MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmnn Structured version   Visualization version   GIF version

Theorem lmnn 25297
Description: A condition that implies convergence. (Contributed by NM, 8-Jun-2007.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmnn.2 𝐽 = (MetOpen‘𝐷)
lmnn.3 (𝜑𝐷 ∈ (∞Met‘𝑋))
lmnn.4 (𝜑𝑃𝑋)
lmnn.5 (𝜑𝐹:ℕ⟶𝑋)
lmnn.6 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷𝑃) < (1 / 𝑘))
Assertion
Ref Expression
lmnn (𝜑𝐹(⇝𝑡𝐽)𝑃)
Distinct variable groups:   𝐷,𝑘   𝑘,𝐹   𝑃,𝑘   𝜑,𝑘   𝑘,𝑋
Allowed substitution hint:   𝐽(𝑘)

Proof of Theorem lmnn
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmnn.4 . 2 (𝜑𝑃𝑋)
2 rpreccl 13061 . . . . . . . 8 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+)
32adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
43rpred 13077 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ)
53rpge0d 13081 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ (1 / 𝑥))
6 flge0nn0 13860 . . . . . 6 (((1 / 𝑥) ∈ ℝ ∧ 0 ≤ (1 / 𝑥)) → (⌊‘(1 / 𝑥)) ∈ ℕ0)
74, 5, 6syl2anc 584 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (⌊‘(1 / 𝑥)) ∈ ℕ0)
8 nn0p1nn 12565 . . . . 5 ((⌊‘(1 / 𝑥)) ∈ ℕ0 → ((⌊‘(1 / 𝑥)) + 1) ∈ ℕ)
97, 8syl 17 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘(1 / 𝑥)) + 1) ∈ ℕ)
10 lmnn.3 . . . . . . . 8 (𝜑𝐷 ∈ (∞Met‘𝑋))
1110ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝐷 ∈ (∞Met‘𝑋))
12 lmnn.5 . . . . . . . . 9 (𝜑𝐹:ℕ⟶𝑋)
1312ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝐹:ℕ⟶𝑋)
14 eluznn 12960 . . . . . . . . 9 ((((⌊‘(1 / 𝑥)) + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝑘 ∈ ℕ)
159, 14sylan 580 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝑘 ∈ ℕ)
1613, 15ffvelcdmd 7105 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (𝐹𝑘) ∈ 𝑋)
171ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝑃𝑋)
18 xmetcl 24341 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋𝑃𝑋) → ((𝐹𝑘)𝐷𝑃) ∈ ℝ*)
1911, 16, 17, 18syl3anc 1373 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → ((𝐹𝑘)𝐷𝑃) ∈ ℝ*)
2015nnrecred 12317 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (1 / 𝑘) ∈ ℝ)
2120rexrd 11311 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (1 / 𝑘) ∈ ℝ*)
22 rpxr 13044 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℝ*)
2322ad2antlr 727 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝑥 ∈ ℝ*)
24 lmnn.6 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷𝑃) < (1 / 𝑘))
2524adantlr 715 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷𝑃) < (1 / 𝑘))
2615, 25syldan 591 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → ((𝐹𝑘)𝐷𝑃) < (1 / 𝑘))
274adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (1 / 𝑥) ∈ ℝ)
289nnred 12281 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘(1 / 𝑥)) + 1) ∈ ℝ)
2928adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → ((⌊‘(1 / 𝑥)) + 1) ∈ ℝ)
3015nnred 12281 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝑘 ∈ ℝ)
31 flltp1 13840 . . . . . . . . 9 ((1 / 𝑥) ∈ ℝ → (1 / 𝑥) < ((⌊‘(1 / 𝑥)) + 1))
3227, 31syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (1 / 𝑥) < ((⌊‘(1 / 𝑥)) + 1))
33 eluzle 12891 . . . . . . . . 9 (𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1)) → ((⌊‘(1 / 𝑥)) + 1) ≤ 𝑘)
3433adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → ((⌊‘(1 / 𝑥)) + 1) ≤ 𝑘)
3527, 29, 30, 32, 34ltletrd 11421 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (1 / 𝑥) < 𝑘)
36 simplr 769 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝑥 ∈ ℝ+)
37 rpregt0 13049 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
38 nnrp 13046 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
3938rpregt0d 13083 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
40 ltrec1 12155 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → ((1 / 𝑥) < 𝑘 ↔ (1 / 𝑘) < 𝑥))
4137, 39, 40syl2an 596 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑘 ∈ ℕ) → ((1 / 𝑥) < 𝑘 ↔ (1 / 𝑘) < 𝑥))
4236, 15, 41syl2anc 584 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → ((1 / 𝑥) < 𝑘 ↔ (1 / 𝑘) < 𝑥))
4335, 42mpbid 232 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (1 / 𝑘) < 𝑥)
4419, 21, 23, 26, 43xrlttrd 13201 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → ((𝐹𝑘)𝐷𝑃) < 𝑥)
4544ralrimiva 3146 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∀𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))((𝐹𝑘)𝐷𝑃) < 𝑥)
46 fveq2 6906 . . . . . 6 (𝑗 = ((⌊‘(1 / 𝑥)) + 1) → (ℤ𝑗) = (ℤ‘((⌊‘(1 / 𝑥)) + 1)))
4746raleqdv 3326 . . . . 5 (𝑗 = ((⌊‘(1 / 𝑥)) + 1) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑃) < 𝑥 ↔ ∀𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))((𝐹𝑘)𝐷𝑃) < 𝑥))
4847rspcev 3622 . . . 4 ((((⌊‘(1 / 𝑥)) + 1) ∈ ℕ ∧ ∀𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))((𝐹𝑘)𝐷𝑃) < 𝑥) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑃) < 𝑥)
499, 45, 48syl2anc 584 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑃) < 𝑥)
5049ralrimiva 3146 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑃) < 𝑥)
51 lmnn.2 . . 3 𝐽 = (MetOpen‘𝐷)
52 nnuz 12921 . . 3 ℕ = (ℤ‘1)
53 1zzd 12648 . . 3 (𝜑 → 1 ∈ ℤ)
54 eqidd 2738 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐹𝑘))
5551, 10, 52, 53, 54, 12lmmbrf 25296 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑃) < 𝑥)))
561, 50, 55mpbir2and 713 1 (𝜑𝐹(⇝𝑡𝐽)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070   class class class wbr 5143  wf 6557  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   + caddc 11158  *cxr 11294   < clt 11295  cle 11296   / cdiv 11920  cn 12266  0cn0 12526  cuz 12878  +crp 13034  cfl 13830  ∞Metcxmet 21349  MetOpencmopn 21354  𝑡clm 23234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-fl 13832  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-bases 22953  df-lm 23237
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator