MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmnn Structured version   Visualization version   GIF version

Theorem lmnn 25316
Description: A condition that implies convergence. (Contributed by NM, 8-Jun-2007.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmnn.2 𝐽 = (MetOpen‘𝐷)
lmnn.3 (𝜑𝐷 ∈ (∞Met‘𝑋))
lmnn.4 (𝜑𝑃𝑋)
lmnn.5 (𝜑𝐹:ℕ⟶𝑋)
lmnn.6 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷𝑃) < (1 / 𝑘))
Assertion
Ref Expression
lmnn (𝜑𝐹(⇝𝑡𝐽)𝑃)
Distinct variable groups:   𝐷,𝑘   𝑘,𝐹   𝑃,𝑘   𝜑,𝑘   𝑘,𝑋
Allowed substitution hint:   𝐽(𝑘)

Proof of Theorem lmnn
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmnn.4 . 2 (𝜑𝑃𝑋)
2 rpreccl 13083 . . . . . . . 8 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+)
32adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
43rpred 13099 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ)
53rpge0d 13103 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ (1 / 𝑥))
6 flge0nn0 13871 . . . . . 6 (((1 / 𝑥) ∈ ℝ ∧ 0 ≤ (1 / 𝑥)) → (⌊‘(1 / 𝑥)) ∈ ℕ0)
74, 5, 6syl2anc 583 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (⌊‘(1 / 𝑥)) ∈ ℕ0)
8 nn0p1nn 12592 . . . . 5 ((⌊‘(1 / 𝑥)) ∈ ℕ0 → ((⌊‘(1 / 𝑥)) + 1) ∈ ℕ)
97, 8syl 17 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘(1 / 𝑥)) + 1) ∈ ℕ)
10 lmnn.3 . . . . . . . 8 (𝜑𝐷 ∈ (∞Met‘𝑋))
1110ad2antrr 725 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝐷 ∈ (∞Met‘𝑋))
12 lmnn.5 . . . . . . . . 9 (𝜑𝐹:ℕ⟶𝑋)
1312ad2antrr 725 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝐹:ℕ⟶𝑋)
14 eluznn 12983 . . . . . . . . 9 ((((⌊‘(1 / 𝑥)) + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝑘 ∈ ℕ)
159, 14sylan 579 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝑘 ∈ ℕ)
1613, 15ffvelcdmd 7119 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (𝐹𝑘) ∈ 𝑋)
171ad2antrr 725 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝑃𝑋)
18 xmetcl 24362 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋𝑃𝑋) → ((𝐹𝑘)𝐷𝑃) ∈ ℝ*)
1911, 16, 17, 18syl3anc 1371 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → ((𝐹𝑘)𝐷𝑃) ∈ ℝ*)
2015nnrecred 12344 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (1 / 𝑘) ∈ ℝ)
2120rexrd 11340 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (1 / 𝑘) ∈ ℝ*)
22 rpxr 13066 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℝ*)
2322ad2antlr 726 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝑥 ∈ ℝ*)
24 lmnn.6 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷𝑃) < (1 / 𝑘))
2524adantlr 714 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷𝑃) < (1 / 𝑘))
2615, 25syldan 590 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → ((𝐹𝑘)𝐷𝑃) < (1 / 𝑘))
274adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (1 / 𝑥) ∈ ℝ)
289nnred 12308 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘(1 / 𝑥)) + 1) ∈ ℝ)
2928adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → ((⌊‘(1 / 𝑥)) + 1) ∈ ℝ)
3015nnred 12308 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝑘 ∈ ℝ)
31 flltp1 13851 . . . . . . . . 9 ((1 / 𝑥) ∈ ℝ → (1 / 𝑥) < ((⌊‘(1 / 𝑥)) + 1))
3227, 31syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (1 / 𝑥) < ((⌊‘(1 / 𝑥)) + 1))
33 eluzle 12916 . . . . . . . . 9 (𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1)) → ((⌊‘(1 / 𝑥)) + 1) ≤ 𝑘)
3433adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → ((⌊‘(1 / 𝑥)) + 1) ≤ 𝑘)
3527, 29, 30, 32, 34ltletrd 11450 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (1 / 𝑥) < 𝑘)
36 simplr 768 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝑥 ∈ ℝ+)
37 rpregt0 13071 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
38 nnrp 13068 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
3938rpregt0d 13105 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
40 ltrec1 12182 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → ((1 / 𝑥) < 𝑘 ↔ (1 / 𝑘) < 𝑥))
4137, 39, 40syl2an 595 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑘 ∈ ℕ) → ((1 / 𝑥) < 𝑘 ↔ (1 / 𝑘) < 𝑥))
4236, 15, 41syl2anc 583 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → ((1 / 𝑥) < 𝑘 ↔ (1 / 𝑘) < 𝑥))
4335, 42mpbid 232 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (1 / 𝑘) < 𝑥)
4419, 21, 23, 26, 43xrlttrd 13221 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → ((𝐹𝑘)𝐷𝑃) < 𝑥)
4544ralrimiva 3152 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∀𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))((𝐹𝑘)𝐷𝑃) < 𝑥)
46 fveq2 6920 . . . . . 6 (𝑗 = ((⌊‘(1 / 𝑥)) + 1) → (ℤ𝑗) = (ℤ‘((⌊‘(1 / 𝑥)) + 1)))
4746raleqdv 3334 . . . . 5 (𝑗 = ((⌊‘(1 / 𝑥)) + 1) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑃) < 𝑥 ↔ ∀𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))((𝐹𝑘)𝐷𝑃) < 𝑥))
4847rspcev 3635 . . . 4 ((((⌊‘(1 / 𝑥)) + 1) ∈ ℕ ∧ ∀𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))((𝐹𝑘)𝐷𝑃) < 𝑥) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑃) < 𝑥)
499, 45, 48syl2anc 583 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑃) < 𝑥)
5049ralrimiva 3152 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑃) < 𝑥)
51 lmnn.2 . . 3 𝐽 = (MetOpen‘𝐷)
52 nnuz 12946 . . 3 ℕ = (ℤ‘1)
53 1zzd 12674 . . 3 (𝜑 → 1 ∈ ℤ)
54 eqidd 2741 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐹𝑘))
5551, 10, 52, 53, 54, 12lmmbrf 25315 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑃) < 𝑥)))
561, 50, 55mpbir2and 712 1 (𝜑𝐹(⇝𝑡𝐽)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  *cxr 11323   < clt 11324  cle 11325   / cdiv 11947  cn 12293  0cn0 12553  cuz 12903  +crp 13057  cfl 13841  ∞Metcxmet 21372  MetOpencmopn 21377  𝑡clm 23255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-fl 13843  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-bases 22974  df-lm 23258
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator