MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modge0 Structured version   Visualization version   GIF version

Theorem modge0 13251
Description: The modulo operation is nonnegative. (Contributed by NM, 10-Nov-2008.)
Assertion
Ref Expression
modge0 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 0 ≤ (𝐴 mod 𝐵))

Proof of Theorem modge0
StepHypRef Expression
1 fldivle 13205 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵))
2 refldivcl 13197 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℝ)
3 simpl 486 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℝ)
4 rpregt0 12400 . . . . . 6 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
54adantl 485 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
6 lemuldiv2 11519 . . . . 5 (((⌊‘(𝐴 / 𝐵)) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐵 · (⌊‘(𝐴 / 𝐵))) ≤ 𝐴 ↔ (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵)))
72, 3, 5, 6syl3anc 1368 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐵 · (⌊‘(𝐴 / 𝐵))) ≤ 𝐴 ↔ (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵)))
81, 7mpbird 260 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (⌊‘(𝐴 / 𝐵))) ≤ 𝐴)
9 rpre 12394 . . . . . 6 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
109adantl 485 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ)
1110, 2remulcld 10669 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (⌊‘(𝐴 / 𝐵))) ∈ ℝ)
12 subge0 11151 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐵 · (⌊‘(𝐴 / 𝐵))) ∈ ℝ) → (0 ≤ (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))) ↔ (𝐵 · (⌊‘(𝐴 / 𝐵))) ≤ 𝐴))
1311, 12syldan 594 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (0 ≤ (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))) ↔ (𝐵 · (⌊‘(𝐴 / 𝐵))) ≤ 𝐴))
148, 13mpbird 260 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 0 ≤ (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
15 modval 13243 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
1614, 15breqtrrd 5080 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 0 ≤ (𝐴 mod 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2115   class class class wbr 5052  cfv 6343  (class class class)co 7149  cr 10534  0cc0 10535   · cmul 10540   < clt 10673  cle 10674  cmin 10868   / cdiv 11295  +crp 12386  cfl 13164   mod cmo 13241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-sup 8903  df-inf 8904  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-n0 11895  df-z 11979  df-uz 12241  df-rp 12387  df-fl 13166  df-mod 13242
This theorem is referenced by:  modelico  13253  zmodcl  13263  modid2  13270  modabs  13276  modltm1p1mod  13295  modsubdir  13312  modeqmodmin  13313  digit1  13603  bitsinv1lem  15788  4sqlem6  16277  sineq0  25119  efif1olem2  25138  irrapxlem1  39679  pellfund14  39755  jm2.19  39850  sineq0ALT  41563  fourierswlem  42798  fouriersw  42799  difmodm1lt  44862
  Copyright terms: Public domain W3C validator