MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmnn Structured version   Visualization version   GIF version

Theorem lmnn 25215
Description: A condition that implies convergence. (Contributed by NM, 8-Jun-2007.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmnn.2 𝐽 = (MetOpen‘𝐷)
lmnn.3 (𝜑𝐷 ∈ (∞Met‘𝑋))
lmnn.4 (𝜑𝑃𝑋)
lmnn.5 (𝜑𝐹:ℕ⟶𝑋)
lmnn.6 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷𝑃) < (1 / 𝑘))
Assertion
Ref Expression
lmnn (𝜑𝐹(⇝𝑡𝐽)𝑃)
Distinct variable groups:   𝐷,𝑘   𝑘,𝐹   𝑃,𝑘   𝜑,𝑘   𝑘,𝑋
Allowed substitution hint:   𝐽(𝑘)

Proof of Theorem lmnn
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmnn.4 . 2 (𝜑𝑃𝑋)
2 rpreccl 13035 . . . . . . . 8 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+)
32adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
43rpred 13051 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ)
53rpge0d 13055 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ (1 / 𝑥))
6 flge0nn0 13837 . . . . . 6 (((1 / 𝑥) ∈ ℝ ∧ 0 ≤ (1 / 𝑥)) → (⌊‘(1 / 𝑥)) ∈ ℕ0)
74, 5, 6syl2anc 584 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (⌊‘(1 / 𝑥)) ∈ ℕ0)
8 nn0p1nn 12540 . . . . 5 ((⌊‘(1 / 𝑥)) ∈ ℕ0 → ((⌊‘(1 / 𝑥)) + 1) ∈ ℕ)
97, 8syl 17 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘(1 / 𝑥)) + 1) ∈ ℕ)
10 lmnn.3 . . . . . . . 8 (𝜑𝐷 ∈ (∞Met‘𝑋))
1110ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝐷 ∈ (∞Met‘𝑋))
12 lmnn.5 . . . . . . . . 9 (𝜑𝐹:ℕ⟶𝑋)
1312ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝐹:ℕ⟶𝑋)
14 eluznn 12934 . . . . . . . . 9 ((((⌊‘(1 / 𝑥)) + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝑘 ∈ ℕ)
159, 14sylan 580 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝑘 ∈ ℕ)
1613, 15ffvelcdmd 7075 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (𝐹𝑘) ∈ 𝑋)
171ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝑃𝑋)
18 xmetcl 24270 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋𝑃𝑋) → ((𝐹𝑘)𝐷𝑃) ∈ ℝ*)
1911, 16, 17, 18syl3anc 1373 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → ((𝐹𝑘)𝐷𝑃) ∈ ℝ*)
2015nnrecred 12291 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (1 / 𝑘) ∈ ℝ)
2120rexrd 11285 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (1 / 𝑘) ∈ ℝ*)
22 rpxr 13018 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℝ*)
2322ad2antlr 727 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝑥 ∈ ℝ*)
24 lmnn.6 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷𝑃) < (1 / 𝑘))
2524adantlr 715 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷𝑃) < (1 / 𝑘))
2615, 25syldan 591 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → ((𝐹𝑘)𝐷𝑃) < (1 / 𝑘))
274adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (1 / 𝑥) ∈ ℝ)
289nnred 12255 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘(1 / 𝑥)) + 1) ∈ ℝ)
2928adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → ((⌊‘(1 / 𝑥)) + 1) ∈ ℝ)
3015nnred 12255 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝑘 ∈ ℝ)
31 flltp1 13817 . . . . . . . . 9 ((1 / 𝑥) ∈ ℝ → (1 / 𝑥) < ((⌊‘(1 / 𝑥)) + 1))
3227, 31syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (1 / 𝑥) < ((⌊‘(1 / 𝑥)) + 1))
33 eluzle 12865 . . . . . . . . 9 (𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1)) → ((⌊‘(1 / 𝑥)) + 1) ≤ 𝑘)
3433adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → ((⌊‘(1 / 𝑥)) + 1) ≤ 𝑘)
3527, 29, 30, 32, 34ltletrd 11395 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (1 / 𝑥) < 𝑘)
36 simplr 768 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → 𝑥 ∈ ℝ+)
37 rpregt0 13023 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
38 nnrp 13020 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
3938rpregt0d 13057 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
40 ltrec1 12129 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → ((1 / 𝑥) < 𝑘 ↔ (1 / 𝑘) < 𝑥))
4137, 39, 40syl2an 596 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑘 ∈ ℕ) → ((1 / 𝑥) < 𝑘 ↔ (1 / 𝑘) < 𝑥))
4236, 15, 41syl2anc 584 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → ((1 / 𝑥) < 𝑘 ↔ (1 / 𝑘) < 𝑥))
4335, 42mpbid 232 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → (1 / 𝑘) < 𝑥)
4419, 21, 23, 26, 43xrlttrd 13175 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))) → ((𝐹𝑘)𝐷𝑃) < 𝑥)
4544ralrimiva 3132 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∀𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))((𝐹𝑘)𝐷𝑃) < 𝑥)
46 fveq2 6876 . . . . . 6 (𝑗 = ((⌊‘(1 / 𝑥)) + 1) → (ℤ𝑗) = (ℤ‘((⌊‘(1 / 𝑥)) + 1)))
4746raleqdv 3305 . . . . 5 (𝑗 = ((⌊‘(1 / 𝑥)) + 1) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑃) < 𝑥 ↔ ∀𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))((𝐹𝑘)𝐷𝑃) < 𝑥))
4847rspcev 3601 . . . 4 ((((⌊‘(1 / 𝑥)) + 1) ∈ ℕ ∧ ∀𝑘 ∈ (ℤ‘((⌊‘(1 / 𝑥)) + 1))((𝐹𝑘)𝐷𝑃) < 𝑥) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑃) < 𝑥)
499, 45, 48syl2anc 584 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑃) < 𝑥)
5049ralrimiva 3132 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑃) < 𝑥)
51 lmnn.2 . . 3 𝐽 = (MetOpen‘𝐷)
52 nnuz 12895 . . 3 ℕ = (ℤ‘1)
53 1zzd 12623 . . 3 (𝜑 → 1 ∈ ℤ)
54 eqidd 2736 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐹𝑘))
5551, 10, 52, 53, 54, 12lmmbrf 25214 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑃) < 𝑥)))
561, 50, 55mpbir2and 713 1 (𝜑𝐹(⇝𝑡𝐽)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060   class class class wbr 5119  wf 6527  cfv 6531  (class class class)co 7405  cr 11128  0cc0 11129  1c1 11130   + caddc 11132  *cxr 11268   < clt 11269  cle 11270   / cdiv 11894  cn 12240  0cn0 12501  cuz 12852  +crp 13008  cfl 13807  ∞Metcxmet 21300  MetOpencmopn 21305  𝑡clm 23164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-fl 13809  df-topgen 17457  df-psmet 21307  df-xmet 21308  df-bl 21310  df-mopn 21311  df-top 22832  df-topon 22849  df-bases 22884  df-lm 23167
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator