MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmnn Structured version   Visualization version   GIF version

Theorem lmnn 25163
Description: A condition that implies convergence. (Contributed by NM, 8-Jun-2007.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmnn.2 𝐽 = (MetOpen‘𝐷)
lmnn.3 (𝜑𝐷 ∈ (∞Met‘𝑋))
lmnn.4 (𝜑𝑃𝑋)
lmnn.5 (𝜑𝐹:ℕ⟶𝑋)
lmnn.6 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷𝑃) < (1 / 𝑘))
Assertion
Ref Expression
lmnn (𝜑𝐹(⇝𝑡𝐽)𝑃)
Distinct variable groups:   𝐷,𝑘   𝑘,𝐹   𝑃,𝑘   𝜑,𝑘   𝑘,𝑋
Allowed substitution hint:   𝐽(𝑘)

Proof of Theorem lmnn
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmnn.4 . 2 (𝜑𝑃𝑋)
2 rpreccl 12979 . . . . . . . 8 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+)
32adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
43rpred 12995 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ)
53rpge0d 12999 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ (1 / 𝑥))
6 flge0nn0 13782 . . . . . 6 (((1 / 𝑥) ∈ ℝ ∧ 0 ≤ (1 / 𝑥)) → (⌊‘(1 / 𝑥)) ∈ ℕ0)
74, 5, 6syl2anc 584 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (⌊‘(1 / 𝑥)) ∈ ℕ0)
8 nn0p1nn 12481 . . . . 5 ((⌊‘(1 / 𝑥)) ∈ ℕ0 → ((⌊‘(1 / 𝑥)) + 1) ∈ ℕ)
97, 8syl 17 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘(1 / 𝑥)) + 1) ∈ ℕ)
10 lmnn.3 . . . . . . . 8 (𝜑𝐷 ∈ (∞Met‘𝑋))
1110ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝐷 ∈ (∞Met‘𝑋))
12 lmnn.5 . . . . . . . . 9 (𝜑𝐹:ℕ⟶𝑋)
1312ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝐹:ℕ⟶𝑋)
14 eluznn 12877 . . . . . . . . 9 ((((⌊‘(1 / 𝑥)) + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝑘 ∈ ℕ)
159, 14sylan 580 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝑘 ∈ ℕ)
1613, 15ffvelcdmd 7057 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (𝐹𝑘) ∈ 𝑋)
171ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝑃𝑋)
18 xmetcl 24219 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋𝑃𝑋) → ((𝐹𝑘)𝐷𝑃) ∈ ℝ*)
1911, 16, 17, 18syl3anc 1373 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → ((𝐹𝑘)𝐷𝑃) ∈ ℝ*)
2015nnrecred 12237 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (1 / 𝑘) ∈ ℝ)
2120rexrd 11224 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (1 / 𝑘) ∈ ℝ*)
22 rpxr 12961 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℝ*)
2322ad2antlr 727 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝑥 ∈ ℝ*)
24 lmnn.6 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷𝑃) < (1 / 𝑘))
2524adantlr 715 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷𝑃) < (1 / 𝑘))
2615, 25syldan 591 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → ((𝐹𝑘)𝐷𝑃) < (1 / 𝑘))
274adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (1 / 𝑥) ∈ ℝ)
289nnred 12201 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘(1 / 𝑥)) + 1) ∈ ℝ)
2928adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → ((⌊‘(1 / 𝑥)) + 1) ∈ ℝ)
3015nnred 12201 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝑘 ∈ ℝ)
31 flltp1 13762 . . . . . . . . 9 ((1 / 𝑥) ∈ ℝ → (1 / 𝑥) < ((⌊‘(1 / 𝑥)) + 1))
3227, 31syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (1 / 𝑥) < ((⌊‘(1 / 𝑥)) + 1))
33 eluzle 12806 . . . . . . . . 9 (𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1)) → ((⌊‘(1 / 𝑥)) + 1) ≤ 𝑘)
3433adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → ((⌊‘(1 / 𝑥)) + 1) ≤ 𝑘)
3527, 29, 30, 32, 34ltletrd 11334 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (1 / 𝑥) < 𝑘)
36 simplr 768 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝑥 ∈ ℝ+)
37 rpregt0 12966 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
38 nnrp 12963 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
3938rpregt0d 13001 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
40 ltrec1 12070 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → ((1 / 𝑥) < 𝑘 ↔ (1 / 𝑘) < 𝑥))
4137, 39, 40syl2an 596 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑘 ∈ ℕ) → ((1 / 𝑥) < 𝑘 ↔ (1 / 𝑘) < 𝑥))
4236, 15, 41syl2anc 584 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → ((1 / 𝑥) < 𝑘 ↔ (1 / 𝑘) < 𝑥))
4335, 42mpbid 232 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (1 / 𝑘) < 𝑥)
4419, 21, 23, 26, 43xrlttrd 13119 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → ((𝐹𝑘)𝐷𝑃) < 𝑥)
4544ralrimiva 3125 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∀𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))((𝐹𝑘)𝐷𝑃) < 𝑥)
46 fveq2 6858 . . . . . 6 (𝑗 = ((⌊‘(1 / 𝑥)) + 1) → (ℤ𝑗) = (ℤ‘((⌊‘(1 / 𝑥)) + 1)))
4746raleqdv 3299 . . . . 5 (𝑗 = ((⌊‘(1 / 𝑥)) + 1) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑃) < 𝑥 ↔ ∀𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))((𝐹𝑘)𝐷𝑃) < 𝑥))
4847rspcev 3588 . . . 4 ((((⌊‘(1 / 𝑥)) + 1) ∈ ℕ ∧ ∀𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))((𝐹𝑘)𝐷𝑃) < 𝑥) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑃) < 𝑥)
499, 45, 48syl2anc 584 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑃) < 𝑥)
5049ralrimiva 3125 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑃) < 𝑥)
51 lmnn.2 . . 3 𝐽 = (MetOpen‘𝐷)
52 nnuz 12836 . . 3 ℕ = (ℤ‘1)
53 1zzd 12564 . . 3 (𝜑 → 1 ∈ ℤ)
54 eqidd 2730 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐹𝑘))
5551, 10, 52, 53, 54, 12lmmbrf 25162 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑃) < 𝑥)))
561, 50, 55mpbir2and 713 1 (𝜑𝐹(⇝𝑡𝐽)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5107  wf 6507  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   + caddc 11071  *cxr 11207   < clt 11208  cle 11209   / cdiv 11835  cn 12186  0cn0 12442  cuz 12793  +crp 12951  cfl 13752  ∞Metcxmet 21249  MetOpencmopn 21254  𝑡clm 23113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-fl 13754  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833  df-lm 23116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator