MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntibndlem3 Structured version   Visualization version   GIF version

Theorem pntibndlem3 26738
Description: Lemma for pntibnd 26739. Package up pntibndlem2 26737 in quantifiers. (Contributed by Mario Carneiro, 10-Apr-2016.)
Hypotheses
Ref Expression
pntibnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntibndlem1.1 (𝜑𝐴 ∈ ℝ+)
pntibndlem1.l 𝐿 = ((1 / 4) / (𝐴 + 3))
pntibndlem3.2 (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
pntibndlem3.3 (𝜑𝐵 ∈ ℝ+)
pntibndlem3.k 𝐾 = (exp‘(𝐵 / (𝐸 / 2)))
pntibndlem3.c 𝐶 = ((2 · 𝐵) + (log‘2))
pntibndlem3.4 (𝜑𝐸 ∈ (0(,)1))
pntibndlem3.6 (𝜑𝑍 ∈ ℝ+)
pntibndlem3.5 (𝜑 → ∀𝑚 ∈ (𝐾[,)+∞)∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)))
Assertion
Ref Expression
pntibndlem3 (𝜑 → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
Distinct variable groups:   𝑖,𝑎,𝑘,𝑚,𝑢,𝑣,𝑥,𝑦,𝑧,𝐸   𝑢,𝐿,𝑣,𝑥,𝑧   𝑢,𝐴,𝑣,𝑥   𝑢,𝐶,𝑣,𝑥,𝑦   𝑅,𝑖,𝑘,𝑚,𝑢,𝑣,𝑥,𝑦,𝑧   𝑚,𝐾   𝑘,𝑍,𝑚,𝑢,𝑣,𝑥,𝑦   𝜑,𝑘,𝑢,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑧,𝑣,𝑖,𝑚,𝑎)   𝐴(𝑦,𝑧,𝑖,𝑘,𝑚,𝑎)   𝐵(𝑥,𝑦,𝑧,𝑣,𝑢,𝑖,𝑘,𝑚,𝑎)   𝐶(𝑧,𝑖,𝑘,𝑚,𝑎)   𝑅(𝑎)   𝐾(𝑥,𝑦,𝑧,𝑣,𝑢,𝑖,𝑘,𝑎)   𝐿(𝑦,𝑖,𝑘,𝑚,𝑎)   𝑍(𝑧,𝑖,𝑎)

Proof of Theorem pntibndlem3
Dummy variables 𝑛 𝑡 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2re 12047 . . 3 2 ∈ ℝ
2 1le2 12182 . . 3 1 ≤ 2
3 chpdifbnd 26701 . . 3 ((2 ∈ ℝ ∧ 1 ≤ 2) → ∃𝑡 ∈ ℝ+𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))
41, 2, 3mp2an 689 . 2 𝑡 ∈ ℝ+𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣))))
5 simpr 485 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 𝑡 ∈ ℝ+)
6 ioossre 13139 . . . . . . . . . . . . 13 (0(,)1) ⊆ ℝ
7 pntibndlem3.4 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ (0(,)1))
86, 7sselid 3924 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℝ)
9 eliooord 13137 . . . . . . . . . . . . . 14 (𝐸 ∈ (0(,)1) → (0 < 𝐸𝐸 < 1))
107, 9syl 17 . . . . . . . . . . . . 13 (𝜑 → (0 < 𝐸𝐸 < 1))
1110simpld 495 . . . . . . . . . . . 12 (𝜑 → 0 < 𝐸)
128, 11elrpd 12768 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ+)
1312adantr 481 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → 𝐸 ∈ ℝ+)
14 4nn 12056 . . . . . . . . . . 11 4 ∈ ℕ
15 nnrp 12740 . . . . . . . . . . 11 (4 ∈ ℕ → 4 ∈ ℝ+)
1614, 15ax-mp 5 . . . . . . . . . 10 4 ∈ ℝ+
17 rpdivcl 12754 . . . . . . . . . 10 ((𝐸 ∈ ℝ+ ∧ 4 ∈ ℝ+) → (𝐸 / 4) ∈ ℝ+)
1813, 16, 17sylancl 586 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → (𝐸 / 4) ∈ ℝ+)
195, 18rpdivcld 12788 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → (𝑡 / (𝐸 / 4)) ∈ ℝ+)
2019rpred 12771 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → (𝑡 / (𝐸 / 4)) ∈ ℝ)
2120rpefcld 15812 . . . . . 6 ((𝜑𝑡 ∈ ℝ+) → (exp‘(𝑡 / (𝐸 / 4))) ∈ ℝ+)
22 pntibndlem3.6 . . . . . . 7 (𝜑𝑍 ∈ ℝ+)
2322adantr 481 . . . . . 6 ((𝜑𝑡 ∈ ℝ+) → 𝑍 ∈ ℝ+)
2421, 23rpaddcld 12786 . . . . 5 ((𝜑𝑡 ∈ ℝ+) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) ∈ ℝ+)
2524adantrr 714 . . . 4 ((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) ∈ ℝ+)
26 breq2 5083 . . . . . . . . . . 11 (𝑖 = 𝑛 → (𝑣 < 𝑖𝑣 < 𝑛))
27 breq1 5082 . . . . . . . . . . 11 (𝑖 = 𝑛 → (𝑖 ≤ ((𝑘 / 2) · 𝑣) ↔ 𝑛 ≤ ((𝑘 / 2) · 𝑣)))
2826, 27anbi12d 631 . . . . . . . . . 10 (𝑖 = 𝑛 → ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ↔ (𝑣 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑣))))
29 fveq2 6771 . . . . . . . . . . . . 13 (𝑖 = 𝑛 → (𝑅𝑖) = (𝑅𝑛))
30 id 22 . . . . . . . . . . . . 13 (𝑖 = 𝑛𝑖 = 𝑛)
3129, 30oveq12d 7289 . . . . . . . . . . . 12 (𝑖 = 𝑛 → ((𝑅𝑖) / 𝑖) = ((𝑅𝑛) / 𝑛))
3231fveq2d 6775 . . . . . . . . . . 11 (𝑖 = 𝑛 → (abs‘((𝑅𝑖) / 𝑖)) = (abs‘((𝑅𝑛) / 𝑛)))
3332breq1d 5089 . . . . . . . . . 10 (𝑖 = 𝑛 → ((abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2) ↔ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)))
3428, 33anbi12d 631 . . . . . . . . 9 (𝑖 = 𝑛 → (((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ((𝑣 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))
3534cbvrexvw 3382 . . . . . . . 8 (∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)))
36 breq1 5082 . . . . . . . . . . 11 (𝑣 = 𝑦 → (𝑣 < 𝑛𝑦 < 𝑛))
37 oveq2 7279 . . . . . . . . . . . 12 (𝑣 = 𝑦 → ((𝑘 / 2) · 𝑣) = ((𝑘 / 2) · 𝑦))
3837breq2d 5091 . . . . . . . . . . 11 (𝑣 = 𝑦 → (𝑛 ≤ ((𝑘 / 2) · 𝑣) ↔ 𝑛 ≤ ((𝑘 / 2) · 𝑦)))
3936, 38anbi12d 631 . . . . . . . . . 10 (𝑣 = 𝑦 → ((𝑣 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑣)) ↔ (𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦))))
4039anbi1d 630 . . . . . . . . 9 (𝑣 = 𝑦 → (((𝑣 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)) ↔ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))
4140rexbidv 3228 . . . . . . . 8 (𝑣 = 𝑦 → (∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)) ↔ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))
4235, 41syl5bb 283 . . . . . . 7 (𝑣 = 𝑦 → (∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))
43 oveq1 7278 . . . . . . . . . . . . 13 (𝑚 = (𝑘 / 2) → (𝑚 · 𝑣) = ((𝑘 / 2) · 𝑣))
4443breq2d 5091 . . . . . . . . . . . 12 (𝑚 = (𝑘 / 2) → (𝑖 ≤ (𝑚 · 𝑣) ↔ 𝑖 ≤ ((𝑘 / 2) · 𝑣)))
4544anbi2d 629 . . . . . . . . . . 11 (𝑚 = (𝑘 / 2) → ((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ↔ (𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣))))
4645anbi1d 630 . . . . . . . . . 10 (𝑚 = (𝑘 / 2) → (((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2))))
4746rexbidv 3228 . . . . . . . . 9 (𝑚 = (𝑘 / 2) → (∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2))))
4847ralbidv 3123 . . . . . . . 8 (𝑚 = (𝑘 / 2) → (∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2))))
49 pntibndlem3.5 . . . . . . . . 9 (𝜑 → ∀𝑚 ∈ (𝐾[,)+∞)∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)))
5049ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ∀𝑚 ∈ (𝐾[,)+∞)∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)))
51 pntibndlem3.c . . . . . . . . . . . . . . . . 17 𝐶 = ((2 · 𝐵) + (log‘2))
52 pntibndlem3.3 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 ∈ ℝ+)
5352adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ ℝ+) → 𝐵 ∈ ℝ+)
5453rpred 12771 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ ℝ+) → 𝐵 ∈ ℝ)
55 remulcl 10957 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐵) ∈ ℝ)
561, 54, 55sylancr 587 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ ℝ+) → (2 · 𝐵) ∈ ℝ)
57 2rp 12734 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ+
58 relogcl 25729 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
5957, 58ax-mp 5 . . . . . . . . . . . . . . . . . 18 (log‘2) ∈ ℝ
60 readdcl 10955 . . . . . . . . . . . . . . . . . 18 (((2 · 𝐵) ∈ ℝ ∧ (log‘2) ∈ ℝ) → ((2 · 𝐵) + (log‘2)) ∈ ℝ)
6156, 59, 60sylancl 586 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ ℝ+) → ((2 · 𝐵) + (log‘2)) ∈ ℝ)
6251, 61eqeltrid 2845 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ ℝ+) → 𝐶 ∈ ℝ)
6362, 13rerpdivcld 12802 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ ℝ+) → (𝐶 / 𝐸) ∈ ℝ)
6463reefcld 15795 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ ℝ+) → (exp‘(𝐶 / 𝐸)) ∈ ℝ)
65 elicopnf 13176 . . . . . . . . . . . . . 14 ((exp‘(𝐶 / 𝐸)) ∈ ℝ → (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ↔ (𝑘 ∈ ℝ ∧ (exp‘(𝐶 / 𝐸)) ≤ 𝑘)))
6664, 65syl 17 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ ℝ+) → (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ↔ (𝑘 ∈ ℝ ∧ (exp‘(𝐶 / 𝐸)) ≤ 𝑘)))
6766simprbda 499 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → 𝑘 ∈ ℝ)
6867rehalfcld 12220 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (𝑘 / 2) ∈ ℝ)
69 pntibndlem3.k . . . . . . . . . . . 12 𝐾 = (exp‘(𝐵 / (𝐸 / 2)))
7013rphalfcld 12783 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ ℝ+) → (𝐸 / 2) ∈ ℝ+)
7154, 70rerpdivcld 12802 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ ℝ+) → (𝐵 / (𝐸 / 2)) ∈ ℝ)
7271reefcld 15795 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ ℝ+) → (exp‘(𝐵 / (𝐸 / 2))) ∈ ℝ)
73 remulcl 10957 . . . . . . . . . . . . . . . 16 (((exp‘(𝐵 / (𝐸 / 2))) ∈ ℝ ∧ 2 ∈ ℝ) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ∈ ℝ)
7472, 1, 73sylancl 586 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ ℝ+) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ∈ ℝ)
7574adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ∈ ℝ)
7664adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (exp‘(𝐶 / 𝐸)) ∈ ℝ)
7771recnd 11004 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ ℝ+) → (𝐵 / (𝐸 / 2)) ∈ ℂ)
7859recni 10990 . . . . . . . . . . . . . . . . . 18 (log‘2) ∈ ℂ
79 efadd 15801 . . . . . . . . . . . . . . . . . 18 (((𝐵 / (𝐸 / 2)) ∈ ℂ ∧ (log‘2) ∈ ℂ) → (exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) = ((exp‘(𝐵 / (𝐸 / 2))) · (exp‘(log‘2))))
8077, 78, 79sylancl 586 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ ℝ+) → (exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) = ((exp‘(𝐵 / (𝐸 / 2))) · (exp‘(log‘2))))
81 reeflog 25734 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℝ+ → (exp‘(log‘2)) = 2)
8257, 81ax-mp 5 . . . . . . . . . . . . . . . . . 18 (exp‘(log‘2)) = 2
8382oveq2i 7282 . . . . . . . . . . . . . . . . 17 ((exp‘(𝐵 / (𝐸 / 2))) · (exp‘(log‘2))) = ((exp‘(𝐵 / (𝐸 / 2))) · 2)
8480, 83eqtrdi 2796 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ ℝ+) → (exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) = ((exp‘(𝐵 / (𝐸 / 2))) · 2))
8559a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ ℝ+) → (log‘2) ∈ ℝ)
86 rerpdivcl 12759 . . . . . . . . . . . . . . . . . . . 20 (((log‘2) ∈ ℝ ∧ 𝐸 ∈ ℝ+) → ((log‘2) / 𝐸) ∈ ℝ)
8759, 13, 86sylancr 587 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ ℝ+) → ((log‘2) / 𝐸) ∈ ℝ)
8878div1i 11703 . . . . . . . . . . . . . . . . . . . 20 ((log‘2) / 1) = (log‘2)
8910simprd 496 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐸 < 1)
9089adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → 𝐸 < 1)
918adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ ℝ+) → 𝐸 ∈ ℝ)
92 1re 10976 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ
93 ltle 11064 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐸 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐸 < 1 → 𝐸 ≤ 1))
9491, 92, 93sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → (𝐸 < 1 → 𝐸 ≤ 1))
9590, 94mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → 𝐸 ≤ 1)
9613rpregt0d 12777 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → (𝐸 ∈ ℝ ∧ 0 < 𝐸))
97 1rp 12733 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ+
98 rpregt0 12743 . . . . . . . . . . . . . . . . . . . . . . 23 (1 ∈ ℝ+ → (1 ∈ ℝ ∧ 0 < 1))
9997, 98mp1i 13 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → (1 ∈ ℝ ∧ 0 < 1))
100 1lt2 12144 . . . . . . . . . . . . . . . . . . . . . . . 24 1 < 2
101 rplogcl 25757 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2 ∈ ℝ ∧ 1 < 2) → (log‘2) ∈ ℝ+)
1021, 100, 101mp2an 689 . . . . . . . . . . . . . . . . . . . . . . 23 (log‘2) ∈ ℝ+
103 rpregt0 12743 . . . . . . . . . . . . . . . . . . . . . . 23 ((log‘2) ∈ ℝ+ → ((log‘2) ∈ ℝ ∧ 0 < (log‘2)))
104102, 103mp1i 13 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → ((log‘2) ∈ ℝ ∧ 0 < (log‘2)))
105 lediv2 11865 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐸 ∈ ℝ ∧ 0 < 𝐸) ∧ (1 ∈ ℝ ∧ 0 < 1) ∧ ((log‘2) ∈ ℝ ∧ 0 < (log‘2))) → (𝐸 ≤ 1 ↔ ((log‘2) / 1) ≤ ((log‘2) / 𝐸)))
10696, 99, 104, 105syl3anc 1370 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → (𝐸 ≤ 1 ↔ ((log‘2) / 1) ≤ ((log‘2) / 𝐸)))
10795, 106mpbid 231 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ ℝ+) → ((log‘2) / 1) ≤ ((log‘2) / 𝐸))
10888, 107eqbrtrrid 5115 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ ℝ+) → (log‘2) ≤ ((log‘2) / 𝐸))
10985, 87, 71, 108leadd2dd 11590 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ ℝ+) → ((𝐵 / (𝐸 / 2)) + (log‘2)) ≤ ((𝐵 / (𝐸 / 2)) + ((log‘2) / 𝐸)))
11051oveq1i 7281 . . . . . . . . . . . . . . . . . . . 20 (𝐶 / 𝐸) = (((2 · 𝐵) + (log‘2)) / 𝐸)
11156recnd 11004 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → (2 · 𝐵) ∈ ℂ)
11278a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → (log‘2) ∈ ℂ)
113 rpcnne0 12747 . . . . . . . . . . . . . . . . . . . . . 22 (𝐸 ∈ ℝ+ → (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0))
11413, 113syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0))
115 divdir 11658 . . . . . . . . . . . . . . . . . . . . 21 (((2 · 𝐵) ∈ ℂ ∧ (log‘2) ∈ ℂ ∧ (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0)) → (((2 · 𝐵) + (log‘2)) / 𝐸) = (((2 · 𝐵) / 𝐸) + ((log‘2) / 𝐸)))
116111, 112, 114, 115syl3anc 1370 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ ℝ+) → (((2 · 𝐵) + (log‘2)) / 𝐸) = (((2 · 𝐵) / 𝐸) + ((log‘2) / 𝐸)))
117110, 116eqtrid 2792 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ ℝ+) → (𝐶 / 𝐸) = (((2 · 𝐵) / 𝐸) + ((log‘2) / 𝐸)))
1181recni 10990 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℂ
11954recnd 11004 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ ℝ+) → 𝐵 ∈ ℂ)
120 mulcom 10958 . . . . . . . . . . . . . . . . . . . . . . 23 ((2 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐵) = (𝐵 · 2))
121118, 119, 120sylancr 587 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → (2 · 𝐵) = (𝐵 · 2))
122121oveq1d 7286 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → ((2 · 𝐵) / 𝐸) = ((𝐵 · 2) / 𝐸))
123 rpcnne0 12747 . . . . . . . . . . . . . . . . . . . . . . 23 (2 ∈ ℝ+ → (2 ∈ ℂ ∧ 2 ≠ 0))
12457, 123mp1i 13 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → (2 ∈ ℂ ∧ 2 ≠ 0))
125 divdiv2 11687 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵 ∈ ℂ ∧ (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (𝐵 / (𝐸 / 2)) = ((𝐵 · 2) / 𝐸))
126119, 114, 124, 125syl3anc 1370 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → (𝐵 / (𝐸 / 2)) = ((𝐵 · 2) / 𝐸))
127122, 126eqtr4d 2783 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ ℝ+) → ((2 · 𝐵) / 𝐸) = (𝐵 / (𝐸 / 2)))
128127oveq1d 7286 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ ℝ+) → (((2 · 𝐵) / 𝐸) + ((log‘2) / 𝐸)) = ((𝐵 / (𝐸 / 2)) + ((log‘2) / 𝐸)))
129117, 128eqtrd 2780 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ ℝ+) → (𝐶 / 𝐸) = ((𝐵 / (𝐸 / 2)) + ((log‘2) / 𝐸)))
130109, 129breqtrrd 5107 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ ℝ+) → ((𝐵 / (𝐸 / 2)) + (log‘2)) ≤ (𝐶 / 𝐸))
131 readdcl 10955 . . . . . . . . . . . . . . . . . . 19 (((𝐵 / (𝐸 / 2)) ∈ ℝ ∧ (log‘2) ∈ ℝ) → ((𝐵 / (𝐸 / 2)) + (log‘2)) ∈ ℝ)
13271, 59, 131sylancl 586 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ ℝ+) → ((𝐵 / (𝐸 / 2)) + (log‘2)) ∈ ℝ)
133 efle 15825 . . . . . . . . . . . . . . . . . 18 ((((𝐵 / (𝐸 / 2)) + (log‘2)) ∈ ℝ ∧ (𝐶 / 𝐸) ∈ ℝ) → (((𝐵 / (𝐸 / 2)) + (log‘2)) ≤ (𝐶 / 𝐸) ↔ (exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) ≤ (exp‘(𝐶 / 𝐸))))
134132, 63, 133syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ ℝ+) → (((𝐵 / (𝐸 / 2)) + (log‘2)) ≤ (𝐶 / 𝐸) ↔ (exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) ≤ (exp‘(𝐶 / 𝐸))))
135130, 134mpbid 231 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ ℝ+) → (exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) ≤ (exp‘(𝐶 / 𝐸)))
13684, 135eqbrtrrd 5103 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ ℝ+) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ≤ (exp‘(𝐶 / 𝐸)))
137136adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ≤ (exp‘(𝐶 / 𝐸)))
13866simplbda 500 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (exp‘(𝐶 / 𝐸)) ≤ 𝑘)
13975, 76, 67, 137, 138letrd 11132 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ≤ 𝑘)
14072adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (exp‘(𝐵 / (𝐸 / 2))) ∈ ℝ)
141 rpregt0 12743 . . . . . . . . . . . . . . 15 (2 ∈ ℝ+ → (2 ∈ ℝ ∧ 0 < 2))
14257, 141mp1i 13 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (2 ∈ ℝ ∧ 0 < 2))
143 lemuldiv 11855 . . . . . . . . . . . . . 14 (((exp‘(𝐵 / (𝐸 / 2))) ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((exp‘(𝐵 / (𝐸 / 2))) · 2) ≤ 𝑘 ↔ (exp‘(𝐵 / (𝐸 / 2))) ≤ (𝑘 / 2)))
144140, 67, 142, 143syl3anc 1370 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (((exp‘(𝐵 / (𝐸 / 2))) · 2) ≤ 𝑘 ↔ (exp‘(𝐵 / (𝐸 / 2))) ≤ (𝑘 / 2)))
145139, 144mpbid 231 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (exp‘(𝐵 / (𝐸 / 2))) ≤ (𝑘 / 2))
14669, 145eqbrtrid 5114 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → 𝐾 ≤ (𝑘 / 2))
14769, 140eqeltrid 2845 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → 𝐾 ∈ ℝ)
148 elicopnf 13176 . . . . . . . . . . . 12 (𝐾 ∈ ℝ → ((𝑘 / 2) ∈ (𝐾[,)+∞) ↔ ((𝑘 / 2) ∈ ℝ ∧ 𝐾 ≤ (𝑘 / 2))))
149147, 148syl 17 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → ((𝑘 / 2) ∈ (𝐾[,)+∞) ↔ ((𝑘 / 2) ∈ ℝ ∧ 𝐾 ≤ (𝑘 / 2))))
15068, 146, 149mpbir2and 710 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (𝑘 / 2) ∈ (𝐾[,)+∞))
151150adantrr 714 . . . . . . . . 9 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → (𝑘 / 2) ∈ (𝐾[,)+∞))
152151adantlrr 718 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → (𝑘 / 2) ∈ (𝐾[,)+∞))
15348, 50, 152rspcdva 3563 . . . . . . 7 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)))
154 elioore 13108 . . . . . . . . . 10 (𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞) → 𝑦 ∈ ℝ)
155154ad2antll 726 . . . . . . . . 9 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑦 ∈ ℝ)
15623rpred 12771 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ+) → 𝑍 ∈ ℝ)
157156adantr 481 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑍 ∈ ℝ)
15820reefcld 15795 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ℝ+) → (exp‘(𝑡 / (𝐸 / 4))) ∈ ℝ)
159158, 156readdcld 11005 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ+) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) ∈ ℝ)
160159adantr 481 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) ∈ ℝ)
161156, 21ltaddrp2d 12805 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ+) → 𝑍 < ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍))
162161adantr 481 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑍 < ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍))
163 eliooord 13137 . . . . . . . . . . . 12 (𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞) → (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) < 𝑦𝑦 < +∞))
164163simpld 495 . . . . . . . . . . 11 (𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) < 𝑦)
165164ad2antll 726 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) < 𝑦)
166157, 160, 155, 162, 165lttrd 11136 . . . . . . . . 9 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑍 < 𝑦)
167157rexrd 11026 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑍 ∈ ℝ*)
168 elioopnf 13174 . . . . . . . . . 10 (𝑍 ∈ ℝ* → (𝑦 ∈ (𝑍(,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑍 < 𝑦)))
169167, 168syl 17 . . . . . . . . 9 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → (𝑦 ∈ (𝑍(,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑍 < 𝑦)))
170155, 166, 169mpbir2and 710 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑦 ∈ (𝑍(,)+∞))
171170adantlrr 718 . . . . . . 7 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑦 ∈ (𝑍(,)+∞))
17242, 153, 171rspcdva 3563 . . . . . 6 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)))
173 pntibnd.r . . . . . . . 8 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
174 pntibndlem1.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
175174ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝐴 ∈ ℝ+)
176 pntibndlem1.l . . . . . . . 8 𝐿 = ((1 / 4) / (𝐴 + 3))
177 pntibndlem3.2 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
178 fveq2 6771 . . . . . . . . . . . . . 14 (𝑥 = 𝑣 → (𝑅𝑥) = (𝑅𝑣))
179 id 22 . . . . . . . . . . . . . 14 (𝑥 = 𝑣𝑥 = 𝑣)
180178, 179oveq12d 7289 . . . . . . . . . . . . 13 (𝑥 = 𝑣 → ((𝑅𝑥) / 𝑥) = ((𝑅𝑣) / 𝑣))
181180fveq2d 6775 . . . . . . . . . . . 12 (𝑥 = 𝑣 → (abs‘((𝑅𝑥) / 𝑥)) = (abs‘((𝑅𝑣) / 𝑣)))
182181breq1d 5089 . . . . . . . . . . 11 (𝑥 = 𝑣 → ((abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴 ↔ (abs‘((𝑅𝑣) / 𝑣)) ≤ 𝐴))
183182cbvralvw 3381 . . . . . . . . . 10 (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴 ↔ ∀𝑣 ∈ ℝ+ (abs‘((𝑅𝑣) / 𝑣)) ≤ 𝐴)
184177, 183sylib 217 . . . . . . . . 9 (𝜑 → ∀𝑣 ∈ ℝ+ (abs‘((𝑅𝑣) / 𝑣)) ≤ 𝐴)
185184ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → ∀𝑣 ∈ ℝ+ (abs‘((𝑅𝑣) / 𝑣)) ≤ 𝐴)
18652ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝐵 ∈ ℝ+)
1877ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝐸 ∈ (0(,)1))
18822ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝑍 ∈ ℝ+)
189 simprrl 778 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝑛 ∈ ℕ)
190 simplrl 774 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝑡 ∈ ℝ+)
191 simplrr 775 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))
192 eqid 2740 . . . . . . . 8 ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) = ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)
193 simprll 776 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞))
194 simprlr 777 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))
195 simprrr 779 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)))
196173, 175, 176, 185, 186, 69, 51, 187, 188, 189, 190, 191, 192, 193, 194, 195pntibndlem2 26737 . . . . . . 7 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → ∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
197196anassrs 468 . . . . . 6 ((((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)))) → ∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
198172, 197rexlimddv 3222 . . . . 5 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
199198ralrimivva 3117 . . . 4 ((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) → ∀𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
200 oveq1 7278 . . . . . . 7 (𝑥 = ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) → (𝑥(,)+∞) = (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))
201200raleqdv 3347 . . . . . 6 (𝑥 = ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) → (∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∀𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
202201ralbidv 3123 . . . . 5 (𝑥 = ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) → (∀𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∀𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
203202rspcev 3561 . . . 4 ((((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) ∈ ℝ+ ∧ ∀𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
20425, 199, 203syl2anc 584 . . 3 ((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
205204rexlimdvaa 3216 . 2 (𝜑 → (∃𝑡 ∈ ℝ+𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
2064, 205mpi 20 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wne 2945  wral 3066  wrex 3067   class class class wbr 5079  cmpt 5162  cfv 6432  (class class class)co 7271  cc 10870  cr 10871  0cc0 10872  1c1 10873   + caddc 10875   · cmul 10877  +∞cpnf 11007  *cxr 11009   < clt 11010  cle 11011  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  3c3 12029  4c4 12030  +crp 12729  (,)cioo 13078  [,)cico 13080  [,]cicc 13081  abscabs 14943  expce 15769  logclog 25708  ψcchp 26240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950  ax-addf 10951  ax-mulf 10952
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-disj 5045  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-om 7707  df-1st 7824  df-2nd 7825  df-supp 7969  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-oadd 8292  df-er 8481  df-map 8600  df-pm 8601  df-ixp 8669  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fsupp 9107  df-fi 9148  df-sup 9179  df-inf 9180  df-oi 9247  df-dju 9660  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12437  df-uz 12582  df-q 12688  df-rp 12730  df-xneg 12847  df-xadd 12848  df-xmul 12849  df-ioo 13082  df-ioc 13083  df-ico 13084  df-icc 13085  df-fz 13239  df-fzo 13382  df-fl 13510  df-mod 13588  df-seq 13720  df-exp 13781  df-fac 13986  df-bc 14015  df-hash 14043  df-shft 14776  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-limsup 15178  df-clim 15195  df-rlim 15196  df-o1 15197  df-lo1 15198  df-sum 15396  df-ef 15775  df-e 15776  df-sin 15777  df-cos 15778  df-tan 15779  df-pi 15780  df-dvds 15962  df-gcd 16200  df-prm 16375  df-pc 16536  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-sca 16976  df-vsca 16977  df-ip 16978  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-hom 16984  df-cco 16985  df-rest 17131  df-topn 17132  df-0g 17150  df-gsum 17151  df-topgen 17152  df-pt 17153  df-prds 17156  df-xrs 17211  df-qtop 17216  df-imas 17217  df-xps 17219  df-mre 17293  df-mrc 17294  df-acs 17296  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-submnd 18429  df-mulg 18699  df-cntz 18921  df-cmn 19386  df-psmet 20587  df-xmet 20588  df-met 20589  df-bl 20590  df-mopn 20591  df-fbas 20592  df-fg 20593  df-cnfld 20596  df-top 22041  df-topon 22058  df-topsp 22080  df-bases 22094  df-cld 22168  df-ntr 22169  df-cls 22170  df-nei 22247  df-lp 22285  df-perf 22286  df-cn 22376  df-cnp 22377  df-haus 22464  df-cmp 22536  df-tx 22711  df-hmeo 22904  df-fil 22995  df-fm 23087  df-flim 23088  df-flf 23089  df-xms 23471  df-ms 23472  df-tms 23473  df-cncf 24039  df-limc 25028  df-dv 25029  df-ulm 25534  df-log 25710  df-cxp 25711  df-atan 26015  df-em 26140  df-cht 26244  df-vma 26245  df-chp 26246  df-ppi 26247  df-mu 26248
This theorem is referenced by:  pntibnd  26739
  Copyright terms: Public domain W3C validator