MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntibndlem3 Structured version   Visualization version   GIF version

Theorem pntibndlem3 27328
Description: Lemma for pntibnd 27329. Package up pntibndlem2 27327 in quantifiers. (Contributed by Mario Carneiro, 10-Apr-2016.)
Hypotheses
Ref Expression
pntibnd.r ๐‘… = (๐‘Ž โˆˆ โ„+ โ†ฆ ((ฯˆโ€˜๐‘Ž) โˆ’ ๐‘Ž))
pntibndlem1.1 (๐œ‘ โ†’ ๐ด โˆˆ โ„+)
pntibndlem1.l ๐ฟ = ((1 / 4) / (๐ด + 3))
pntibndlem3.2 (๐œ‘ โ†’ โˆ€๐‘ฅ โˆˆ โ„+ (absโ€˜((๐‘…โ€˜๐‘ฅ) / ๐‘ฅ)) โ‰ค ๐ด)
pntibndlem3.3 (๐œ‘ โ†’ ๐ต โˆˆ โ„+)
pntibndlem3.k ๐พ = (expโ€˜(๐ต / (๐ธ / 2)))
pntibndlem3.c ๐ถ = ((2 ยท ๐ต) + (logโ€˜2))
pntibndlem3.4 (๐œ‘ โ†’ ๐ธ โˆˆ (0(,)1))
pntibndlem3.6 (๐œ‘ โ†’ ๐‘ โˆˆ โ„+)
pntibndlem3.5 (๐œ‘ โ†’ โˆ€๐‘š โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฃ โˆˆ (๐‘(,)+โˆž)โˆƒ๐‘– โˆˆ โ„• ((๐‘ฃ < ๐‘– โˆง ๐‘– โ‰ค (๐‘š ยท ๐‘ฃ)) โˆง (absโ€˜((๐‘…โ€˜๐‘–) / ๐‘–)) โ‰ค (๐ธ / 2)))
Assertion
Ref Expression
pntibndlem3 (๐œ‘ โ†’ โˆƒ๐‘ฅ โˆˆ โ„+ โˆ€๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ฅ(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ))
Distinct variable groups:   ๐‘–,๐‘Ž,๐‘˜,๐‘š,๐‘ข,๐‘ฃ,๐‘ฅ,๐‘ฆ,๐‘ง,๐ธ   ๐‘ข,๐ฟ,๐‘ฃ,๐‘ฅ,๐‘ง   ๐‘ข,๐ด,๐‘ฃ,๐‘ฅ   ๐‘ข,๐ถ,๐‘ฃ,๐‘ฅ,๐‘ฆ   ๐‘…,๐‘–,๐‘˜,๐‘š,๐‘ข,๐‘ฃ,๐‘ฅ,๐‘ฆ,๐‘ง   ๐‘š,๐พ   ๐‘˜,๐‘,๐‘š,๐‘ข,๐‘ฃ,๐‘ฅ,๐‘ฆ   ๐œ‘,๐‘˜,๐‘ข,๐‘ฆ
Allowed substitution hints:   ๐œ‘(๐‘ฅ,๐‘ง,๐‘ฃ,๐‘–,๐‘š,๐‘Ž)   ๐ด(๐‘ฆ,๐‘ง,๐‘–,๐‘˜,๐‘š,๐‘Ž)   ๐ต(๐‘ฅ,๐‘ฆ,๐‘ง,๐‘ฃ,๐‘ข,๐‘–,๐‘˜,๐‘š,๐‘Ž)   ๐ถ(๐‘ง,๐‘–,๐‘˜,๐‘š,๐‘Ž)   ๐‘…(๐‘Ž)   ๐พ(๐‘ฅ,๐‘ฆ,๐‘ง,๐‘ฃ,๐‘ข,๐‘–,๐‘˜,๐‘Ž)   ๐ฟ(๐‘ฆ,๐‘–,๐‘˜,๐‘š,๐‘Ž)   ๐‘(๐‘ง,๐‘–,๐‘Ž)

Proof of Theorem pntibndlem3
Dummy variables ๐‘› ๐‘ก ๐‘ค are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2re 12291 . . 3 2 โˆˆ โ„
2 1le2 12426 . . 3 1 โ‰ค 2
3 chpdifbnd 27291 . . 3 ((2 โˆˆ โ„ โˆง 1 โ‰ค 2) โ†’ โˆƒ๐‘ก โˆˆ โ„+ โˆ€๐‘ฃ โˆˆ (1(,)+โˆž)โˆ€๐‘ค โˆˆ (๐‘ฃ[,](2 ยท ๐‘ฃ))((ฯˆโ€˜๐‘ค) โˆ’ (ฯˆโ€˜๐‘ฃ)) โ‰ค ((2 ยท (๐‘ค โˆ’ ๐‘ฃ)) + (๐‘ก ยท (๐‘ฃ / (logโ€˜๐‘ฃ)))))
41, 2, 3mp2an 689 . 2 โˆƒ๐‘ก โˆˆ โ„+ โˆ€๐‘ฃ โˆˆ (1(,)+โˆž)โˆ€๐‘ค โˆˆ (๐‘ฃ[,](2 ยท ๐‘ฃ))((ฯˆโ€˜๐‘ค) โˆ’ (ฯˆโ€˜๐‘ฃ)) โ‰ค ((2 ยท (๐‘ค โˆ’ ๐‘ฃ)) + (๐‘ก ยท (๐‘ฃ / (logโ€˜๐‘ฃ))))
5 simpr 484 . . . . . . . . 9 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ ๐‘ก โˆˆ โ„+)
6 ioossre 13390 . . . . . . . . . . . . 13 (0(,)1) โŠ† โ„
7 pntibndlem3.4 . . . . . . . . . . . . 13 (๐œ‘ โ†’ ๐ธ โˆˆ (0(,)1))
86, 7sselid 3981 . . . . . . . . . . . 12 (๐œ‘ โ†’ ๐ธ โˆˆ โ„)
9 eliooord 13388 . . . . . . . . . . . . . 14 (๐ธ โˆˆ (0(,)1) โ†’ (0 < ๐ธ โˆง ๐ธ < 1))
107, 9syl 17 . . . . . . . . . . . . 13 (๐œ‘ โ†’ (0 < ๐ธ โˆง ๐ธ < 1))
1110simpld 494 . . . . . . . . . . . 12 (๐œ‘ โ†’ 0 < ๐ธ)
128, 11elrpd 13018 . . . . . . . . . . 11 (๐œ‘ โ†’ ๐ธ โˆˆ โ„+)
1312adantr 480 . . . . . . . . . 10 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ ๐ธ โˆˆ โ„+)
14 4nn 12300 . . . . . . . . . . 11 4 โˆˆ โ„•
15 nnrp 12990 . . . . . . . . . . 11 (4 โˆˆ โ„• โ†’ 4 โˆˆ โ„+)
1614, 15ax-mp 5 . . . . . . . . . 10 4 โˆˆ โ„+
17 rpdivcl 13004 . . . . . . . . . 10 ((๐ธ โˆˆ โ„+ โˆง 4 โˆˆ โ„+) โ†’ (๐ธ / 4) โˆˆ โ„+)
1813, 16, 17sylancl 585 . . . . . . . . 9 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ (๐ธ / 4) โˆˆ โ„+)
195, 18rpdivcld 13038 . . . . . . . 8 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ (๐‘ก / (๐ธ / 4)) โˆˆ โ„+)
2019rpred 13021 . . . . . . 7 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ (๐‘ก / (๐ธ / 4)) โˆˆ โ„)
2120rpefcld 16053 . . . . . 6 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ (expโ€˜(๐‘ก / (๐ธ / 4))) โˆˆ โ„+)
22 pntibndlem3.6 . . . . . . 7 (๐œ‘ โ†’ ๐‘ โˆˆ โ„+)
2322adantr 480 . . . . . 6 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ ๐‘ โˆˆ โ„+)
2421, 23rpaddcld 13036 . . . . 5 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ ((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘) โˆˆ โ„+)
2524adantrr 714 . . . 4 ((๐œ‘ โˆง (๐‘ก โˆˆ โ„+ โˆง โˆ€๐‘ฃ โˆˆ (1(,)+โˆž)โˆ€๐‘ค โˆˆ (๐‘ฃ[,](2 ยท ๐‘ฃ))((ฯˆโ€˜๐‘ค) โˆ’ (ฯˆโ€˜๐‘ฃ)) โ‰ค ((2 ยท (๐‘ค โˆ’ ๐‘ฃ)) + (๐‘ก ยท (๐‘ฃ / (logโ€˜๐‘ฃ)))))) โ†’ ((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘) โˆˆ โ„+)
26 breq2 5153 . . . . . . . . . . 11 (๐‘– = ๐‘› โ†’ (๐‘ฃ < ๐‘– โ†” ๐‘ฃ < ๐‘›))
27 breq1 5152 . . . . . . . . . . 11 (๐‘– = ๐‘› โ†’ (๐‘– โ‰ค ((๐‘˜ / 2) ยท ๐‘ฃ) โ†” ๐‘› โ‰ค ((๐‘˜ / 2) ยท ๐‘ฃ)))
2826, 27anbi12d 630 . . . . . . . . . 10 (๐‘– = ๐‘› โ†’ ((๐‘ฃ < ๐‘– โˆง ๐‘– โ‰ค ((๐‘˜ / 2) ยท ๐‘ฃ)) โ†” (๐‘ฃ < ๐‘› โˆง ๐‘› โ‰ค ((๐‘˜ / 2) ยท ๐‘ฃ))))
29 fveq2 6892 . . . . . . . . . . . . 13 (๐‘– = ๐‘› โ†’ (๐‘…โ€˜๐‘–) = (๐‘…โ€˜๐‘›))
30 id 22 . . . . . . . . . . . . 13 (๐‘– = ๐‘› โ†’ ๐‘– = ๐‘›)
3129, 30oveq12d 7430 . . . . . . . . . . . 12 (๐‘– = ๐‘› โ†’ ((๐‘…โ€˜๐‘–) / ๐‘–) = ((๐‘…โ€˜๐‘›) / ๐‘›))
3231fveq2d 6896 . . . . . . . . . . 11 (๐‘– = ๐‘› โ†’ (absโ€˜((๐‘…โ€˜๐‘–) / ๐‘–)) = (absโ€˜((๐‘…โ€˜๐‘›) / ๐‘›)))
3332breq1d 5159 . . . . . . . . . 10 (๐‘– = ๐‘› โ†’ ((absโ€˜((๐‘…โ€˜๐‘–) / ๐‘–)) โ‰ค (๐ธ / 2) โ†” (absโ€˜((๐‘…โ€˜๐‘›) / ๐‘›)) โ‰ค (๐ธ / 2)))
3428, 33anbi12d 630 . . . . . . . . 9 (๐‘– = ๐‘› โ†’ (((๐‘ฃ < ๐‘– โˆง ๐‘– โ‰ค ((๐‘˜ / 2) ยท ๐‘ฃ)) โˆง (absโ€˜((๐‘…โ€˜๐‘–) / ๐‘–)) โ‰ค (๐ธ / 2)) โ†” ((๐‘ฃ < ๐‘› โˆง ๐‘› โ‰ค ((๐‘˜ / 2) ยท ๐‘ฃ)) โˆง (absโ€˜((๐‘…โ€˜๐‘›) / ๐‘›)) โ‰ค (๐ธ / 2))))
3534cbvrexvw 3234 . . . . . . . 8 (โˆƒ๐‘– โˆˆ โ„• ((๐‘ฃ < ๐‘– โˆง ๐‘– โ‰ค ((๐‘˜ / 2) ยท ๐‘ฃ)) โˆง (absโ€˜((๐‘…โ€˜๐‘–) / ๐‘–)) โ‰ค (๐ธ / 2)) โ†” โˆƒ๐‘› โˆˆ โ„• ((๐‘ฃ < ๐‘› โˆง ๐‘› โ‰ค ((๐‘˜ / 2) ยท ๐‘ฃ)) โˆง (absโ€˜((๐‘…โ€˜๐‘›) / ๐‘›)) โ‰ค (๐ธ / 2)))
36 breq1 5152 . . . . . . . . . . 11 (๐‘ฃ = ๐‘ฆ โ†’ (๐‘ฃ < ๐‘› โ†” ๐‘ฆ < ๐‘›))
37 oveq2 7420 . . . . . . . . . . . 12 (๐‘ฃ = ๐‘ฆ โ†’ ((๐‘˜ / 2) ยท ๐‘ฃ) = ((๐‘˜ / 2) ยท ๐‘ฆ))
3837breq2d 5161 . . . . . . . . . . 11 (๐‘ฃ = ๐‘ฆ โ†’ (๐‘› โ‰ค ((๐‘˜ / 2) ยท ๐‘ฃ) โ†” ๐‘› โ‰ค ((๐‘˜ / 2) ยท ๐‘ฆ)))
3936, 38anbi12d 630 . . . . . . . . . 10 (๐‘ฃ = ๐‘ฆ โ†’ ((๐‘ฃ < ๐‘› โˆง ๐‘› โ‰ค ((๐‘˜ / 2) ยท ๐‘ฃ)) โ†” (๐‘ฆ < ๐‘› โˆง ๐‘› โ‰ค ((๐‘˜ / 2) ยท ๐‘ฆ))))
4039anbi1d 629 . . . . . . . . 9 (๐‘ฃ = ๐‘ฆ โ†’ (((๐‘ฃ < ๐‘› โˆง ๐‘› โ‰ค ((๐‘˜ / 2) ยท ๐‘ฃ)) โˆง (absโ€˜((๐‘…โ€˜๐‘›) / ๐‘›)) โ‰ค (๐ธ / 2)) โ†” ((๐‘ฆ < ๐‘› โˆง ๐‘› โ‰ค ((๐‘˜ / 2) ยท ๐‘ฆ)) โˆง (absโ€˜((๐‘…โ€˜๐‘›) / ๐‘›)) โ‰ค (๐ธ / 2))))
4140rexbidv 3177 . . . . . . . 8 (๐‘ฃ = ๐‘ฆ โ†’ (โˆƒ๐‘› โˆˆ โ„• ((๐‘ฃ < ๐‘› โˆง ๐‘› โ‰ค ((๐‘˜ / 2) ยท ๐‘ฃ)) โˆง (absโ€˜((๐‘…โ€˜๐‘›) / ๐‘›)) โ‰ค (๐ธ / 2)) โ†” โˆƒ๐‘› โˆˆ โ„• ((๐‘ฆ < ๐‘› โˆง ๐‘› โ‰ค ((๐‘˜ / 2) ยท ๐‘ฆ)) โˆง (absโ€˜((๐‘…โ€˜๐‘›) / ๐‘›)) โ‰ค (๐ธ / 2))))
4235, 41bitrid 282 . . . . . . 7 (๐‘ฃ = ๐‘ฆ โ†’ (โˆƒ๐‘– โˆˆ โ„• ((๐‘ฃ < ๐‘– โˆง ๐‘– โ‰ค ((๐‘˜ / 2) ยท ๐‘ฃ)) โˆง (absโ€˜((๐‘…โ€˜๐‘–) / ๐‘–)) โ‰ค (๐ธ / 2)) โ†” โˆƒ๐‘› โˆˆ โ„• ((๐‘ฆ < ๐‘› โˆง ๐‘› โ‰ค ((๐‘˜ / 2) ยท ๐‘ฆ)) โˆง (absโ€˜((๐‘…โ€˜๐‘›) / ๐‘›)) โ‰ค (๐ธ / 2))))
43 oveq1 7419 . . . . . . . . . . . . 13 (๐‘š = (๐‘˜ / 2) โ†’ (๐‘š ยท ๐‘ฃ) = ((๐‘˜ / 2) ยท ๐‘ฃ))
4443breq2d 5161 . . . . . . . . . . . 12 (๐‘š = (๐‘˜ / 2) โ†’ (๐‘– โ‰ค (๐‘š ยท ๐‘ฃ) โ†” ๐‘– โ‰ค ((๐‘˜ / 2) ยท ๐‘ฃ)))
4544anbi2d 628 . . . . . . . . . . 11 (๐‘š = (๐‘˜ / 2) โ†’ ((๐‘ฃ < ๐‘– โˆง ๐‘– โ‰ค (๐‘š ยท ๐‘ฃ)) โ†” (๐‘ฃ < ๐‘– โˆง ๐‘– โ‰ค ((๐‘˜ / 2) ยท ๐‘ฃ))))
4645anbi1d 629 . . . . . . . . . 10 (๐‘š = (๐‘˜ / 2) โ†’ (((๐‘ฃ < ๐‘– โˆง ๐‘– โ‰ค (๐‘š ยท ๐‘ฃ)) โˆง (absโ€˜((๐‘…โ€˜๐‘–) / ๐‘–)) โ‰ค (๐ธ / 2)) โ†” ((๐‘ฃ < ๐‘– โˆง ๐‘– โ‰ค ((๐‘˜ / 2) ยท ๐‘ฃ)) โˆง (absโ€˜((๐‘…โ€˜๐‘–) / ๐‘–)) โ‰ค (๐ธ / 2))))
4746rexbidv 3177 . . . . . . . . 9 (๐‘š = (๐‘˜ / 2) โ†’ (โˆƒ๐‘– โˆˆ โ„• ((๐‘ฃ < ๐‘– โˆง ๐‘– โ‰ค (๐‘š ยท ๐‘ฃ)) โˆง (absโ€˜((๐‘…โ€˜๐‘–) / ๐‘–)) โ‰ค (๐ธ / 2)) โ†” โˆƒ๐‘– โˆˆ โ„• ((๐‘ฃ < ๐‘– โˆง ๐‘– โ‰ค ((๐‘˜ / 2) ยท ๐‘ฃ)) โˆง (absโ€˜((๐‘…โ€˜๐‘–) / ๐‘–)) โ‰ค (๐ธ / 2))))
4847ralbidv 3176 . . . . . . . 8 (๐‘š = (๐‘˜ / 2) โ†’ (โˆ€๐‘ฃ โˆˆ (๐‘(,)+โˆž)โˆƒ๐‘– โˆˆ โ„• ((๐‘ฃ < ๐‘– โˆง ๐‘– โ‰ค (๐‘š ยท ๐‘ฃ)) โˆง (absโ€˜((๐‘…โ€˜๐‘–) / ๐‘–)) โ‰ค (๐ธ / 2)) โ†” โˆ€๐‘ฃ โˆˆ (๐‘(,)+โˆž)โˆƒ๐‘– โˆˆ โ„• ((๐‘ฃ < ๐‘– โˆง ๐‘– โ‰ค ((๐‘˜ / 2) ยท ๐‘ฃ)) โˆง (absโ€˜((๐‘…โ€˜๐‘–) / ๐‘–)) โ‰ค (๐ธ / 2))))
49 pntibndlem3.5 . . . . . . . . 9 (๐œ‘ โ†’ โˆ€๐‘š โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฃ โˆˆ (๐‘(,)+โˆž)โˆƒ๐‘– โˆˆ โ„• ((๐‘ฃ < ๐‘– โˆง ๐‘– โ‰ค (๐‘š ยท ๐‘ฃ)) โˆง (absโ€˜((๐‘…โ€˜๐‘–) / ๐‘–)) โ‰ค (๐ธ / 2)))
5049ad2antrr 723 . . . . . . . 8 (((๐œ‘ โˆง (๐‘ก โˆˆ โ„+ โˆง โˆ€๐‘ฃ โˆˆ (1(,)+โˆž)โˆ€๐‘ค โˆˆ (๐‘ฃ[,](2 ยท ๐‘ฃ))((ฯˆโ€˜๐‘ค) โˆ’ (ฯˆโ€˜๐‘ฃ)) โ‰ค ((2 ยท (๐‘ค โˆ’ ๐‘ฃ)) + (๐‘ก ยท (๐‘ฃ / (logโ€˜๐‘ฃ)))))) โˆง (๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž) โˆง ๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž))) โ†’ โˆ€๐‘š โˆˆ (๐พ[,)+โˆž)โˆ€๐‘ฃ โˆˆ (๐‘(,)+โˆž)โˆƒ๐‘– โˆˆ โ„• ((๐‘ฃ < ๐‘– โˆง ๐‘– โ‰ค (๐‘š ยท ๐‘ฃ)) โˆง (absโ€˜((๐‘…โ€˜๐‘–) / ๐‘–)) โ‰ค (๐ธ / 2)))
51 pntibndlem3.c . . . . . . . . . . . . . . . . 17 ๐ถ = ((2 ยท ๐ต) + (logโ€˜2))
52 pntibndlem3.3 . . . . . . . . . . . . . . . . . . . . 21 (๐œ‘ โ†’ ๐ต โˆˆ โ„+)
5352adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ ๐ต โˆˆ โ„+)
5453rpred 13021 . . . . . . . . . . . . . . . . . . 19 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ ๐ต โˆˆ โ„)
55 remulcl 11198 . . . . . . . . . . . . . . . . . . 19 ((2 โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ (2 ยท ๐ต) โˆˆ โ„)
561, 54, 55sylancr 586 . . . . . . . . . . . . . . . . . 18 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ (2 ยท ๐ต) โˆˆ โ„)
57 2rp 12984 . . . . . . . . . . . . . . . . . . 19 2 โˆˆ โ„+
58 relogcl 26317 . . . . . . . . . . . . . . . . . . 19 (2 โˆˆ โ„+ โ†’ (logโ€˜2) โˆˆ โ„)
5957, 58ax-mp 5 . . . . . . . . . . . . . . . . . 18 (logโ€˜2) โˆˆ โ„
60 readdcl 11196 . . . . . . . . . . . . . . . . . 18 (((2 ยท ๐ต) โˆˆ โ„ โˆง (logโ€˜2) โˆˆ โ„) โ†’ ((2 ยท ๐ต) + (logโ€˜2)) โˆˆ โ„)
6156, 59, 60sylancl 585 . . . . . . . . . . . . . . . . 17 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ ((2 ยท ๐ต) + (logโ€˜2)) โˆˆ โ„)
6251, 61eqeltrid 2836 . . . . . . . . . . . . . . . 16 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ ๐ถ โˆˆ โ„)
6362, 13rerpdivcld 13052 . . . . . . . . . . . . . . 15 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ (๐ถ / ๐ธ) โˆˆ โ„)
6463reefcld 16036 . . . . . . . . . . . . . 14 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ (expโ€˜(๐ถ / ๐ธ)) โˆˆ โ„)
65 elicopnf 13427 . . . . . . . . . . . . . 14 ((expโ€˜(๐ถ / ๐ธ)) โˆˆ โ„ โ†’ (๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž) โ†” (๐‘˜ โˆˆ โ„ โˆง (expโ€˜(๐ถ / ๐ธ)) โ‰ค ๐‘˜)))
6664, 65syl 17 . . . . . . . . . . . . 13 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ (๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž) โ†” (๐‘˜ โˆˆ โ„ โˆง (expโ€˜(๐ถ / ๐ธ)) โ‰ค ๐‘˜)))
6766simprbda 498 . . . . . . . . . . . 12 (((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โˆง ๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž)) โ†’ ๐‘˜ โˆˆ โ„)
6867rehalfcld 12464 . . . . . . . . . . 11 (((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โˆง ๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž)) โ†’ (๐‘˜ / 2) โˆˆ โ„)
69 pntibndlem3.k . . . . . . . . . . . 12 ๐พ = (expโ€˜(๐ต / (๐ธ / 2)))
7013rphalfcld 13033 . . . . . . . . . . . . . . . . . 18 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ (๐ธ / 2) โˆˆ โ„+)
7154, 70rerpdivcld 13052 . . . . . . . . . . . . . . . . 17 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ (๐ต / (๐ธ / 2)) โˆˆ โ„)
7271reefcld 16036 . . . . . . . . . . . . . . . 16 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ (expโ€˜(๐ต / (๐ธ / 2))) โˆˆ โ„)
73 remulcl 11198 . . . . . . . . . . . . . . . 16 (((expโ€˜(๐ต / (๐ธ / 2))) โˆˆ โ„ โˆง 2 โˆˆ โ„) โ†’ ((expโ€˜(๐ต / (๐ธ / 2))) ยท 2) โˆˆ โ„)
7472, 1, 73sylancl 585 . . . . . . . . . . . . . . 15 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ ((expโ€˜(๐ต / (๐ธ / 2))) ยท 2) โˆˆ โ„)
7574adantr 480 . . . . . . . . . . . . . 14 (((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โˆง ๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž)) โ†’ ((expโ€˜(๐ต / (๐ธ / 2))) ยท 2) โˆˆ โ„)
7664adantr 480 . . . . . . . . . . . . . 14 (((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โˆง ๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž)) โ†’ (expโ€˜(๐ถ / ๐ธ)) โˆˆ โ„)
7771recnd 11247 . . . . . . . . . . . . . . . . . 18 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ (๐ต / (๐ธ / 2)) โˆˆ โ„‚)
7859recni 11233 . . . . . . . . . . . . . . . . . 18 (logโ€˜2) โˆˆ โ„‚
79 efadd 16042 . . . . . . . . . . . . . . . . . 18 (((๐ต / (๐ธ / 2)) โˆˆ โ„‚ โˆง (logโ€˜2) โˆˆ โ„‚) โ†’ (expโ€˜((๐ต / (๐ธ / 2)) + (logโ€˜2))) = ((expโ€˜(๐ต / (๐ธ / 2))) ยท (expโ€˜(logโ€˜2))))
8077, 78, 79sylancl 585 . . . . . . . . . . . . . . . . 17 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ (expโ€˜((๐ต / (๐ธ / 2)) + (logโ€˜2))) = ((expโ€˜(๐ต / (๐ธ / 2))) ยท (expโ€˜(logโ€˜2))))
81 reeflog 26322 . . . . . . . . . . . . . . . . . . 19 (2 โˆˆ โ„+ โ†’ (expโ€˜(logโ€˜2)) = 2)
8257, 81ax-mp 5 . . . . . . . . . . . . . . . . . 18 (expโ€˜(logโ€˜2)) = 2
8382oveq2i 7423 . . . . . . . . . . . . . . . . 17 ((expโ€˜(๐ต / (๐ธ / 2))) ยท (expโ€˜(logโ€˜2))) = ((expโ€˜(๐ต / (๐ธ / 2))) ยท 2)
8480, 83eqtrdi 2787 . . . . . . . . . . . . . . . 16 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ (expโ€˜((๐ต / (๐ธ / 2)) + (logโ€˜2))) = ((expโ€˜(๐ต / (๐ธ / 2))) ยท 2))
8559a1i 11 . . . . . . . . . . . . . . . . . . 19 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ (logโ€˜2) โˆˆ โ„)
86 rerpdivcl 13009 . . . . . . . . . . . . . . . . . . . 20 (((logโ€˜2) โˆˆ โ„ โˆง ๐ธ โˆˆ โ„+) โ†’ ((logโ€˜2) / ๐ธ) โˆˆ โ„)
8759, 13, 86sylancr 586 . . . . . . . . . . . . . . . . . . 19 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ ((logโ€˜2) / ๐ธ) โˆˆ โ„)
8878div1i 11947 . . . . . . . . . . . . . . . . . . . 20 ((logโ€˜2) / 1) = (logโ€˜2)
8910simprd 495 . . . . . . . . . . . . . . . . . . . . . . 23 (๐œ‘ โ†’ ๐ธ < 1)
9089adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ ๐ธ < 1)
918adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ ๐ธ โˆˆ โ„)
92 1re 11219 . . . . . . . . . . . . . . . . . . . . . . 23 1 โˆˆ โ„
93 ltle 11307 . . . . . . . . . . . . . . . . . . . . . . 23 ((๐ธ โˆˆ โ„ โˆง 1 โˆˆ โ„) โ†’ (๐ธ < 1 โ†’ ๐ธ โ‰ค 1))
9491, 92, 93sylancl 585 . . . . . . . . . . . . . . . . . . . . . 22 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ (๐ธ < 1 โ†’ ๐ธ โ‰ค 1))
9590, 94mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ ๐ธ โ‰ค 1)
9613rpregt0d 13027 . . . . . . . . . . . . . . . . . . . . . 22 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ (๐ธ โˆˆ โ„ โˆง 0 < ๐ธ))
97 1rp 12983 . . . . . . . . . . . . . . . . . . . . . . 23 1 โˆˆ โ„+
98 rpregt0 12993 . . . . . . . . . . . . . . . . . . . . . . 23 (1 โˆˆ โ„+ โ†’ (1 โˆˆ โ„ โˆง 0 < 1))
9997, 98mp1i 13 . . . . . . . . . . . . . . . . . . . . . 22 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ (1 โˆˆ โ„ โˆง 0 < 1))
100 1lt2 12388 . . . . . . . . . . . . . . . . . . . . . . . 24 1 < 2
101 rplogcl 26345 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2 โˆˆ โ„ โˆง 1 < 2) โ†’ (logโ€˜2) โˆˆ โ„+)
1021, 100, 101mp2an 689 . . . . . . . . . . . . . . . . . . . . . . 23 (logโ€˜2) โˆˆ โ„+
103 rpregt0 12993 . . . . . . . . . . . . . . . . . . . . . . 23 ((logโ€˜2) โˆˆ โ„+ โ†’ ((logโ€˜2) โˆˆ โ„ โˆง 0 < (logโ€˜2)))
104102, 103mp1i 13 . . . . . . . . . . . . . . . . . . . . . 22 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ ((logโ€˜2) โˆˆ โ„ โˆง 0 < (logโ€˜2)))
105 lediv2 12109 . . . . . . . . . . . . . . . . . . . . . 22 (((๐ธ โˆˆ โ„ โˆง 0 < ๐ธ) โˆง (1 โˆˆ โ„ โˆง 0 < 1) โˆง ((logโ€˜2) โˆˆ โ„ โˆง 0 < (logโ€˜2))) โ†’ (๐ธ โ‰ค 1 โ†” ((logโ€˜2) / 1) โ‰ค ((logโ€˜2) / ๐ธ)))
10696, 99, 104, 105syl3anc 1370 . . . . . . . . . . . . . . . . . . . . 21 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ (๐ธ โ‰ค 1 โ†” ((logโ€˜2) / 1) โ‰ค ((logโ€˜2) / ๐ธ)))
10795, 106mpbid 231 . . . . . . . . . . . . . . . . . . . 20 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ ((logโ€˜2) / 1) โ‰ค ((logโ€˜2) / ๐ธ))
10888, 107eqbrtrrid 5185 . . . . . . . . . . . . . . . . . . 19 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ (logโ€˜2) โ‰ค ((logโ€˜2) / ๐ธ))
10985, 87, 71, 108leadd2dd 11834 . . . . . . . . . . . . . . . . . 18 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ ((๐ต / (๐ธ / 2)) + (logโ€˜2)) โ‰ค ((๐ต / (๐ธ / 2)) + ((logโ€˜2) / ๐ธ)))
11051oveq1i 7422 . . . . . . . . . . . . . . . . . . . 20 (๐ถ / ๐ธ) = (((2 ยท ๐ต) + (logโ€˜2)) / ๐ธ)
11156recnd 11247 . . . . . . . . . . . . . . . . . . . . 21 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ (2 ยท ๐ต) โˆˆ โ„‚)
11278a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ (logโ€˜2) โˆˆ โ„‚)
113 rpcnne0 12997 . . . . . . . . . . . . . . . . . . . . . 22 (๐ธ โˆˆ โ„+ โ†’ (๐ธ โˆˆ โ„‚ โˆง ๐ธ โ‰  0))
11413, 113syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ (๐ธ โˆˆ โ„‚ โˆง ๐ธ โ‰  0))
115 divdir 11902 . . . . . . . . . . . . . . . . . . . . 21 (((2 ยท ๐ต) โˆˆ โ„‚ โˆง (logโ€˜2) โˆˆ โ„‚ โˆง (๐ธ โˆˆ โ„‚ โˆง ๐ธ โ‰  0)) โ†’ (((2 ยท ๐ต) + (logโ€˜2)) / ๐ธ) = (((2 ยท ๐ต) / ๐ธ) + ((logโ€˜2) / ๐ธ)))
116111, 112, 114, 115syl3anc 1370 . . . . . . . . . . . . . . . . . . . 20 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ (((2 ยท ๐ต) + (logโ€˜2)) / ๐ธ) = (((2 ยท ๐ต) / ๐ธ) + ((logโ€˜2) / ๐ธ)))
117110, 116eqtrid 2783 . . . . . . . . . . . . . . . . . . 19 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ (๐ถ / ๐ธ) = (((2 ยท ๐ต) / ๐ธ) + ((logโ€˜2) / ๐ธ)))
1181recni 11233 . . . . . . . . . . . . . . . . . . . . . . 23 2 โˆˆ โ„‚
11954recnd 11247 . . . . . . . . . . . . . . . . . . . . . . 23 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ ๐ต โˆˆ โ„‚)
120 mulcom 11199 . . . . . . . . . . . . . . . . . . . . . . 23 ((2 โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (2 ยท ๐ต) = (๐ต ยท 2))
121118, 119, 120sylancr 586 . . . . . . . . . . . . . . . . . . . . . 22 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ (2 ยท ๐ต) = (๐ต ยท 2))
122121oveq1d 7427 . . . . . . . . . . . . . . . . . . . . 21 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ ((2 ยท ๐ต) / ๐ธ) = ((๐ต ยท 2) / ๐ธ))
123 rpcnne0 12997 . . . . . . . . . . . . . . . . . . . . . . 23 (2 โˆˆ โ„+ โ†’ (2 โˆˆ โ„‚ โˆง 2 โ‰  0))
12457, 123mp1i 13 . . . . . . . . . . . . . . . . . . . . . 22 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ (2 โˆˆ โ„‚ โˆง 2 โ‰  0))
125 divdiv2 11931 . . . . . . . . . . . . . . . . . . . . . 22 ((๐ต โˆˆ โ„‚ โˆง (๐ธ โˆˆ โ„‚ โˆง ๐ธ โ‰  0) โˆง (2 โˆˆ โ„‚ โˆง 2 โ‰  0)) โ†’ (๐ต / (๐ธ / 2)) = ((๐ต ยท 2) / ๐ธ))
126119, 114, 124, 125syl3anc 1370 . . . . . . . . . . . . . . . . . . . . 21 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ (๐ต / (๐ธ / 2)) = ((๐ต ยท 2) / ๐ธ))
127122, 126eqtr4d 2774 . . . . . . . . . . . . . . . . . . . 20 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ ((2 ยท ๐ต) / ๐ธ) = (๐ต / (๐ธ / 2)))
128127oveq1d 7427 . . . . . . . . . . . . . . . . . . 19 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ (((2 ยท ๐ต) / ๐ธ) + ((logโ€˜2) / ๐ธ)) = ((๐ต / (๐ธ / 2)) + ((logโ€˜2) / ๐ธ)))
129117, 128eqtrd 2771 . . . . . . . . . . . . . . . . . 18 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ (๐ถ / ๐ธ) = ((๐ต / (๐ธ / 2)) + ((logโ€˜2) / ๐ธ)))
130109, 129breqtrrd 5177 . . . . . . . . . . . . . . . . 17 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ ((๐ต / (๐ธ / 2)) + (logโ€˜2)) โ‰ค (๐ถ / ๐ธ))
131 readdcl 11196 . . . . . . . . . . . . . . . . . . 19 (((๐ต / (๐ธ / 2)) โˆˆ โ„ โˆง (logโ€˜2) โˆˆ โ„) โ†’ ((๐ต / (๐ธ / 2)) + (logโ€˜2)) โˆˆ โ„)
13271, 59, 131sylancl 585 . . . . . . . . . . . . . . . . . 18 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ ((๐ต / (๐ธ / 2)) + (logโ€˜2)) โˆˆ โ„)
133 efle 16066 . . . . . . . . . . . . . . . . . 18 ((((๐ต / (๐ธ / 2)) + (logโ€˜2)) โˆˆ โ„ โˆง (๐ถ / ๐ธ) โˆˆ โ„) โ†’ (((๐ต / (๐ธ / 2)) + (logโ€˜2)) โ‰ค (๐ถ / ๐ธ) โ†” (expโ€˜((๐ต / (๐ธ / 2)) + (logโ€˜2))) โ‰ค (expโ€˜(๐ถ / ๐ธ))))
134132, 63, 133syl2anc 583 . . . . . . . . . . . . . . . . 17 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ (((๐ต / (๐ธ / 2)) + (logโ€˜2)) โ‰ค (๐ถ / ๐ธ) โ†” (expโ€˜((๐ต / (๐ธ / 2)) + (logโ€˜2))) โ‰ค (expโ€˜(๐ถ / ๐ธ))))
135130, 134mpbid 231 . . . . . . . . . . . . . . . 16 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ (expโ€˜((๐ต / (๐ธ / 2)) + (logโ€˜2))) โ‰ค (expโ€˜(๐ถ / ๐ธ)))
13684, 135eqbrtrrd 5173 . . . . . . . . . . . . . . 15 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ ((expโ€˜(๐ต / (๐ธ / 2))) ยท 2) โ‰ค (expโ€˜(๐ถ / ๐ธ)))
137136adantr 480 . . . . . . . . . . . . . 14 (((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โˆง ๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž)) โ†’ ((expโ€˜(๐ต / (๐ธ / 2))) ยท 2) โ‰ค (expโ€˜(๐ถ / ๐ธ)))
13866simplbda 499 . . . . . . . . . . . . . 14 (((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โˆง ๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž)) โ†’ (expโ€˜(๐ถ / ๐ธ)) โ‰ค ๐‘˜)
13975, 76, 67, 137, 138letrd 11376 . . . . . . . . . . . . 13 (((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โˆง ๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž)) โ†’ ((expโ€˜(๐ต / (๐ธ / 2))) ยท 2) โ‰ค ๐‘˜)
14072adantr 480 . . . . . . . . . . . . . 14 (((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โˆง ๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž)) โ†’ (expโ€˜(๐ต / (๐ธ / 2))) โˆˆ โ„)
141 rpregt0 12993 . . . . . . . . . . . . . . 15 (2 โˆˆ โ„+ โ†’ (2 โˆˆ โ„ โˆง 0 < 2))
14257, 141mp1i 13 . . . . . . . . . . . . . 14 (((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โˆง ๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž)) โ†’ (2 โˆˆ โ„ โˆง 0 < 2))
143 lemuldiv 12099 . . . . . . . . . . . . . 14 (((expโ€˜(๐ต / (๐ธ / 2))) โˆˆ โ„ โˆง ๐‘˜ โˆˆ โ„ โˆง (2 โˆˆ โ„ โˆง 0 < 2)) โ†’ (((expโ€˜(๐ต / (๐ธ / 2))) ยท 2) โ‰ค ๐‘˜ โ†” (expโ€˜(๐ต / (๐ธ / 2))) โ‰ค (๐‘˜ / 2)))
144140, 67, 142, 143syl3anc 1370 . . . . . . . . . . . . 13 (((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โˆง ๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž)) โ†’ (((expโ€˜(๐ต / (๐ธ / 2))) ยท 2) โ‰ค ๐‘˜ โ†” (expโ€˜(๐ต / (๐ธ / 2))) โ‰ค (๐‘˜ / 2)))
145139, 144mpbid 231 . . . . . . . . . . . 12 (((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โˆง ๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž)) โ†’ (expโ€˜(๐ต / (๐ธ / 2))) โ‰ค (๐‘˜ / 2))
14669, 145eqbrtrid 5184 . . . . . . . . . . 11 (((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โˆง ๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž)) โ†’ ๐พ โ‰ค (๐‘˜ / 2))
14769, 140eqeltrid 2836 . . . . . . . . . . . 12 (((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โˆง ๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž)) โ†’ ๐พ โˆˆ โ„)
148 elicopnf 13427 . . . . . . . . . . . 12 (๐พ โˆˆ โ„ โ†’ ((๐‘˜ / 2) โˆˆ (๐พ[,)+โˆž) โ†” ((๐‘˜ / 2) โˆˆ โ„ โˆง ๐พ โ‰ค (๐‘˜ / 2))))
149147, 148syl 17 . . . . . . . . . . 11 (((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โˆง ๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž)) โ†’ ((๐‘˜ / 2) โˆˆ (๐พ[,)+โˆž) โ†” ((๐‘˜ / 2) โˆˆ โ„ โˆง ๐พ โ‰ค (๐‘˜ / 2))))
15068, 146, 149mpbir2and 710 . . . . . . . . . 10 (((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โˆง ๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž)) โ†’ (๐‘˜ / 2) โˆˆ (๐พ[,)+โˆž))
151150adantrr 714 . . . . . . . . 9 (((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โˆง (๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž) โˆง ๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž))) โ†’ (๐‘˜ / 2) โˆˆ (๐พ[,)+โˆž))
152151adantlrr 718 . . . . . . . 8 (((๐œ‘ โˆง (๐‘ก โˆˆ โ„+ โˆง โˆ€๐‘ฃ โˆˆ (1(,)+โˆž)โˆ€๐‘ค โˆˆ (๐‘ฃ[,](2 ยท ๐‘ฃ))((ฯˆโ€˜๐‘ค) โˆ’ (ฯˆโ€˜๐‘ฃ)) โ‰ค ((2 ยท (๐‘ค โˆ’ ๐‘ฃ)) + (๐‘ก ยท (๐‘ฃ / (logโ€˜๐‘ฃ)))))) โˆง (๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž) โˆง ๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž))) โ†’ (๐‘˜ / 2) โˆˆ (๐พ[,)+โˆž))
15348, 50, 152rspcdva 3614 . . . . . . 7 (((๐œ‘ โˆง (๐‘ก โˆˆ โ„+ โˆง โˆ€๐‘ฃ โˆˆ (1(,)+โˆž)โˆ€๐‘ค โˆˆ (๐‘ฃ[,](2 ยท ๐‘ฃ))((ฯˆโ€˜๐‘ค) โˆ’ (ฯˆโ€˜๐‘ฃ)) โ‰ค ((2 ยท (๐‘ค โˆ’ ๐‘ฃ)) + (๐‘ก ยท (๐‘ฃ / (logโ€˜๐‘ฃ)))))) โˆง (๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž) โˆง ๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž))) โ†’ โˆ€๐‘ฃ โˆˆ (๐‘(,)+โˆž)โˆƒ๐‘– โˆˆ โ„• ((๐‘ฃ < ๐‘– โˆง ๐‘– โ‰ค ((๐‘˜ / 2) ยท ๐‘ฃ)) โˆง (absโ€˜((๐‘…โ€˜๐‘–) / ๐‘–)) โ‰ค (๐ธ / 2)))
154 elioore 13359 . . . . . . . . . 10 (๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž) โ†’ ๐‘ฆ โˆˆ โ„)
155154ad2antll 726 . . . . . . . . 9 (((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โˆง (๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž) โˆง ๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž))) โ†’ ๐‘ฆ โˆˆ โ„)
15623rpred 13021 . . . . . . . . . . 11 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ ๐‘ โˆˆ โ„)
157156adantr 480 . . . . . . . . . 10 (((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โˆง (๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž) โˆง ๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž))) โ†’ ๐‘ โˆˆ โ„)
15820reefcld 16036 . . . . . . . . . . . 12 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ (expโ€˜(๐‘ก / (๐ธ / 4))) โˆˆ โ„)
159158, 156readdcld 11248 . . . . . . . . . . 11 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ ((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘) โˆˆ โ„)
160159adantr 480 . . . . . . . . . 10 (((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โˆง (๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž) โˆง ๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž))) โ†’ ((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘) โˆˆ โ„)
161156, 21ltaddrp2d 13055 . . . . . . . . . . 11 ((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โ†’ ๐‘ < ((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘))
162161adantr 480 . . . . . . . . . 10 (((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โˆง (๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž) โˆง ๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž))) โ†’ ๐‘ < ((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘))
163 eliooord 13388 . . . . . . . . . . . 12 (๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž) โ†’ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘) < ๐‘ฆ โˆง ๐‘ฆ < +โˆž))
164163simpld 494 . . . . . . . . . . 11 (๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž) โ†’ ((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘) < ๐‘ฆ)
165164ad2antll 726 . . . . . . . . . 10 (((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โˆง (๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž) โˆง ๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž))) โ†’ ((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘) < ๐‘ฆ)
166157, 160, 155, 162, 165lttrd 11380 . . . . . . . . 9 (((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โˆง (๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž) โˆง ๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž))) โ†’ ๐‘ < ๐‘ฆ)
167157rexrd 11269 . . . . . . . . . 10 (((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โˆง (๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž) โˆง ๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž))) โ†’ ๐‘ โˆˆ โ„*)
168 elioopnf 13425 . . . . . . . . . 10 (๐‘ โˆˆ โ„* โ†’ (๐‘ฆ โˆˆ (๐‘(,)+โˆž) โ†” (๐‘ฆ โˆˆ โ„ โˆง ๐‘ < ๐‘ฆ)))
169167, 168syl 17 . . . . . . . . 9 (((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โˆง (๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž) โˆง ๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž))) โ†’ (๐‘ฆ โˆˆ (๐‘(,)+โˆž) โ†” (๐‘ฆ โˆˆ โ„ โˆง ๐‘ < ๐‘ฆ)))
170155, 166, 169mpbir2and 710 . . . . . . . 8 (((๐œ‘ โˆง ๐‘ก โˆˆ โ„+) โˆง (๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž) โˆง ๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž))) โ†’ ๐‘ฆ โˆˆ (๐‘(,)+โˆž))
171170adantlrr 718 . . . . . . 7 (((๐œ‘ โˆง (๐‘ก โˆˆ โ„+ โˆง โˆ€๐‘ฃ โˆˆ (1(,)+โˆž)โˆ€๐‘ค โˆˆ (๐‘ฃ[,](2 ยท ๐‘ฃ))((ฯˆโ€˜๐‘ค) โˆ’ (ฯˆโ€˜๐‘ฃ)) โ‰ค ((2 ยท (๐‘ค โˆ’ ๐‘ฃ)) + (๐‘ก ยท (๐‘ฃ / (logโ€˜๐‘ฃ)))))) โˆง (๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž) โˆง ๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž))) โ†’ ๐‘ฆ โˆˆ (๐‘(,)+โˆž))
17242, 153, 171rspcdva 3614 . . . . . 6 (((๐œ‘ โˆง (๐‘ก โˆˆ โ„+ โˆง โˆ€๐‘ฃ โˆˆ (1(,)+โˆž)โˆ€๐‘ค โˆˆ (๐‘ฃ[,](2 ยท ๐‘ฃ))((ฯˆโ€˜๐‘ค) โˆ’ (ฯˆโ€˜๐‘ฃ)) โ‰ค ((2 ยท (๐‘ค โˆ’ ๐‘ฃ)) + (๐‘ก ยท (๐‘ฃ / (logโ€˜๐‘ฃ)))))) โˆง (๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž) โˆง ๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž))) โ†’ โˆƒ๐‘› โˆˆ โ„• ((๐‘ฆ < ๐‘› โˆง ๐‘› โ‰ค ((๐‘˜ / 2) ยท ๐‘ฆ)) โˆง (absโ€˜((๐‘…โ€˜๐‘›) / ๐‘›)) โ‰ค (๐ธ / 2)))
173 pntibnd.r . . . . . . . 8 ๐‘… = (๐‘Ž โˆˆ โ„+ โ†ฆ ((ฯˆโ€˜๐‘Ž) โˆ’ ๐‘Ž))
174 pntibndlem1.1 . . . . . . . . 9 (๐œ‘ โ†’ ๐ด โˆˆ โ„+)
175174ad2antrr 723 . . . . . . . 8 (((๐œ‘ โˆง (๐‘ก โˆˆ โ„+ โˆง โˆ€๐‘ฃ โˆˆ (1(,)+โˆž)โˆ€๐‘ค โˆˆ (๐‘ฃ[,](2 ยท ๐‘ฃ))((ฯˆโ€˜๐‘ค) โˆ’ (ฯˆโ€˜๐‘ฃ)) โ‰ค ((2 ยท (๐‘ค โˆ’ ๐‘ฃ)) + (๐‘ก ยท (๐‘ฃ / (logโ€˜๐‘ฃ)))))) โˆง ((๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž) โˆง ๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž)) โˆง (๐‘› โˆˆ โ„• โˆง ((๐‘ฆ < ๐‘› โˆง ๐‘› โ‰ค ((๐‘˜ / 2) ยท ๐‘ฆ)) โˆง (absโ€˜((๐‘…โ€˜๐‘›) / ๐‘›)) โ‰ค (๐ธ / 2))))) โ†’ ๐ด โˆˆ โ„+)
176 pntibndlem1.l . . . . . . . 8 ๐ฟ = ((1 / 4) / (๐ด + 3))
177 pntibndlem3.2 . . . . . . . . . 10 (๐œ‘ โ†’ โˆ€๐‘ฅ โˆˆ โ„+ (absโ€˜((๐‘…โ€˜๐‘ฅ) / ๐‘ฅ)) โ‰ค ๐ด)
178 fveq2 6892 . . . . . . . . . . . . . 14 (๐‘ฅ = ๐‘ฃ โ†’ (๐‘…โ€˜๐‘ฅ) = (๐‘…โ€˜๐‘ฃ))
179 id 22 . . . . . . . . . . . . . 14 (๐‘ฅ = ๐‘ฃ โ†’ ๐‘ฅ = ๐‘ฃ)
180178, 179oveq12d 7430 . . . . . . . . . . . . 13 (๐‘ฅ = ๐‘ฃ โ†’ ((๐‘…โ€˜๐‘ฅ) / ๐‘ฅ) = ((๐‘…โ€˜๐‘ฃ) / ๐‘ฃ))
181180fveq2d 6896 . . . . . . . . . . . 12 (๐‘ฅ = ๐‘ฃ โ†’ (absโ€˜((๐‘…โ€˜๐‘ฅ) / ๐‘ฅ)) = (absโ€˜((๐‘…โ€˜๐‘ฃ) / ๐‘ฃ)))
182181breq1d 5159 . . . . . . . . . . 11 (๐‘ฅ = ๐‘ฃ โ†’ ((absโ€˜((๐‘…โ€˜๐‘ฅ) / ๐‘ฅ)) โ‰ค ๐ด โ†” (absโ€˜((๐‘…โ€˜๐‘ฃ) / ๐‘ฃ)) โ‰ค ๐ด))
183182cbvralvw 3233 . . . . . . . . . 10 (โˆ€๐‘ฅ โˆˆ โ„+ (absโ€˜((๐‘…โ€˜๐‘ฅ) / ๐‘ฅ)) โ‰ค ๐ด โ†” โˆ€๐‘ฃ โˆˆ โ„+ (absโ€˜((๐‘…โ€˜๐‘ฃ) / ๐‘ฃ)) โ‰ค ๐ด)
184177, 183sylib 217 . . . . . . . . 9 (๐œ‘ โ†’ โˆ€๐‘ฃ โˆˆ โ„+ (absโ€˜((๐‘…โ€˜๐‘ฃ) / ๐‘ฃ)) โ‰ค ๐ด)
185184ad2antrr 723 . . . . . . . 8 (((๐œ‘ โˆง (๐‘ก โˆˆ โ„+ โˆง โˆ€๐‘ฃ โˆˆ (1(,)+โˆž)โˆ€๐‘ค โˆˆ (๐‘ฃ[,](2 ยท ๐‘ฃ))((ฯˆโ€˜๐‘ค) โˆ’ (ฯˆโ€˜๐‘ฃ)) โ‰ค ((2 ยท (๐‘ค โˆ’ ๐‘ฃ)) + (๐‘ก ยท (๐‘ฃ / (logโ€˜๐‘ฃ)))))) โˆง ((๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž) โˆง ๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž)) โˆง (๐‘› โˆˆ โ„• โˆง ((๐‘ฆ < ๐‘› โˆง ๐‘› โ‰ค ((๐‘˜ / 2) ยท ๐‘ฆ)) โˆง (absโ€˜((๐‘…โ€˜๐‘›) / ๐‘›)) โ‰ค (๐ธ / 2))))) โ†’ โˆ€๐‘ฃ โˆˆ โ„+ (absโ€˜((๐‘…โ€˜๐‘ฃ) / ๐‘ฃ)) โ‰ค ๐ด)
18652ad2antrr 723 . . . . . . . 8 (((๐œ‘ โˆง (๐‘ก โˆˆ โ„+ โˆง โˆ€๐‘ฃ โˆˆ (1(,)+โˆž)โˆ€๐‘ค โˆˆ (๐‘ฃ[,](2 ยท ๐‘ฃ))((ฯˆโ€˜๐‘ค) โˆ’ (ฯˆโ€˜๐‘ฃ)) โ‰ค ((2 ยท (๐‘ค โˆ’ ๐‘ฃ)) + (๐‘ก ยท (๐‘ฃ / (logโ€˜๐‘ฃ)))))) โˆง ((๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž) โˆง ๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž)) โˆง (๐‘› โˆˆ โ„• โˆง ((๐‘ฆ < ๐‘› โˆง ๐‘› โ‰ค ((๐‘˜ / 2) ยท ๐‘ฆ)) โˆง (absโ€˜((๐‘…โ€˜๐‘›) / ๐‘›)) โ‰ค (๐ธ / 2))))) โ†’ ๐ต โˆˆ โ„+)
1877ad2antrr 723 . . . . . . . 8 (((๐œ‘ โˆง (๐‘ก โˆˆ โ„+ โˆง โˆ€๐‘ฃ โˆˆ (1(,)+โˆž)โˆ€๐‘ค โˆˆ (๐‘ฃ[,](2 ยท ๐‘ฃ))((ฯˆโ€˜๐‘ค) โˆ’ (ฯˆโ€˜๐‘ฃ)) โ‰ค ((2 ยท (๐‘ค โˆ’ ๐‘ฃ)) + (๐‘ก ยท (๐‘ฃ / (logโ€˜๐‘ฃ)))))) โˆง ((๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž) โˆง ๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž)) โˆง (๐‘› โˆˆ โ„• โˆง ((๐‘ฆ < ๐‘› โˆง ๐‘› โ‰ค ((๐‘˜ / 2) ยท ๐‘ฆ)) โˆง (absโ€˜((๐‘…โ€˜๐‘›) / ๐‘›)) โ‰ค (๐ธ / 2))))) โ†’ ๐ธ โˆˆ (0(,)1))
18822ad2antrr 723 . . . . . . . 8 (((๐œ‘ โˆง (๐‘ก โˆˆ โ„+ โˆง โˆ€๐‘ฃ โˆˆ (1(,)+โˆž)โˆ€๐‘ค โˆˆ (๐‘ฃ[,](2 ยท ๐‘ฃ))((ฯˆโ€˜๐‘ค) โˆ’ (ฯˆโ€˜๐‘ฃ)) โ‰ค ((2 ยท (๐‘ค โˆ’ ๐‘ฃ)) + (๐‘ก ยท (๐‘ฃ / (logโ€˜๐‘ฃ)))))) โˆง ((๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž) โˆง ๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž)) โˆง (๐‘› โˆˆ โ„• โˆง ((๐‘ฆ < ๐‘› โˆง ๐‘› โ‰ค ((๐‘˜ / 2) ยท ๐‘ฆ)) โˆง (absโ€˜((๐‘…โ€˜๐‘›) / ๐‘›)) โ‰ค (๐ธ / 2))))) โ†’ ๐‘ โˆˆ โ„+)
189 simprrl 778 . . . . . . . 8 (((๐œ‘ โˆง (๐‘ก โˆˆ โ„+ โˆง โˆ€๐‘ฃ โˆˆ (1(,)+โˆž)โˆ€๐‘ค โˆˆ (๐‘ฃ[,](2 ยท ๐‘ฃ))((ฯˆโ€˜๐‘ค) โˆ’ (ฯˆโ€˜๐‘ฃ)) โ‰ค ((2 ยท (๐‘ค โˆ’ ๐‘ฃ)) + (๐‘ก ยท (๐‘ฃ / (logโ€˜๐‘ฃ)))))) โˆง ((๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž) โˆง ๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž)) โˆง (๐‘› โˆˆ โ„• โˆง ((๐‘ฆ < ๐‘› โˆง ๐‘› โ‰ค ((๐‘˜ / 2) ยท ๐‘ฆ)) โˆง (absโ€˜((๐‘…โ€˜๐‘›) / ๐‘›)) โ‰ค (๐ธ / 2))))) โ†’ ๐‘› โˆˆ โ„•)
190 simplrl 774 . . . . . . . 8 (((๐œ‘ โˆง (๐‘ก โˆˆ โ„+ โˆง โˆ€๐‘ฃ โˆˆ (1(,)+โˆž)โˆ€๐‘ค โˆˆ (๐‘ฃ[,](2 ยท ๐‘ฃ))((ฯˆโ€˜๐‘ค) โˆ’ (ฯˆโ€˜๐‘ฃ)) โ‰ค ((2 ยท (๐‘ค โˆ’ ๐‘ฃ)) + (๐‘ก ยท (๐‘ฃ / (logโ€˜๐‘ฃ)))))) โˆง ((๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž) โˆง ๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž)) โˆง (๐‘› โˆˆ โ„• โˆง ((๐‘ฆ < ๐‘› โˆง ๐‘› โ‰ค ((๐‘˜ / 2) ยท ๐‘ฆ)) โˆง (absโ€˜((๐‘…โ€˜๐‘›) / ๐‘›)) โ‰ค (๐ธ / 2))))) โ†’ ๐‘ก โˆˆ โ„+)
191 simplrr 775 . . . . . . . 8 (((๐œ‘ โˆง (๐‘ก โˆˆ โ„+ โˆง โˆ€๐‘ฃ โˆˆ (1(,)+โˆž)โˆ€๐‘ค โˆˆ (๐‘ฃ[,](2 ยท ๐‘ฃ))((ฯˆโ€˜๐‘ค) โˆ’ (ฯˆโ€˜๐‘ฃ)) โ‰ค ((2 ยท (๐‘ค โˆ’ ๐‘ฃ)) + (๐‘ก ยท (๐‘ฃ / (logโ€˜๐‘ฃ)))))) โˆง ((๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž) โˆง ๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž)) โˆง (๐‘› โˆˆ โ„• โˆง ((๐‘ฆ < ๐‘› โˆง ๐‘› โ‰ค ((๐‘˜ / 2) ยท ๐‘ฆ)) โˆง (absโ€˜((๐‘…โ€˜๐‘›) / ๐‘›)) โ‰ค (๐ธ / 2))))) โ†’ โˆ€๐‘ฃ โˆˆ (1(,)+โˆž)โˆ€๐‘ค โˆˆ (๐‘ฃ[,](2 ยท ๐‘ฃ))((ฯˆโ€˜๐‘ค) โˆ’ (ฯˆโ€˜๐‘ฃ)) โ‰ค ((2 ยท (๐‘ค โˆ’ ๐‘ฃ)) + (๐‘ก ยท (๐‘ฃ / (logโ€˜๐‘ฃ)))))
192 eqid 2731 . . . . . . . 8 ((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘) = ((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)
193 simprll 776 . . . . . . . 8 (((๐œ‘ โˆง (๐‘ก โˆˆ โ„+ โˆง โˆ€๐‘ฃ โˆˆ (1(,)+โˆž)โˆ€๐‘ค โˆˆ (๐‘ฃ[,](2 ยท ๐‘ฃ))((ฯˆโ€˜๐‘ค) โˆ’ (ฯˆโ€˜๐‘ฃ)) โ‰ค ((2 ยท (๐‘ค โˆ’ ๐‘ฃ)) + (๐‘ก ยท (๐‘ฃ / (logโ€˜๐‘ฃ)))))) โˆง ((๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž) โˆง ๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž)) โˆง (๐‘› โˆˆ โ„• โˆง ((๐‘ฆ < ๐‘› โˆง ๐‘› โ‰ค ((๐‘˜ / 2) ยท ๐‘ฆ)) โˆง (absโ€˜((๐‘…โ€˜๐‘›) / ๐‘›)) โ‰ค (๐ธ / 2))))) โ†’ ๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž))
194 simprlr 777 . . . . . . . 8 (((๐œ‘ โˆง (๐‘ก โˆˆ โ„+ โˆง โˆ€๐‘ฃ โˆˆ (1(,)+โˆž)โˆ€๐‘ค โˆˆ (๐‘ฃ[,](2 ยท ๐‘ฃ))((ฯˆโ€˜๐‘ค) โˆ’ (ฯˆโ€˜๐‘ฃ)) โ‰ค ((2 ยท (๐‘ค โˆ’ ๐‘ฃ)) + (๐‘ก ยท (๐‘ฃ / (logโ€˜๐‘ฃ)))))) โˆง ((๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž) โˆง ๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž)) โˆง (๐‘› โˆˆ โ„• โˆง ((๐‘ฆ < ๐‘› โˆง ๐‘› โ‰ค ((๐‘˜ / 2) ยท ๐‘ฆ)) โˆง (absโ€˜((๐‘…โ€˜๐‘›) / ๐‘›)) โ‰ค (๐ธ / 2))))) โ†’ ๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž))
195 simprrr 779 . . . . . . . 8 (((๐œ‘ โˆง (๐‘ก โˆˆ โ„+ โˆง โˆ€๐‘ฃ โˆˆ (1(,)+โˆž)โˆ€๐‘ค โˆˆ (๐‘ฃ[,](2 ยท ๐‘ฃ))((ฯˆโ€˜๐‘ค) โˆ’ (ฯˆโ€˜๐‘ฃ)) โ‰ค ((2 ยท (๐‘ค โˆ’ ๐‘ฃ)) + (๐‘ก ยท (๐‘ฃ / (logโ€˜๐‘ฃ)))))) โˆง ((๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž) โˆง ๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž)) โˆง (๐‘› โˆˆ โ„• โˆง ((๐‘ฆ < ๐‘› โˆง ๐‘› โ‰ค ((๐‘˜ / 2) ยท ๐‘ฆ)) โˆง (absโ€˜((๐‘…โ€˜๐‘›) / ๐‘›)) โ‰ค (๐ธ / 2))))) โ†’ ((๐‘ฆ < ๐‘› โˆง ๐‘› โ‰ค ((๐‘˜ / 2) ยท ๐‘ฆ)) โˆง (absโ€˜((๐‘…โ€˜๐‘›) / ๐‘›)) โ‰ค (๐ธ / 2)))
196173, 175, 176, 185, 186, 69, 51, 187, 188, 189, 190, 191, 192, 193, 194, 195pntibndlem2 27327 . . . . . . 7 (((๐œ‘ โˆง (๐‘ก โˆˆ โ„+ โˆง โˆ€๐‘ฃ โˆˆ (1(,)+โˆž)โˆ€๐‘ค โˆˆ (๐‘ฃ[,](2 ยท ๐‘ฃ))((ฯˆโ€˜๐‘ค) โˆ’ (ฯˆโ€˜๐‘ฃ)) โ‰ค ((2 ยท (๐‘ค โˆ’ ๐‘ฃ)) + (๐‘ก ยท (๐‘ฃ / (logโ€˜๐‘ฃ)))))) โˆง ((๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž) โˆง ๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž)) โˆง (๐‘› โˆˆ โ„• โˆง ((๐‘ฆ < ๐‘› โˆง ๐‘› โ‰ค ((๐‘˜ / 2) ยท ๐‘ฆ)) โˆง (absโ€˜((๐‘…โ€˜๐‘›) / ๐‘›)) โ‰ค (๐ธ / 2))))) โ†’ โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ))
197196anassrs 467 . . . . . 6 ((((๐œ‘ โˆง (๐‘ก โˆˆ โ„+ โˆง โˆ€๐‘ฃ โˆˆ (1(,)+โˆž)โˆ€๐‘ค โˆˆ (๐‘ฃ[,](2 ยท ๐‘ฃ))((ฯˆโ€˜๐‘ค) โˆ’ (ฯˆโ€˜๐‘ฃ)) โ‰ค ((2 ยท (๐‘ค โˆ’ ๐‘ฃ)) + (๐‘ก ยท (๐‘ฃ / (logโ€˜๐‘ฃ)))))) โˆง (๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž) โˆง ๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž))) โˆง (๐‘› โˆˆ โ„• โˆง ((๐‘ฆ < ๐‘› โˆง ๐‘› โ‰ค ((๐‘˜ / 2) ยท ๐‘ฆ)) โˆง (absโ€˜((๐‘…โ€˜๐‘›) / ๐‘›)) โ‰ค (๐ธ / 2)))) โ†’ โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ))
198172, 197rexlimddv 3160 . . . . 5 (((๐œ‘ โˆง (๐‘ก โˆˆ โ„+ โˆง โˆ€๐‘ฃ โˆˆ (1(,)+โˆž)โˆ€๐‘ค โˆˆ (๐‘ฃ[,](2 ยท ๐‘ฃ))((ฯˆโ€˜๐‘ค) โˆ’ (ฯˆโ€˜๐‘ฃ)) โ‰ค ((2 ยท (๐‘ค โˆ’ ๐‘ฃ)) + (๐‘ก ยท (๐‘ฃ / (logโ€˜๐‘ฃ)))))) โˆง (๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž) โˆง ๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž))) โ†’ โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ))
199198ralrimivva 3199 . . . 4 ((๐œ‘ โˆง (๐‘ก โˆˆ โ„+ โˆง โˆ€๐‘ฃ โˆˆ (1(,)+โˆž)โˆ€๐‘ค โˆˆ (๐‘ฃ[,](2 ยท ๐‘ฃ))((ฯˆโ€˜๐‘ค) โˆ’ (ฯˆโ€˜๐‘ฃ)) โ‰ค ((2 ยท (๐‘ค โˆ’ ๐‘ฃ)) + (๐‘ก ยท (๐‘ฃ / (logโ€˜๐‘ฃ)))))) โ†’ โˆ€๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž)โˆ€๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ))
200 oveq1 7419 . . . . . . 7 (๐‘ฅ = ((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘) โ†’ (๐‘ฅ(,)+โˆž) = (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž))
201200raleqdv 3324 . . . . . 6 (๐‘ฅ = ((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘) โ†’ (โˆ€๐‘ฆ โˆˆ (๐‘ฅ(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ) โ†” โˆ€๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ)))
202201ralbidv 3176 . . . . 5 (๐‘ฅ = ((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘) โ†’ (โˆ€๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ฅ(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ) โ†” โˆ€๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž)โˆ€๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ)))
203202rspcev 3613 . . . 4 ((((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘) โˆˆ โ„+ โˆง โˆ€๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž)โˆ€๐‘ฆ โˆˆ (((expโ€˜(๐‘ก / (๐ธ / 4))) + ๐‘)(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ)) โ†’ โˆƒ๐‘ฅ โˆˆ โ„+ โˆ€๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ฅ(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ))
20425, 199, 203syl2anc 583 . . 3 ((๐œ‘ โˆง (๐‘ก โˆˆ โ„+ โˆง โˆ€๐‘ฃ โˆˆ (1(,)+โˆž)โˆ€๐‘ค โˆˆ (๐‘ฃ[,](2 ยท ๐‘ฃ))((ฯˆโ€˜๐‘ค) โˆ’ (ฯˆโ€˜๐‘ฃ)) โ‰ค ((2 ยท (๐‘ค โˆ’ ๐‘ฃ)) + (๐‘ก ยท (๐‘ฃ / (logโ€˜๐‘ฃ)))))) โ†’ โˆƒ๐‘ฅ โˆˆ โ„+ โˆ€๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ฅ(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ))
205204rexlimdvaa 3155 . 2 (๐œ‘ โ†’ (โˆƒ๐‘ก โˆˆ โ„+ โˆ€๐‘ฃ โˆˆ (1(,)+โˆž)โˆ€๐‘ค โˆˆ (๐‘ฃ[,](2 ยท ๐‘ฃ))((ฯˆโ€˜๐‘ค) โˆ’ (ฯˆโ€˜๐‘ฃ)) โ‰ค ((2 ยท (๐‘ค โˆ’ ๐‘ฃ)) + (๐‘ก ยท (๐‘ฃ / (logโ€˜๐‘ฃ)))) โ†’ โˆƒ๐‘ฅ โˆˆ โ„+ โˆ€๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ฅ(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ)))
2064, 205mpi 20 1 (๐œ‘ โ†’ โˆƒ๐‘ฅ โˆˆ โ„+ โˆ€๐‘˜ โˆˆ ((expโ€˜(๐ถ / ๐ธ))[,)+โˆž)โˆ€๐‘ฆ โˆˆ (๐‘ฅ(,)+โˆž)โˆƒ๐‘ง โˆˆ โ„+ ((๐‘ฆ < ๐‘ง โˆง ((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง) < (๐‘˜ ยท ๐‘ฆ)) โˆง โˆ€๐‘ข โˆˆ (๐‘ง[,]((1 + (๐ฟ ยท ๐ธ)) ยท ๐‘ง))(absโ€˜((๐‘…โ€˜๐‘ข) / ๐‘ข)) โ‰ค ๐ธ))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 395   = wceq 1540   โˆˆ wcel 2105   โ‰  wne 2939  โˆ€wral 3060  โˆƒwrex 3069   class class class wbr 5149   โ†ฆ cmpt 5232  โ€˜cfv 6544  (class class class)co 7412  โ„‚cc 11111  โ„cr 11112  0cc0 11113  1c1 11114   + caddc 11116   ยท cmul 11118  +โˆžcpnf 11250  โ„*cxr 11252   < clt 11253   โ‰ค cle 11254   โˆ’ cmin 11449   / cdiv 11876  โ„•cn 12217  2c2 12272  3c3 12273  4c4 12274  โ„+crp 12979  (,)cioo 13329  [,)cico 13331  [,]cicc 13332  abscabs 15186  expce 16010  logclog 26296  ฯˆcchp 26830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-inf2 9639  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190  ax-pre-sup 11191  ax-addf 11192  ax-mulf 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7673  df-om 7859  df-1st 7978  df-2nd 7979  df-supp 8150  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-2o 8470  df-oadd 8473  df-er 8706  df-map 8825  df-pm 8826  df-ixp 8895  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-fsupp 9365  df-fi 9409  df-sup 9440  df-inf 9441  df-oi 9508  df-dju 9899  df-card 9937  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-6 12284  df-7 12285  df-8 12286  df-9 12287  df-n0 12478  df-xnn0 12550  df-z 12564  df-dec 12683  df-uz 12828  df-q 12938  df-rp 12980  df-xneg 13097  df-xadd 13098  df-xmul 13099  df-ioo 13333  df-ioc 13334  df-ico 13335  df-icc 13336  df-fz 13490  df-fzo 13633  df-fl 13762  df-mod 13840  df-seq 13972  df-exp 14033  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15019  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-limsup 15420  df-clim 15437  df-rlim 15438  df-o1 15439  df-lo1 15440  df-sum 15638  df-ef 16016  df-e 16017  df-sin 16018  df-cos 16019  df-tan 16020  df-pi 16021  df-dvds 16203  df-gcd 16441  df-prm 16614  df-pc 16775  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-starv 17217  df-sca 17218  df-vsca 17219  df-ip 17220  df-tset 17221  df-ple 17222  df-ds 17224  df-unif 17225  df-hom 17226  df-cco 17227  df-rest 17373  df-topn 17374  df-0g 17392  df-gsum 17393  df-topgen 17394  df-pt 17395  df-prds 17398  df-xrs 17453  df-qtop 17458  df-imas 17459  df-xps 17461  df-mre 17535  df-mrc 17536  df-acs 17538  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-submnd 18707  df-mulg 18988  df-cntz 19223  df-cmn 19692  df-psmet 21137  df-xmet 21138  df-met 21139  df-bl 21140  df-mopn 21141  df-fbas 21142  df-fg 21143  df-cnfld 21146  df-top 22617  df-topon 22634  df-topsp 22656  df-bases 22670  df-cld 22744  df-ntr 22745  df-cls 22746  df-nei 22823  df-lp 22861  df-perf 22862  df-cn 22952  df-cnp 22953  df-haus 23040  df-cmp 23112  df-tx 23287  df-hmeo 23480  df-fil 23571  df-fm 23663  df-flim 23664  df-flf 23665  df-xms 24047  df-ms 24048  df-tms 24049  df-cncf 24619  df-limc 25616  df-dv 25617  df-ulm 26122  df-log 26298  df-cxp 26299  df-atan 26605  df-em 26730  df-cht 26834  df-vma 26835  df-chp 26836  df-ppi 26837  df-mu 26838
This theorem is referenced by:  pntibnd  27329
  Copyright terms: Public domain W3C validator