MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntibndlem3 Structured version   Visualization version   GIF version

Theorem pntibndlem3 26176
Description: Lemma for pntibnd 26177. Package up pntibndlem2 26175 in quantifiers. (Contributed by Mario Carneiro, 10-Apr-2016.)
Hypotheses
Ref Expression
pntibnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntibndlem1.1 (𝜑𝐴 ∈ ℝ+)
pntibndlem1.l 𝐿 = ((1 / 4) / (𝐴 + 3))
pntibndlem3.2 (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
pntibndlem3.3 (𝜑𝐵 ∈ ℝ+)
pntibndlem3.k 𝐾 = (exp‘(𝐵 / (𝐸 / 2)))
pntibndlem3.c 𝐶 = ((2 · 𝐵) + (log‘2))
pntibndlem3.4 (𝜑𝐸 ∈ (0(,)1))
pntibndlem3.6 (𝜑𝑍 ∈ ℝ+)
pntibndlem3.5 (𝜑 → ∀𝑚 ∈ (𝐾[,)+∞)∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)))
Assertion
Ref Expression
pntibndlem3 (𝜑 → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
Distinct variable groups:   𝑖,𝑎,𝑘,𝑚,𝑢,𝑣,𝑥,𝑦,𝑧,𝐸   𝑢,𝐿,𝑣,𝑥,𝑧   𝑢,𝐴,𝑣,𝑥   𝑢,𝐶,𝑣,𝑥,𝑦   𝑅,𝑖,𝑘,𝑚,𝑢,𝑣,𝑥,𝑦,𝑧   𝑚,𝐾   𝑘,𝑍,𝑚,𝑢,𝑣,𝑥,𝑦   𝜑,𝑘,𝑢,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑧,𝑣,𝑖,𝑚,𝑎)   𝐴(𝑦,𝑧,𝑖,𝑘,𝑚,𝑎)   𝐵(𝑥,𝑦,𝑧,𝑣,𝑢,𝑖,𝑘,𝑚,𝑎)   𝐶(𝑧,𝑖,𝑘,𝑚,𝑎)   𝑅(𝑎)   𝐾(𝑥,𝑦,𝑧,𝑣,𝑢,𝑖,𝑘,𝑎)   𝐿(𝑦,𝑖,𝑘,𝑚,𝑎)   𝑍(𝑧,𝑖,𝑎)

Proof of Theorem pntibndlem3
Dummy variables 𝑛 𝑡 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2re 11699 . . 3 2 ∈ ℝ
2 1le2 11834 . . 3 1 ≤ 2
3 chpdifbnd 26139 . . 3 ((2 ∈ ℝ ∧ 1 ≤ 2) → ∃𝑡 ∈ ℝ+𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))
41, 2, 3mp2an 691 . 2 𝑡 ∈ ℝ+𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣))))
5 simpr 488 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 𝑡 ∈ ℝ+)
6 ioossre 12786 . . . . . . . . . . . . 13 (0(,)1) ⊆ ℝ
7 pntibndlem3.4 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ (0(,)1))
86, 7sseldi 3913 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℝ)
9 eliooord 12784 . . . . . . . . . . . . . 14 (𝐸 ∈ (0(,)1) → (0 < 𝐸𝐸 < 1))
107, 9syl 17 . . . . . . . . . . . . 13 (𝜑 → (0 < 𝐸𝐸 < 1))
1110simpld 498 . . . . . . . . . . . 12 (𝜑 → 0 < 𝐸)
128, 11elrpd 12416 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ+)
1312adantr 484 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → 𝐸 ∈ ℝ+)
14 4nn 11708 . . . . . . . . . . 11 4 ∈ ℕ
15 nnrp 12388 . . . . . . . . . . 11 (4 ∈ ℕ → 4 ∈ ℝ+)
1614, 15ax-mp 5 . . . . . . . . . 10 4 ∈ ℝ+
17 rpdivcl 12402 . . . . . . . . . 10 ((𝐸 ∈ ℝ+ ∧ 4 ∈ ℝ+) → (𝐸 / 4) ∈ ℝ+)
1813, 16, 17sylancl 589 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → (𝐸 / 4) ∈ ℝ+)
195, 18rpdivcld 12436 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → (𝑡 / (𝐸 / 4)) ∈ ℝ+)
2019rpred 12419 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → (𝑡 / (𝐸 / 4)) ∈ ℝ)
2120rpefcld 15450 . . . . . 6 ((𝜑𝑡 ∈ ℝ+) → (exp‘(𝑡 / (𝐸 / 4))) ∈ ℝ+)
22 pntibndlem3.6 . . . . . . 7 (𝜑𝑍 ∈ ℝ+)
2322adantr 484 . . . . . 6 ((𝜑𝑡 ∈ ℝ+) → 𝑍 ∈ ℝ+)
2421, 23rpaddcld 12434 . . . . 5 ((𝜑𝑡 ∈ ℝ+) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) ∈ ℝ+)
2524adantrr 716 . . . 4 ((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) ∈ ℝ+)
26 breq2 5034 . . . . . . . . . . 11 (𝑖 = 𝑛 → (𝑣 < 𝑖𝑣 < 𝑛))
27 breq1 5033 . . . . . . . . . . 11 (𝑖 = 𝑛 → (𝑖 ≤ ((𝑘 / 2) · 𝑣) ↔ 𝑛 ≤ ((𝑘 / 2) · 𝑣)))
2826, 27anbi12d 633 . . . . . . . . . 10 (𝑖 = 𝑛 → ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ↔ (𝑣 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑣))))
29 fveq2 6645 . . . . . . . . . . . . 13 (𝑖 = 𝑛 → (𝑅𝑖) = (𝑅𝑛))
30 id 22 . . . . . . . . . . . . 13 (𝑖 = 𝑛𝑖 = 𝑛)
3129, 30oveq12d 7153 . . . . . . . . . . . 12 (𝑖 = 𝑛 → ((𝑅𝑖) / 𝑖) = ((𝑅𝑛) / 𝑛))
3231fveq2d 6649 . . . . . . . . . . 11 (𝑖 = 𝑛 → (abs‘((𝑅𝑖) / 𝑖)) = (abs‘((𝑅𝑛) / 𝑛)))
3332breq1d 5040 . . . . . . . . . 10 (𝑖 = 𝑛 → ((abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2) ↔ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)))
3428, 33anbi12d 633 . . . . . . . . 9 (𝑖 = 𝑛 → (((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ((𝑣 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))
3534cbvrexvw 3397 . . . . . . . 8 (∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)))
36 breq1 5033 . . . . . . . . . . 11 (𝑣 = 𝑦 → (𝑣 < 𝑛𝑦 < 𝑛))
37 oveq2 7143 . . . . . . . . . . . 12 (𝑣 = 𝑦 → ((𝑘 / 2) · 𝑣) = ((𝑘 / 2) · 𝑦))
3837breq2d 5042 . . . . . . . . . . 11 (𝑣 = 𝑦 → (𝑛 ≤ ((𝑘 / 2) · 𝑣) ↔ 𝑛 ≤ ((𝑘 / 2) · 𝑦)))
3936, 38anbi12d 633 . . . . . . . . . 10 (𝑣 = 𝑦 → ((𝑣 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑣)) ↔ (𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦))))
4039anbi1d 632 . . . . . . . . 9 (𝑣 = 𝑦 → (((𝑣 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)) ↔ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))
4140rexbidv 3256 . . . . . . . 8 (𝑣 = 𝑦 → (∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)) ↔ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))
4235, 41syl5bb 286 . . . . . . 7 (𝑣 = 𝑦 → (∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))
43 oveq1 7142 . . . . . . . . . . . . 13 (𝑚 = (𝑘 / 2) → (𝑚 · 𝑣) = ((𝑘 / 2) · 𝑣))
4443breq2d 5042 . . . . . . . . . . . 12 (𝑚 = (𝑘 / 2) → (𝑖 ≤ (𝑚 · 𝑣) ↔ 𝑖 ≤ ((𝑘 / 2) · 𝑣)))
4544anbi2d 631 . . . . . . . . . . 11 (𝑚 = (𝑘 / 2) → ((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ↔ (𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣))))
4645anbi1d 632 . . . . . . . . . 10 (𝑚 = (𝑘 / 2) → (((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2))))
4746rexbidv 3256 . . . . . . . . 9 (𝑚 = (𝑘 / 2) → (∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2))))
4847ralbidv 3162 . . . . . . . 8 (𝑚 = (𝑘 / 2) → (∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2))))
49 pntibndlem3.5 . . . . . . . . 9 (𝜑 → ∀𝑚 ∈ (𝐾[,)+∞)∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)))
5049ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ∀𝑚 ∈ (𝐾[,)+∞)∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)))
51 pntibndlem3.c . . . . . . . . . . . . . . . . 17 𝐶 = ((2 · 𝐵) + (log‘2))
52 pntibndlem3.3 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 ∈ ℝ+)
5352adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ ℝ+) → 𝐵 ∈ ℝ+)
5453rpred 12419 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ ℝ+) → 𝐵 ∈ ℝ)
55 remulcl 10611 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐵) ∈ ℝ)
561, 54, 55sylancr 590 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ ℝ+) → (2 · 𝐵) ∈ ℝ)
57 2rp 12382 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ+
58 relogcl 25167 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
5957, 58ax-mp 5 . . . . . . . . . . . . . . . . . 18 (log‘2) ∈ ℝ
60 readdcl 10609 . . . . . . . . . . . . . . . . . 18 (((2 · 𝐵) ∈ ℝ ∧ (log‘2) ∈ ℝ) → ((2 · 𝐵) + (log‘2)) ∈ ℝ)
6156, 59, 60sylancl 589 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ ℝ+) → ((2 · 𝐵) + (log‘2)) ∈ ℝ)
6251, 61eqeltrid 2894 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ ℝ+) → 𝐶 ∈ ℝ)
6362, 13rerpdivcld 12450 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ ℝ+) → (𝐶 / 𝐸) ∈ ℝ)
6463reefcld 15433 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ ℝ+) → (exp‘(𝐶 / 𝐸)) ∈ ℝ)
65 elicopnf 12823 . . . . . . . . . . . . . 14 ((exp‘(𝐶 / 𝐸)) ∈ ℝ → (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ↔ (𝑘 ∈ ℝ ∧ (exp‘(𝐶 / 𝐸)) ≤ 𝑘)))
6664, 65syl 17 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ ℝ+) → (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ↔ (𝑘 ∈ ℝ ∧ (exp‘(𝐶 / 𝐸)) ≤ 𝑘)))
6766simprbda 502 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → 𝑘 ∈ ℝ)
6867rehalfcld 11872 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (𝑘 / 2) ∈ ℝ)
69 pntibndlem3.k . . . . . . . . . . . 12 𝐾 = (exp‘(𝐵 / (𝐸 / 2)))
7013rphalfcld 12431 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ ℝ+) → (𝐸 / 2) ∈ ℝ+)
7154, 70rerpdivcld 12450 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ ℝ+) → (𝐵 / (𝐸 / 2)) ∈ ℝ)
7271reefcld 15433 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ ℝ+) → (exp‘(𝐵 / (𝐸 / 2))) ∈ ℝ)
73 remulcl 10611 . . . . . . . . . . . . . . . 16 (((exp‘(𝐵 / (𝐸 / 2))) ∈ ℝ ∧ 2 ∈ ℝ) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ∈ ℝ)
7472, 1, 73sylancl 589 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ ℝ+) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ∈ ℝ)
7574adantr 484 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ∈ ℝ)
7664adantr 484 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (exp‘(𝐶 / 𝐸)) ∈ ℝ)
7771recnd 10658 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ ℝ+) → (𝐵 / (𝐸 / 2)) ∈ ℂ)
7859recni 10644 . . . . . . . . . . . . . . . . . 18 (log‘2) ∈ ℂ
79 efadd 15439 . . . . . . . . . . . . . . . . . 18 (((𝐵 / (𝐸 / 2)) ∈ ℂ ∧ (log‘2) ∈ ℂ) → (exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) = ((exp‘(𝐵 / (𝐸 / 2))) · (exp‘(log‘2))))
8077, 78, 79sylancl 589 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ ℝ+) → (exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) = ((exp‘(𝐵 / (𝐸 / 2))) · (exp‘(log‘2))))
81 reeflog 25172 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℝ+ → (exp‘(log‘2)) = 2)
8257, 81ax-mp 5 . . . . . . . . . . . . . . . . . 18 (exp‘(log‘2)) = 2
8382oveq2i 7146 . . . . . . . . . . . . . . . . 17 ((exp‘(𝐵 / (𝐸 / 2))) · (exp‘(log‘2))) = ((exp‘(𝐵 / (𝐸 / 2))) · 2)
8480, 83eqtrdi 2849 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ ℝ+) → (exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) = ((exp‘(𝐵 / (𝐸 / 2))) · 2))
8559a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ ℝ+) → (log‘2) ∈ ℝ)
86 rerpdivcl 12407 . . . . . . . . . . . . . . . . . . . 20 (((log‘2) ∈ ℝ ∧ 𝐸 ∈ ℝ+) → ((log‘2) / 𝐸) ∈ ℝ)
8759, 13, 86sylancr 590 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ ℝ+) → ((log‘2) / 𝐸) ∈ ℝ)
8878div1i 11357 . . . . . . . . . . . . . . . . . . . 20 ((log‘2) / 1) = (log‘2)
8910simprd 499 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐸 < 1)
9089adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → 𝐸 < 1)
918adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ ℝ+) → 𝐸 ∈ ℝ)
92 1re 10630 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ
93 ltle 10718 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐸 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐸 < 1 → 𝐸 ≤ 1))
9491, 92, 93sylancl 589 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → (𝐸 < 1 → 𝐸 ≤ 1))
9590, 94mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → 𝐸 ≤ 1)
9613rpregt0d 12425 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → (𝐸 ∈ ℝ ∧ 0 < 𝐸))
97 1rp 12381 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ+
98 rpregt0 12391 . . . . . . . . . . . . . . . . . . . . . . 23 (1 ∈ ℝ+ → (1 ∈ ℝ ∧ 0 < 1))
9997, 98mp1i 13 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → (1 ∈ ℝ ∧ 0 < 1))
100 1lt2 11796 . . . . . . . . . . . . . . . . . . . . . . . 24 1 < 2
101 rplogcl 25195 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2 ∈ ℝ ∧ 1 < 2) → (log‘2) ∈ ℝ+)
1021, 100, 101mp2an 691 . . . . . . . . . . . . . . . . . . . . . . 23 (log‘2) ∈ ℝ+
103 rpregt0 12391 . . . . . . . . . . . . . . . . . . . . . . 23 ((log‘2) ∈ ℝ+ → ((log‘2) ∈ ℝ ∧ 0 < (log‘2)))
104102, 103mp1i 13 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → ((log‘2) ∈ ℝ ∧ 0 < (log‘2)))
105 lediv2 11519 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐸 ∈ ℝ ∧ 0 < 𝐸) ∧ (1 ∈ ℝ ∧ 0 < 1) ∧ ((log‘2) ∈ ℝ ∧ 0 < (log‘2))) → (𝐸 ≤ 1 ↔ ((log‘2) / 1) ≤ ((log‘2) / 𝐸)))
10696, 99, 104, 105syl3anc 1368 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → (𝐸 ≤ 1 ↔ ((log‘2) / 1) ≤ ((log‘2) / 𝐸)))
10795, 106mpbid 235 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ ℝ+) → ((log‘2) / 1) ≤ ((log‘2) / 𝐸))
10888, 107eqbrtrrid 5066 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ ℝ+) → (log‘2) ≤ ((log‘2) / 𝐸))
10985, 87, 71, 108leadd2dd 11244 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ ℝ+) → ((𝐵 / (𝐸 / 2)) + (log‘2)) ≤ ((𝐵 / (𝐸 / 2)) + ((log‘2) / 𝐸)))
11051oveq1i 7145 . . . . . . . . . . . . . . . . . . . 20 (𝐶 / 𝐸) = (((2 · 𝐵) + (log‘2)) / 𝐸)
11156recnd 10658 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → (2 · 𝐵) ∈ ℂ)
11278a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → (log‘2) ∈ ℂ)
113 rpcnne0 12395 . . . . . . . . . . . . . . . . . . . . . 22 (𝐸 ∈ ℝ+ → (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0))
11413, 113syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0))
115 divdir 11312 . . . . . . . . . . . . . . . . . . . . 21 (((2 · 𝐵) ∈ ℂ ∧ (log‘2) ∈ ℂ ∧ (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0)) → (((2 · 𝐵) + (log‘2)) / 𝐸) = (((2 · 𝐵) / 𝐸) + ((log‘2) / 𝐸)))
116111, 112, 114, 115syl3anc 1368 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ ℝ+) → (((2 · 𝐵) + (log‘2)) / 𝐸) = (((2 · 𝐵) / 𝐸) + ((log‘2) / 𝐸)))
117110, 116syl5eq 2845 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ ℝ+) → (𝐶 / 𝐸) = (((2 · 𝐵) / 𝐸) + ((log‘2) / 𝐸)))
1181recni 10644 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℂ
11954recnd 10658 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ ℝ+) → 𝐵 ∈ ℂ)
120 mulcom 10612 . . . . . . . . . . . . . . . . . . . . . . 23 ((2 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐵) = (𝐵 · 2))
121118, 119, 120sylancr 590 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → (2 · 𝐵) = (𝐵 · 2))
122121oveq1d 7150 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → ((2 · 𝐵) / 𝐸) = ((𝐵 · 2) / 𝐸))
123 rpcnne0 12395 . . . . . . . . . . . . . . . . . . . . . . 23 (2 ∈ ℝ+ → (2 ∈ ℂ ∧ 2 ≠ 0))
12457, 123mp1i 13 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → (2 ∈ ℂ ∧ 2 ≠ 0))
125 divdiv2 11341 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵 ∈ ℂ ∧ (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (𝐵 / (𝐸 / 2)) = ((𝐵 · 2) / 𝐸))
126119, 114, 124, 125syl3anc 1368 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → (𝐵 / (𝐸 / 2)) = ((𝐵 · 2) / 𝐸))
127122, 126eqtr4d 2836 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ ℝ+) → ((2 · 𝐵) / 𝐸) = (𝐵 / (𝐸 / 2)))
128127oveq1d 7150 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ ℝ+) → (((2 · 𝐵) / 𝐸) + ((log‘2) / 𝐸)) = ((𝐵 / (𝐸 / 2)) + ((log‘2) / 𝐸)))
129117, 128eqtrd 2833 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ ℝ+) → (𝐶 / 𝐸) = ((𝐵 / (𝐸 / 2)) + ((log‘2) / 𝐸)))
130109, 129breqtrrd 5058 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ ℝ+) → ((𝐵 / (𝐸 / 2)) + (log‘2)) ≤ (𝐶 / 𝐸))
131 readdcl 10609 . . . . . . . . . . . . . . . . . . 19 (((𝐵 / (𝐸 / 2)) ∈ ℝ ∧ (log‘2) ∈ ℝ) → ((𝐵 / (𝐸 / 2)) + (log‘2)) ∈ ℝ)
13271, 59, 131sylancl 589 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ ℝ+) → ((𝐵 / (𝐸 / 2)) + (log‘2)) ∈ ℝ)
133 efle 15463 . . . . . . . . . . . . . . . . . 18 ((((𝐵 / (𝐸 / 2)) + (log‘2)) ∈ ℝ ∧ (𝐶 / 𝐸) ∈ ℝ) → (((𝐵 / (𝐸 / 2)) + (log‘2)) ≤ (𝐶 / 𝐸) ↔ (exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) ≤ (exp‘(𝐶 / 𝐸))))
134132, 63, 133syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ ℝ+) → (((𝐵 / (𝐸 / 2)) + (log‘2)) ≤ (𝐶 / 𝐸) ↔ (exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) ≤ (exp‘(𝐶 / 𝐸))))
135130, 134mpbid 235 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ ℝ+) → (exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) ≤ (exp‘(𝐶 / 𝐸)))
13684, 135eqbrtrrd 5054 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ ℝ+) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ≤ (exp‘(𝐶 / 𝐸)))
137136adantr 484 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ≤ (exp‘(𝐶 / 𝐸)))
13866simplbda 503 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (exp‘(𝐶 / 𝐸)) ≤ 𝑘)
13975, 76, 67, 137, 138letrd 10786 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ≤ 𝑘)
14072adantr 484 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (exp‘(𝐵 / (𝐸 / 2))) ∈ ℝ)
141 rpregt0 12391 . . . . . . . . . . . . . . 15 (2 ∈ ℝ+ → (2 ∈ ℝ ∧ 0 < 2))
14257, 141mp1i 13 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (2 ∈ ℝ ∧ 0 < 2))
143 lemuldiv 11509 . . . . . . . . . . . . . 14 (((exp‘(𝐵 / (𝐸 / 2))) ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((exp‘(𝐵 / (𝐸 / 2))) · 2) ≤ 𝑘 ↔ (exp‘(𝐵 / (𝐸 / 2))) ≤ (𝑘 / 2)))
144140, 67, 142, 143syl3anc 1368 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (((exp‘(𝐵 / (𝐸 / 2))) · 2) ≤ 𝑘 ↔ (exp‘(𝐵 / (𝐸 / 2))) ≤ (𝑘 / 2)))
145139, 144mpbid 235 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (exp‘(𝐵 / (𝐸 / 2))) ≤ (𝑘 / 2))
14669, 145eqbrtrid 5065 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → 𝐾 ≤ (𝑘 / 2))
14769, 140eqeltrid 2894 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → 𝐾 ∈ ℝ)
148 elicopnf 12823 . . . . . . . . . . . 12 (𝐾 ∈ ℝ → ((𝑘 / 2) ∈ (𝐾[,)+∞) ↔ ((𝑘 / 2) ∈ ℝ ∧ 𝐾 ≤ (𝑘 / 2))))
149147, 148syl 17 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → ((𝑘 / 2) ∈ (𝐾[,)+∞) ↔ ((𝑘 / 2) ∈ ℝ ∧ 𝐾 ≤ (𝑘 / 2))))
15068, 146, 149mpbir2and 712 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (𝑘 / 2) ∈ (𝐾[,)+∞))
151150adantrr 716 . . . . . . . . 9 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → (𝑘 / 2) ∈ (𝐾[,)+∞))
152151adantlrr 720 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → (𝑘 / 2) ∈ (𝐾[,)+∞))
15348, 50, 152rspcdva 3573 . . . . . . 7 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)))
154 elioore 12756 . . . . . . . . . 10 (𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞) → 𝑦 ∈ ℝ)
155154ad2antll 728 . . . . . . . . 9 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑦 ∈ ℝ)
15623rpred 12419 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ+) → 𝑍 ∈ ℝ)
157156adantr 484 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑍 ∈ ℝ)
15820reefcld 15433 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ℝ+) → (exp‘(𝑡 / (𝐸 / 4))) ∈ ℝ)
159158, 156readdcld 10659 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ+) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) ∈ ℝ)
160159adantr 484 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) ∈ ℝ)
161156, 21ltaddrp2d 12453 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ+) → 𝑍 < ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍))
162161adantr 484 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑍 < ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍))
163 eliooord 12784 . . . . . . . . . . . 12 (𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞) → (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) < 𝑦𝑦 < +∞))
164163simpld 498 . . . . . . . . . . 11 (𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) < 𝑦)
165164ad2antll 728 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) < 𝑦)
166157, 160, 155, 162, 165lttrd 10790 . . . . . . . . 9 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑍 < 𝑦)
167157rexrd 10680 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑍 ∈ ℝ*)
168 elioopnf 12821 . . . . . . . . . 10 (𝑍 ∈ ℝ* → (𝑦 ∈ (𝑍(,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑍 < 𝑦)))
169167, 168syl 17 . . . . . . . . 9 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → (𝑦 ∈ (𝑍(,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑍 < 𝑦)))
170155, 166, 169mpbir2and 712 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑦 ∈ (𝑍(,)+∞))
171170adantlrr 720 . . . . . . 7 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑦 ∈ (𝑍(,)+∞))
17242, 153, 171rspcdva 3573 . . . . . 6 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)))
173 pntibnd.r . . . . . . . 8 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
174 pntibndlem1.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
175174ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝐴 ∈ ℝ+)
176 pntibndlem1.l . . . . . . . 8 𝐿 = ((1 / 4) / (𝐴 + 3))
177 pntibndlem3.2 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
178 fveq2 6645 . . . . . . . . . . . . . 14 (𝑥 = 𝑣 → (𝑅𝑥) = (𝑅𝑣))
179 id 22 . . . . . . . . . . . . . 14 (𝑥 = 𝑣𝑥 = 𝑣)
180178, 179oveq12d 7153 . . . . . . . . . . . . 13 (𝑥 = 𝑣 → ((𝑅𝑥) / 𝑥) = ((𝑅𝑣) / 𝑣))
181180fveq2d 6649 . . . . . . . . . . . 12 (𝑥 = 𝑣 → (abs‘((𝑅𝑥) / 𝑥)) = (abs‘((𝑅𝑣) / 𝑣)))
182181breq1d 5040 . . . . . . . . . . 11 (𝑥 = 𝑣 → ((abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴 ↔ (abs‘((𝑅𝑣) / 𝑣)) ≤ 𝐴))
183182cbvralvw 3396 . . . . . . . . . 10 (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴 ↔ ∀𝑣 ∈ ℝ+ (abs‘((𝑅𝑣) / 𝑣)) ≤ 𝐴)
184177, 183sylib 221 . . . . . . . . 9 (𝜑 → ∀𝑣 ∈ ℝ+ (abs‘((𝑅𝑣) / 𝑣)) ≤ 𝐴)
185184ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → ∀𝑣 ∈ ℝ+ (abs‘((𝑅𝑣) / 𝑣)) ≤ 𝐴)
18652ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝐵 ∈ ℝ+)
1877ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝐸 ∈ (0(,)1))
18822ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝑍 ∈ ℝ+)
189 simprrl 780 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝑛 ∈ ℕ)
190 simplrl 776 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝑡 ∈ ℝ+)
191 simplrr 777 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))
192 eqid 2798 . . . . . . . 8 ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) = ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)
193 simprll 778 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞))
194 simprlr 779 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))
195 simprrr 781 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)))
196173, 175, 176, 185, 186, 69, 51, 187, 188, 189, 190, 191, 192, 193, 194, 195pntibndlem2 26175 . . . . . . 7 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → ∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
197196anassrs 471 . . . . . 6 ((((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)))) → ∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
198172, 197rexlimddv 3250 . . . . 5 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
199198ralrimivva 3156 . . . 4 ((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) → ∀𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
200 oveq1 7142 . . . . . . 7 (𝑥 = ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) → (𝑥(,)+∞) = (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))
201200raleqdv 3364 . . . . . 6 (𝑥 = ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) → (∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∀𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
202201ralbidv 3162 . . . . 5 (𝑥 = ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) → (∀𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∀𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
203202rspcev 3571 . . . 4 ((((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) ∈ ℝ+ ∧ ∀𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
20425, 199, 203syl2anc 587 . . 3 ((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
205204rexlimdvaa 3244 . 2 (𝜑 → (∃𝑡 ∈ ℝ+𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
2064, 205mpi 20 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107   class class class wbr 5030  cmpt 5110  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  +∞cpnf 10661  *cxr 10663   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  3c3 11681  4c4 11682  +crp 12377  (,)cioo 12726  [,)cico 12728  [,]cicc 12729  abscabs 14585  expce 15407  logclog 25146  ψcchp 25678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-o1 14839  df-lo1 14840  df-sum 15035  df-ef 15413  df-e 15414  df-sin 15415  df-cos 15416  df-tan 15417  df-pi 15418  df-dvds 15600  df-gcd 15834  df-prm 16006  df-pc 16164  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-ulm 24972  df-log 25148  df-cxp 25149  df-atan 25453  df-em 25578  df-cht 25682  df-vma 25683  df-chp 25684  df-ppi 25685  df-mu 25686
This theorem is referenced by:  pntibnd  26177
  Copyright terms: Public domain W3C validator