = 𝑥log𝑥𝑥 + 𝑂(log𝑥). (Contributed by Mario Carneiro, 16-Apr-2016.) (Revised by Mario Carneiro, 21-May-2016.)
Assertion
Ref Expression
logfacrlim (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ⇝𝑟 1

Proof of Theorem logfacrlim
StepHypRef Expression
1 1red 10636 . . 3 (⊤ → 1 ∈ ℝ)
2 1cnd 10630 . . 3 (⊤ → 1 ∈ ℂ)
3 relogcl 25153 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
43adantl 484 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
54recnd 10663 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
6 1cnd 10630 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℂ)
7 rpcnne0 12401 . . . . . . . 8 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
87adantl 484 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
9 divdir 11317 . . . . . . 7 (((log‘𝑥) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((log‘𝑥) + 1) / 𝑥) = (((log‘𝑥) / 𝑥) + (1 / 𝑥)))
105, 6, 8, 9syl3anc 1367 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥) + 1) / 𝑥) = (((log‘𝑥) / 𝑥) + (1 / 𝑥)))
1110mpteq2dva 5154 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥) + 1) / 𝑥)) = (𝑥 ∈ ℝ+ ↦ (((log‘𝑥) / 𝑥) + (1 / 𝑥))))
12 simpr 487 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
134, 12rerpdivcld 12456 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) / 𝑥) ∈ ℝ)
14 rpreccl 12409 . . . . . . . 8 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+)
1514adantl 484 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
1615rpred 12425 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ)
178simpld 497 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
1817cxp1d 25283 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → (𝑥𝑐1) = 𝑥)
1918oveq2d 7166 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) / (𝑥𝑐1)) = ((log‘𝑥) / 𝑥))
2019mpteq2dva 5154 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐1))) = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥)))
21 1rp 12387 . . . . . . . 8 1 ∈ ℝ+
22 cxploglim 25549 . . . . . . . 8 (1 ∈ ℝ+ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐1))) ⇝𝑟 0)
2321, 22mp1i 13 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐1))) ⇝𝑟 0)
2420, 23eqbrtrrd 5083 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥)) ⇝𝑟 0)
25 ax-1cn 10589 . . . . . . 7 1 ∈ ℂ
26 divrcnv 15201 . . . . . . 7 (1 ∈ ℂ → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ⇝𝑟 0)
2725, 26mp1i 13 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ⇝𝑟 0)
2813, 16, 24, 27rlimadd 14993 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥) / 𝑥) + (1 / 𝑥))) ⇝𝑟 (0 + 0))
2911, 28eqbrtrd 5081 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥) + 1) / 𝑥)) ⇝𝑟 (0 + 0))
30 00id 10809 . . . 4 (0 + 0) = 0
3129, 30breqtrdi 5100 . . 3 (⊤ → (𝑥 ∈ ℝ+ ↦ (((log‘𝑥) + 1) / 𝑥)) ⇝𝑟 0)
32 peano2re 10807 . . . . . 6 ((log‘𝑥) ∈ ℝ → ((log‘𝑥) + 1) ∈ ℝ)
334, 32syl 17 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) + 1) ∈ ℝ)
3433, 12rerpdivcld 12456 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥) + 1) / 𝑥) ∈ ℝ)
3534recnd 10663 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥) + 1) / 𝑥) ∈ ℂ)
36 rprege0 12398 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
3736adantl 484 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
38 flge0nn0 13184 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
39 faccl 13637 . . . . . . . . 9 ((⌊‘𝑥) ∈ ℕ0 → (!‘(⌊‘𝑥)) ∈ ℕ)
4037, 38, 393syl 18 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (!‘(⌊‘𝑥)) ∈ ℕ)
4140nnrpd 12423 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (!‘(⌊‘𝑥)) ∈ ℝ+)
42 relogcl 25153 . . . . . . 7 ((!‘(⌊‘𝑥)) ∈ ℝ+ → (log‘(!‘(⌊‘𝑥))) ∈ ℝ)
4341, 42syl 17 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘(!‘(⌊‘𝑥))) ∈ ℝ)
4443, 12rerpdivcld 12456 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘(!‘(⌊‘𝑥))) / 𝑥) ∈ ℝ)
4544recnd 10663 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘(!‘(⌊‘𝑥))) / 𝑥) ∈ ℂ)
465, 45subcld 10991 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) ∈ ℂ)
47 logfacbnd3 25793 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥) → (abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ≤ ((log‘𝑥) + 1))
4847adantl 484 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ≤ ((log‘𝑥) + 1))
4943recnd 10663 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘(!‘(⌊‘𝑥))) ∈ ℂ)
5049adantrr 715 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘(!‘(⌊‘𝑥))) ∈ ℂ)
517ad2antrl 726 . . . . . . . . . 10 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
5251simpld 497 . . . . . . . . 9 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℂ)
535adantrr 715 . . . . . . . . . 10 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℂ)
54 subcl 10879 . . . . . . . . . 10 (((log‘𝑥) ∈ ℂ ∧ 1 ∈ ℂ) → ((log‘𝑥) − 1) ∈ ℂ)
5553, 25, 54sylancl 588 . . . . . . . . 9 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) − 1) ∈ ℂ)
5652, 55mulcld 10655 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 · ((log‘𝑥) − 1)) ∈ ℂ)
5750, 56subcld 10991 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1))) ∈ ℂ)
5857abscld 14790 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ∈ ℝ)
594adantrr 715 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℝ)
6059, 32syl 17 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) + 1) ∈ ℝ)
61 rpregt0 12397 . . . . . . 7 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
6261ad2antrl 726 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
63 lediv1 11499 . . . . . 6 (((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ∈ ℝ ∧ ((log‘𝑥) + 1) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ≤ ((log‘𝑥) + 1) ↔ ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) / 𝑥) ≤ (((log‘𝑥) + 1) / 𝑥)))
6458, 60, 62, 63syl3anc 1367 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) ≤ ((log‘𝑥) + 1) ↔ ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) / 𝑥) ≤ (((log‘𝑥) + 1) / 𝑥)))
6548, 64mpbid 234 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) / 𝑥) ≤ (((log‘𝑥) + 1) / 𝑥))
6651simprd 498 . . . . . . . . 9 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ≠ 0)
6755, 52, 66divcan3d 11415 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑥 · ((log‘𝑥) − 1)) / 𝑥) = ((log‘𝑥) − 1))
6867oveq1d 7165 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((𝑥 · ((log‘𝑥) − 1)) / 𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) = (((log‘𝑥) − 1) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))
69 divsubdir 11328 . . . . . . . 8 (((𝑥 · ((log‘𝑥) − 1)) ∈ ℂ ∧ (log‘(!‘(⌊‘𝑥))) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) = (((𝑥 · ((log‘𝑥) − 1)) / 𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))
7056, 50, 51, 69syl3anc 1367 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) = (((𝑥 · ((log‘𝑥) − 1)) / 𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))
7145adantrr 715 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘(!‘(⌊‘𝑥))) / 𝑥) ∈ ℂ)
72 1cnd 10630 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈ ℂ)
7353, 71, 72sub32d 11023 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − 1) = (((log‘𝑥) − 1) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))
7468, 70, 733eqtr4rd 2867 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − 1) = (((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥)))) / 𝑥))
7574fveq2d 6669 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − 1)) = (abs‘(((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥)))) / 𝑥)))
7656, 50subcld 10991 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥)))) ∈ ℂ)
7776, 52, 66absdivd 14809 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥)))) / 𝑥)) = ((abs‘((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥))))) / (abs‘𝑥)))
7856, 50abssubd 14807 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥))))) = (abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))))
7936ad2antrl 726 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
80 absid 14650 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (abs‘𝑥) = 𝑥)
8179, 80syl 17 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘𝑥) = 𝑥)
8278, 81oveq12d 7168 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((abs‘((𝑥 · ((log‘𝑥) − 1)) − (log‘(!‘(⌊‘𝑥))))) / (abs‘𝑥)) = ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) / 𝑥))
8375, 77, 823eqtrd 2860 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − 1)) = ((abs‘((log‘(!‘(⌊‘𝑥))) − (𝑥 · ((log‘𝑥) − 1)))) / 𝑥))
8435adantrr 715 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) + 1) / 𝑥) ∈ ℂ)
8584subid1d 10980 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((((log‘𝑥) + 1) / 𝑥) − 0) = (((log‘𝑥) + 1) / 𝑥))
8685fveq2d 6669 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((((log‘𝑥) + 1) / 𝑥) − 0)) = (abs‘(((log‘𝑥) + 1) / 𝑥)))
87 log1 25163 . . . . . . . . 9 (log‘1) = 0
88 simprr 771 . . . . . . . . . 10 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
8912adantrr 715 . . . . . . . . . . 11 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
90 logleb 25180 . . . . . . . . . . 11 ((1 ∈ ℝ+𝑥 ∈ ℝ+) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
9121, 89, 90sylancr 589 . . . . . . . . . 10 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
9288, 91mpbid 234 . . . . . . . . 9 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘1) ≤ (log‘𝑥))
9387, 92eqbrtrrid 5095 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (log‘𝑥))
9459, 93ge0p1rpd 12455 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) + 1) ∈ ℝ+)
9594, 89rpdivcld 12442 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) + 1) / 𝑥) ∈ ℝ+)
96 rprege0 12398 . . . . . 6 ((((log‘𝑥) + 1) / 𝑥) ∈ ℝ+ → ((((log‘𝑥) + 1) / 𝑥) ∈ ℝ ∧ 0 ≤ (((log‘𝑥) + 1) / 𝑥)))
97 absid 14650 . . . . . 6 (((((log‘𝑥) + 1) / 𝑥) ∈ ℝ ∧ 0 ≤ (((log‘𝑥) + 1) / 𝑥)) → (abs‘(((log‘𝑥) + 1) / 𝑥)) = (((log‘𝑥) + 1) / 𝑥))
9895, 96, 973syl 18 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((log‘𝑥) + 1) / 𝑥)) = (((log‘𝑥) + 1) / 𝑥))
9986, 98eqtrd 2856 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((((log‘𝑥) + 1) / 𝑥) − 0)) = (((log‘𝑥) + 1) / 𝑥))
10065, 83, 993brtr4d 5091 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − 1)) ≤ (abs‘((((log‘𝑥) + 1) / 𝑥) − 0)))
1011, 2, 31, 35, 46, 100rlimsqzlem 14999 . 2 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ⇝𝑟 1)
102101mptru 1540 1 (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ⇝𝑟 1
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1533  wtru 1534  wcel 2110  wne 3016   class class class wbr 5059  cmpt 5139  cfv 6350  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536   < clt 10669  cle 10670  cmin 10864   / cdiv 11291  cn 11632  0cn0 11891  +crp 12383  cfl 13154  !cfa 13627  abscabs 14587  𝑟 crli 14836  logclog 25132  𝑐ccxp 25133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ioc 12737  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-fac 13628  df-bc 13657  df-hash 13685  df-shft 14420  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-sum 15037  df-ef 15415  df-sin 15417  df-cos 15418  df-pi 15420  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18219  df-cntz 18441  df-cmn 18902  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-fbas 20536  df-fg 20537  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-lp 21738  df-perf 21739  df-cn 21829  df-cnp 21830  df-haus 21917  df-cmp 21989  df-tx 22164  df-hmeo 22357  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-xms 22924  df-ms 22925  df-tms 22926  df-cncf 23480  df-limc 24458  df-dv 24459  df-log 25134  df-cxp 25135
This theorem is referenced by:  vmadivsum  26052
  Copyright terms: Public domain W3C validator