Step | Hyp | Ref
| Expression |
1 | | 2re 12047 |
. . 3
⊢ 2 ∈
ℝ |
2 | | 1le2 12182 |
. . 3
⊢ 1 ≤
2 |
3 | | chpdifbnd 26701 |
. . 3
⊢ ((2
∈ ℝ ∧ 1 ≤ 2) → ∃𝑡 ∈ ℝ+ ∀𝑣 ∈
(1(,)+∞)∀𝑤
∈ (𝑣[,](2 ·
𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤 − 𝑣)) + (𝑡 · (𝑣 / (log‘𝑣))))) |
4 | 1, 2, 3 | mp2an 689 |
. 2
⊢
∃𝑡 ∈
ℝ+ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤 − 𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))) |
5 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → 𝑡 ∈
ℝ+) |
6 | | ioossre 13139 |
. . . . . . . . . . . . 13
⊢ (0(,)1)
⊆ ℝ |
7 | | pntibndlem3.4 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐸 ∈ (0(,)1)) |
8 | 6, 7 | sselid 3924 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐸 ∈ ℝ) |
9 | | eliooord 13137 |
. . . . . . . . . . . . . 14
⊢ (𝐸 ∈ (0(,)1) → (0 <
𝐸 ∧ 𝐸 < 1)) |
10 | 7, 9 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0 < 𝐸 ∧ 𝐸 < 1)) |
11 | 10 | simpld 495 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 < 𝐸) |
12 | 8, 11 | elrpd 12768 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
13 | 12 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → 𝐸 ∈
ℝ+) |
14 | | 4nn 12056 |
. . . . . . . . . . 11
⊢ 4 ∈
ℕ |
15 | | nnrp 12740 |
. . . . . . . . . . 11
⊢ (4 ∈
ℕ → 4 ∈ ℝ+) |
16 | 14, 15 | ax-mp 5 |
. . . . . . . . . 10
⊢ 4 ∈
ℝ+ |
17 | | rpdivcl 12754 |
. . . . . . . . . 10
⊢ ((𝐸 ∈ ℝ+
∧ 4 ∈ ℝ+) → (𝐸 / 4) ∈
ℝ+) |
18 | 13, 16, 17 | sylancl 586 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (𝐸 / 4) ∈
ℝ+) |
19 | 5, 18 | rpdivcld 12788 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (𝑡 / (𝐸 / 4)) ∈
ℝ+) |
20 | 19 | rpred 12771 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (𝑡 / (𝐸 / 4)) ∈ ℝ) |
21 | 20 | rpefcld 15812 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) →
(exp‘(𝑡 / (𝐸 / 4))) ∈
ℝ+) |
22 | | pntibndlem3.6 |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈
ℝ+) |
23 | 22 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → 𝑍 ∈
ℝ+) |
24 | 21, 23 | rpaddcld 12786 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) →
((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) ∈
ℝ+) |
25 | 24 | adantrr 714 |
. . . 4
⊢ ((𝜑 ∧ (𝑡 ∈ ℝ+ ∧
∀𝑣 ∈
(1(,)+∞)∀𝑤
∈ (𝑣[,](2 ·
𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤 − 𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) ∈
ℝ+) |
26 | | breq2 5083 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑛 → (𝑣 < 𝑖 ↔ 𝑣 < 𝑛)) |
27 | | breq1 5082 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑛 → (𝑖 ≤ ((𝑘 / 2) · 𝑣) ↔ 𝑛 ≤ ((𝑘 / 2) · 𝑣))) |
28 | 26, 27 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑛 → ((𝑣 < 𝑖 ∧ 𝑖 ≤ ((𝑘 / 2) · 𝑣)) ↔ (𝑣 < 𝑛 ∧ 𝑛 ≤ ((𝑘 / 2) · 𝑣)))) |
29 | | fveq2 6771 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑛 → (𝑅‘𝑖) = (𝑅‘𝑛)) |
30 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑛 → 𝑖 = 𝑛) |
31 | 29, 30 | oveq12d 7289 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑛 → ((𝑅‘𝑖) / 𝑖) = ((𝑅‘𝑛) / 𝑛)) |
32 | 31 | fveq2d 6775 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑛 → (abs‘((𝑅‘𝑖) / 𝑖)) = (abs‘((𝑅‘𝑛) / 𝑛))) |
33 | 32 | breq1d 5089 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑛 → ((abs‘((𝑅‘𝑖) / 𝑖)) ≤ (𝐸 / 2) ↔ (abs‘((𝑅‘𝑛) / 𝑛)) ≤ (𝐸 / 2))) |
34 | 28, 33 | anbi12d 631 |
. . . . . . . . 9
⊢ (𝑖 = 𝑛 → (((𝑣 < 𝑖 ∧ 𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅‘𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ((𝑣 < 𝑛 ∧ 𝑛 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅‘𝑛) / 𝑛)) ≤ (𝐸 / 2)))) |
35 | 34 | cbvrexvw 3382 |
. . . . . . . 8
⊢
(∃𝑖 ∈
ℕ ((𝑣 < 𝑖 ∧ 𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅‘𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ∃𝑛 ∈ ℕ ((𝑣 < 𝑛 ∧ 𝑛 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅‘𝑛) / 𝑛)) ≤ (𝐸 / 2))) |
36 | | breq1 5082 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑦 → (𝑣 < 𝑛 ↔ 𝑦 < 𝑛)) |
37 | | oveq2 7279 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑦 → ((𝑘 / 2) · 𝑣) = ((𝑘 / 2) · 𝑦)) |
38 | 37 | breq2d 5091 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑦 → (𝑛 ≤ ((𝑘 / 2) · 𝑣) ↔ 𝑛 ≤ ((𝑘 / 2) · 𝑦))) |
39 | 36, 38 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑦 → ((𝑣 < 𝑛 ∧ 𝑛 ≤ ((𝑘 / 2) · 𝑣)) ↔ (𝑦 < 𝑛 ∧ 𝑛 ≤ ((𝑘 / 2) · 𝑦)))) |
40 | 39 | anbi1d 630 |
. . . . . . . . 9
⊢ (𝑣 = 𝑦 → (((𝑣 < 𝑛 ∧ 𝑛 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅‘𝑛) / 𝑛)) ≤ (𝐸 / 2)) ↔ ((𝑦 < 𝑛 ∧ 𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅‘𝑛) / 𝑛)) ≤ (𝐸 / 2)))) |
41 | 40 | rexbidv 3228 |
. . . . . . . 8
⊢ (𝑣 = 𝑦 → (∃𝑛 ∈ ℕ ((𝑣 < 𝑛 ∧ 𝑛 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅‘𝑛) / 𝑛)) ≤ (𝐸 / 2)) ↔ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛 ∧ 𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅‘𝑛) / 𝑛)) ≤ (𝐸 / 2)))) |
42 | 35, 41 | syl5bb 283 |
. . . . . . 7
⊢ (𝑣 = 𝑦 → (∃𝑖 ∈ ℕ ((𝑣 < 𝑖 ∧ 𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅‘𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛 ∧ 𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅‘𝑛) / 𝑛)) ≤ (𝐸 / 2)))) |
43 | | oveq1 7278 |
. . . . . . . . . . . . 13
⊢ (𝑚 = (𝑘 / 2) → (𝑚 · 𝑣) = ((𝑘 / 2) · 𝑣)) |
44 | 43 | breq2d 5091 |
. . . . . . . . . . . 12
⊢ (𝑚 = (𝑘 / 2) → (𝑖 ≤ (𝑚 · 𝑣) ↔ 𝑖 ≤ ((𝑘 / 2) · 𝑣))) |
45 | 44 | anbi2d 629 |
. . . . . . . . . . 11
⊢ (𝑚 = (𝑘 / 2) → ((𝑣 < 𝑖 ∧ 𝑖 ≤ (𝑚 · 𝑣)) ↔ (𝑣 < 𝑖 ∧ 𝑖 ≤ ((𝑘 / 2) · 𝑣)))) |
46 | 45 | anbi1d 630 |
. . . . . . . . . 10
⊢ (𝑚 = (𝑘 / 2) → (((𝑣 < 𝑖 ∧ 𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅‘𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ((𝑣 < 𝑖 ∧ 𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅‘𝑖) / 𝑖)) ≤ (𝐸 / 2)))) |
47 | 46 | rexbidv 3228 |
. . . . . . . . 9
⊢ (𝑚 = (𝑘 / 2) → (∃𝑖 ∈ ℕ ((𝑣 < 𝑖 ∧ 𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅‘𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ∃𝑖 ∈ ℕ ((𝑣 < 𝑖 ∧ 𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅‘𝑖) / 𝑖)) ≤ (𝐸 / 2)))) |
48 | 47 | ralbidv 3123 |
. . . . . . . 8
⊢ (𝑚 = (𝑘 / 2) → (∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖 ∧ 𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅‘𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖 ∧ 𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅‘𝑖) / 𝑖)) ≤ (𝐸 / 2)))) |
49 | | pntibndlem3.5 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑚 ∈ (𝐾[,)+∞)∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖 ∧ 𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅‘𝑖) / 𝑖)) ≤ (𝐸 / 2))) |
50 | 49 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧
∀𝑣 ∈
(1(,)+∞)∀𝑤
∈ (𝑣[,](2 ·
𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤 − 𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ∀𝑚 ∈ (𝐾[,)+∞)∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖 ∧ 𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅‘𝑖) / 𝑖)) ≤ (𝐸 / 2))) |
51 | | pntibndlem3.c |
. . . . . . . . . . . . . . . . 17
⊢ 𝐶 = ((2 · 𝐵) +
(log‘2)) |
52 | | pntibndlem3.3 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐵 ∈
ℝ+) |
53 | 52 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → 𝐵 ∈
ℝ+) |
54 | 53 | rpred 12771 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → 𝐵 ∈
ℝ) |
55 | | remulcl 10957 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((2
∈ ℝ ∧ 𝐵
∈ ℝ) → (2 · 𝐵) ∈ ℝ) |
56 | 1, 54, 55 | sylancr 587 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (2
· 𝐵) ∈
ℝ) |
57 | | 2rp 12734 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ∈
ℝ+ |
58 | | relogcl 25729 |
. . . . . . . . . . . . . . . . . . 19
⊢ (2 ∈
ℝ+ → (log‘2) ∈ ℝ) |
59 | 57, 58 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢
(log‘2) ∈ ℝ |
60 | | readdcl 10955 |
. . . . . . . . . . . . . . . . . 18
⊢ (((2
· 𝐵) ∈ ℝ
∧ (log‘2) ∈ ℝ) → ((2 · 𝐵) + (log‘2)) ∈
ℝ) |
61 | 56, 59, 60 | sylancl 586 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → ((2
· 𝐵) +
(log‘2)) ∈ ℝ) |
62 | 51, 61 | eqeltrid 2845 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → 𝐶 ∈
ℝ) |
63 | 62, 13 | rerpdivcld 12802 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (𝐶 / 𝐸) ∈ ℝ) |
64 | 63 | reefcld 15795 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) →
(exp‘(𝐶 / 𝐸)) ∈
ℝ) |
65 | | elicopnf 13176 |
. . . . . . . . . . . . . 14
⊢
((exp‘(𝐶 /
𝐸)) ∈ ℝ →
(𝑘 ∈
((exp‘(𝐶 / 𝐸))[,)+∞) ↔ (𝑘 ∈ ℝ ∧
(exp‘(𝐶 / 𝐸)) ≤ 𝑘))) |
66 | 64, 65 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ↔ (𝑘 ∈ ℝ ∧ (exp‘(𝐶 / 𝐸)) ≤ 𝑘))) |
67 | 66 | simprbda 499 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → 𝑘 ∈ ℝ) |
68 | 67 | rehalfcld 12220 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (𝑘 / 2) ∈ ℝ) |
69 | | pntibndlem3.k |
. . . . . . . . . . . 12
⊢ 𝐾 = (exp‘(𝐵 / (𝐸 / 2))) |
70 | 13 | rphalfcld 12783 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (𝐸 / 2) ∈
ℝ+) |
71 | 54, 70 | rerpdivcld 12802 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (𝐵 / (𝐸 / 2)) ∈ ℝ) |
72 | 71 | reefcld 15795 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) →
(exp‘(𝐵 / (𝐸 / 2))) ∈
ℝ) |
73 | | remulcl 10957 |
. . . . . . . . . . . . . . . 16
⊢
(((exp‘(𝐵 /
(𝐸 / 2))) ∈ ℝ
∧ 2 ∈ ℝ) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ∈
ℝ) |
74 | 72, 1, 73 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) →
((exp‘(𝐵 / (𝐸 / 2))) · 2) ∈
ℝ) |
75 | 74 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ∈
ℝ) |
76 | 64 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (exp‘(𝐶 / 𝐸)) ∈ ℝ) |
77 | 71 | recnd 11004 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (𝐵 / (𝐸 / 2)) ∈ ℂ) |
78 | 59 | recni 10990 |
. . . . . . . . . . . . . . . . . 18
⊢
(log‘2) ∈ ℂ |
79 | | efadd 15801 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐵 / (𝐸 / 2)) ∈ ℂ ∧ (log‘2)
∈ ℂ) → (exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) =
((exp‘(𝐵 / (𝐸 / 2))) ·
(exp‘(log‘2)))) |
80 | 77, 78, 79 | sylancl 586 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) →
(exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) =
((exp‘(𝐵 / (𝐸 / 2))) ·
(exp‘(log‘2)))) |
81 | | reeflog 25734 |
. . . . . . . . . . . . . . . . . . 19
⊢ (2 ∈
ℝ+ → (exp‘(log‘2)) = 2) |
82 | 57, 81 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢
(exp‘(log‘2)) = 2 |
83 | 82 | oveq2i 7282 |
. . . . . . . . . . . . . . . . 17
⊢
((exp‘(𝐵 /
(𝐸 / 2))) ·
(exp‘(log‘2))) = ((exp‘(𝐵 / (𝐸 / 2))) · 2) |
84 | 80, 83 | eqtrdi 2796 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) →
(exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) =
((exp‘(𝐵 / (𝐸 / 2))) ·
2)) |
85 | 59 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) →
(log‘2) ∈ ℝ) |
86 | | rerpdivcl 12759 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((log‘2) ∈ ℝ ∧ 𝐸 ∈ ℝ+) →
((log‘2) / 𝐸) ∈
ℝ) |
87 | 59, 13, 86 | sylancr 587 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) →
((log‘2) / 𝐸) ∈
ℝ) |
88 | 78 | div1i 11703 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((log‘2) / 1) = (log‘2) |
89 | 10 | simprd 496 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐸 < 1) |
90 | 89 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → 𝐸 < 1) |
91 | 8 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → 𝐸 ∈
ℝ) |
92 | | 1re 10976 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 1 ∈
ℝ |
93 | | ltle 11064 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐸 ∈ ℝ ∧ 1 ∈
ℝ) → (𝐸 < 1
→ 𝐸 ≤
1)) |
94 | 91, 92, 93 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (𝐸 < 1 → 𝐸 ≤ 1)) |
95 | 90, 94 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → 𝐸 ≤ 1) |
96 | 13 | rpregt0d 12777 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (𝐸 ∈ ℝ ∧ 0 <
𝐸)) |
97 | | 1rp 12733 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 1 ∈
ℝ+ |
98 | | rpregt0 12743 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (1 ∈
ℝ+ → (1 ∈ ℝ ∧ 0 < 1)) |
99 | 97, 98 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (1 ∈
ℝ ∧ 0 < 1)) |
100 | | 1lt2 12144 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 1 <
2 |
101 | | rplogcl 25757 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((2
∈ ℝ ∧ 1 < 2) → (log‘2) ∈
ℝ+) |
102 | 1, 100, 101 | mp2an 689 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(log‘2) ∈ ℝ+ |
103 | | rpregt0 12743 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((log‘2) ∈ ℝ+ → ((log‘2) ∈
ℝ ∧ 0 < (log‘2))) |
104 | 102, 103 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) →
((log‘2) ∈ ℝ ∧ 0 < (log‘2))) |
105 | | lediv2 11865 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐸 ∈ ℝ ∧ 0 <
𝐸) ∧ (1 ∈ ℝ
∧ 0 < 1) ∧ ((log‘2) ∈ ℝ ∧ 0 <
(log‘2))) → (𝐸
≤ 1 ↔ ((log‘2) / 1) ≤ ((log‘2) / 𝐸))) |
106 | 96, 99, 104, 105 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (𝐸 ≤ 1 ↔ ((log‘2) /
1) ≤ ((log‘2) / 𝐸))) |
107 | 95, 106 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) →
((log‘2) / 1) ≤ ((log‘2) / 𝐸)) |
108 | 88, 107 | eqbrtrrid 5115 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) →
(log‘2) ≤ ((log‘2) / 𝐸)) |
109 | 85, 87, 71, 108 | leadd2dd 11590 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → ((𝐵 / (𝐸 / 2)) + (log‘2)) ≤ ((𝐵 / (𝐸 / 2)) + ((log‘2) / 𝐸))) |
110 | 51 | oveq1i 7281 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐶 / 𝐸) = (((2 · 𝐵) + (log‘2)) / 𝐸) |
111 | 56 | recnd 11004 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (2
· 𝐵) ∈
ℂ) |
112 | 78 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) →
(log‘2) ∈ ℂ) |
113 | | rpcnne0 12747 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐸 ∈ ℝ+
→ (𝐸 ∈ ℂ
∧ 𝐸 ≠
0)) |
114 | 13, 113 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0)) |
115 | | divdir 11658 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((2
· 𝐵) ∈ ℂ
∧ (log‘2) ∈ ℂ ∧ (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0)) → (((2 · 𝐵) + (log‘2)) / 𝐸) = (((2 · 𝐵) / 𝐸) + ((log‘2) / 𝐸))) |
116 | 111, 112,
114, 115 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (((2
· 𝐵) +
(log‘2)) / 𝐸) = (((2
· 𝐵) / 𝐸) + ((log‘2) / 𝐸))) |
117 | 110, 116 | eqtrid 2792 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (𝐶 / 𝐸) = (((2 · 𝐵) / 𝐸) + ((log‘2) / 𝐸))) |
118 | 1 | recni 10990 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 2 ∈
ℂ |
119 | 54 | recnd 11004 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → 𝐵 ∈
ℂ) |
120 | | mulcom 10958 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((2
∈ ℂ ∧ 𝐵
∈ ℂ) → (2 · 𝐵) = (𝐵 · 2)) |
121 | 118, 119,
120 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (2
· 𝐵) = (𝐵 · 2)) |
122 | 121 | oveq1d 7286 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → ((2
· 𝐵) / 𝐸) = ((𝐵 · 2) / 𝐸)) |
123 | | rpcnne0 12747 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (2 ∈
ℝ+ → (2 ∈ ℂ ∧ 2 ≠ 0)) |
124 | 57, 123 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (2 ∈
ℂ ∧ 2 ≠ 0)) |
125 | | divdiv2 11687 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐵 ∈ ℂ ∧ (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0) ∧ (2 ∈ ℂ
∧ 2 ≠ 0)) → (𝐵
/ (𝐸 / 2)) = ((𝐵 · 2) / 𝐸)) |
126 | 119, 114,
124, 125 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (𝐵 / (𝐸 / 2)) = ((𝐵 · 2) / 𝐸)) |
127 | 122, 126 | eqtr4d 2783 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → ((2
· 𝐵) / 𝐸) = (𝐵 / (𝐸 / 2))) |
128 | 127 | oveq1d 7286 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (((2
· 𝐵) / 𝐸) + ((log‘2) / 𝐸)) = ((𝐵 / (𝐸 / 2)) + ((log‘2) / 𝐸))) |
129 | 117, 128 | eqtrd 2780 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (𝐶 / 𝐸) = ((𝐵 / (𝐸 / 2)) + ((log‘2) / 𝐸))) |
130 | 109, 129 | breqtrrd 5107 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → ((𝐵 / (𝐸 / 2)) + (log‘2)) ≤ (𝐶 / 𝐸)) |
131 | | readdcl 10955 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐵 / (𝐸 / 2)) ∈ ℝ ∧ (log‘2)
∈ ℝ) → ((𝐵
/ (𝐸 / 2)) + (log‘2))
∈ ℝ) |
132 | 71, 59, 131 | sylancl 586 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → ((𝐵 / (𝐸 / 2)) + (log‘2)) ∈
ℝ) |
133 | | efle 15825 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐵 / (𝐸 / 2)) + (log‘2)) ∈ ℝ ∧
(𝐶 / 𝐸) ∈ ℝ) → (((𝐵 / (𝐸 / 2)) + (log‘2)) ≤ (𝐶 / 𝐸) ↔ (exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) ≤
(exp‘(𝐶 / 𝐸)))) |
134 | 132, 63, 133 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → (((𝐵 / (𝐸 / 2)) + (log‘2)) ≤ (𝐶 / 𝐸) ↔ (exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) ≤
(exp‘(𝐶 / 𝐸)))) |
135 | 130, 134 | mpbid 231 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) →
(exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) ≤
(exp‘(𝐶 / 𝐸))) |
136 | 84, 135 | eqbrtrrd 5103 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) →
((exp‘(𝐵 / (𝐸 / 2))) · 2) ≤
(exp‘(𝐶 / 𝐸))) |
137 | 136 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ≤ (exp‘(𝐶 / 𝐸))) |
138 | 66 | simplbda 500 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (exp‘(𝐶 / 𝐸)) ≤ 𝑘) |
139 | 75, 76, 67, 137, 138 | letrd 11132 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ≤ 𝑘) |
140 | 72 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (exp‘(𝐵 / (𝐸 / 2))) ∈ ℝ) |
141 | | rpregt0 12743 |
. . . . . . . . . . . . . . 15
⊢ (2 ∈
ℝ+ → (2 ∈ ℝ ∧ 0 < 2)) |
142 | 57, 141 | mp1i 13 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (2 ∈ ℝ
∧ 0 < 2)) |
143 | | lemuldiv 11855 |
. . . . . . . . . . . . . 14
⊢
(((exp‘(𝐵 /
(𝐸 / 2))) ∈ ℝ
∧ 𝑘 ∈ ℝ
∧ (2 ∈ ℝ ∧ 0 < 2)) → (((exp‘(𝐵 / (𝐸 / 2))) · 2) ≤ 𝑘 ↔ (exp‘(𝐵 / (𝐸 / 2))) ≤ (𝑘 / 2))) |
144 | 140, 67, 142, 143 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (((exp‘(𝐵 / (𝐸 / 2))) · 2) ≤ 𝑘 ↔ (exp‘(𝐵 / (𝐸 / 2))) ≤ (𝑘 / 2))) |
145 | 139, 144 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (exp‘(𝐵 / (𝐸 / 2))) ≤ (𝑘 / 2)) |
146 | 69, 145 | eqbrtrid 5114 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → 𝐾 ≤ (𝑘 / 2)) |
147 | 69, 140 | eqeltrid 2845 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → 𝐾 ∈ ℝ) |
148 | | elicopnf 13176 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ ℝ → ((𝑘 / 2) ∈ (𝐾[,)+∞) ↔ ((𝑘 / 2) ∈ ℝ ∧ 𝐾 ≤ (𝑘 / 2)))) |
149 | 147, 148 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → ((𝑘 / 2) ∈ (𝐾[,)+∞) ↔ ((𝑘 / 2) ∈ ℝ ∧ 𝐾 ≤ (𝑘 / 2)))) |
150 | 68, 146, 149 | mpbir2and 710 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (𝑘 / 2) ∈ (𝐾[,)+∞)) |
151 | 150 | adantrr 714 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → (𝑘 / 2) ∈ (𝐾[,)+∞)) |
152 | 151 | adantlrr 718 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧
∀𝑣 ∈
(1(,)+∞)∀𝑤
∈ (𝑣[,](2 ·
𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤 − 𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → (𝑘 / 2) ∈ (𝐾[,)+∞)) |
153 | 48, 50, 152 | rspcdva 3563 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧
∀𝑣 ∈
(1(,)+∞)∀𝑤
∈ (𝑣[,](2 ·
𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤 − 𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖 ∧ 𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅‘𝑖) / 𝑖)) ≤ (𝐸 / 2))) |
154 | | elioore 13108 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞) → 𝑦 ∈ ℝ) |
155 | 154 | ad2antll 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑦 ∈ ℝ) |
156 | 23 | rpred 12771 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → 𝑍 ∈
ℝ) |
157 | 156 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑍 ∈ ℝ) |
158 | 20 | reefcld 15795 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) →
(exp‘(𝑡 / (𝐸 / 4))) ∈
ℝ) |
159 | 158, 156 | readdcld 11005 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) →
((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) ∈ ℝ) |
160 | 159 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) ∈ ℝ) |
161 | 156, 21 | ltaddrp2d 12805 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ+) → 𝑍 < ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)) |
162 | 161 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑍 < ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)) |
163 | | eliooord 13137 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞) → (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) < 𝑦 ∧ 𝑦 < +∞)) |
164 | 163 | simpld 495 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) < 𝑦) |
165 | 164 | ad2antll 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) < 𝑦) |
166 | 157, 160,
155, 162, 165 | lttrd 11136 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑍 < 𝑦) |
167 | 157 | rexrd 11026 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑍 ∈
ℝ*) |
168 | | elioopnf 13174 |
. . . . . . . . . 10
⊢ (𝑍 ∈ ℝ*
→ (𝑦 ∈ (𝑍(,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑍 < 𝑦))) |
169 | 167, 168 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → (𝑦 ∈ (𝑍(,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑍 < 𝑦))) |
170 | 155, 166,
169 | mpbir2and 710 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑦 ∈ (𝑍(,)+∞)) |
171 | 170 | adantlrr 718 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧
∀𝑣 ∈
(1(,)+∞)∀𝑤
∈ (𝑣[,](2 ·
𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤 − 𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑦 ∈ (𝑍(,)+∞)) |
172 | 42, 153, 171 | rspcdva 3563 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧
∀𝑣 ∈
(1(,)+∞)∀𝑤
∈ (𝑣[,](2 ·
𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤 − 𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ∃𝑛 ∈ ℕ ((𝑦 < 𝑛 ∧ 𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅‘𝑛) / 𝑛)) ≤ (𝐸 / 2))) |
173 | | pntibnd.r |
. . . . . . . 8
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦
((ψ‘𝑎) −
𝑎)) |
174 | | pntibndlem1.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
175 | 174 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧
∀𝑣 ∈
(1(,)+∞)∀𝑤
∈ (𝑣[,](2 ·
𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤 − 𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛 ∧ 𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅‘𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝐴 ∈
ℝ+) |
176 | | pntibndlem1.l |
. . . . . . . 8
⊢ 𝐿 = ((1 / 4) / (𝐴 + 3)) |
177 | | pntibndlem3.2 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ ℝ+
(abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) |
178 | | fveq2 6771 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑣 → (𝑅‘𝑥) = (𝑅‘𝑣)) |
179 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑣 → 𝑥 = 𝑣) |
180 | 178, 179 | oveq12d 7289 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑣 → ((𝑅‘𝑥) / 𝑥) = ((𝑅‘𝑣) / 𝑣)) |
181 | 180 | fveq2d 6775 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑣 → (abs‘((𝑅‘𝑥) / 𝑥)) = (abs‘((𝑅‘𝑣) / 𝑣))) |
182 | 181 | breq1d 5089 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑣 → ((abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴 ↔ (abs‘((𝑅‘𝑣) / 𝑣)) ≤ 𝐴)) |
183 | 182 | cbvralvw 3381 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
ℝ+ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴 ↔ ∀𝑣 ∈ ℝ+
(abs‘((𝑅‘𝑣) / 𝑣)) ≤ 𝐴) |
184 | 177, 183 | sylib 217 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑣 ∈ ℝ+
(abs‘((𝑅‘𝑣) / 𝑣)) ≤ 𝐴) |
185 | 184 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧
∀𝑣 ∈
(1(,)+∞)∀𝑤
∈ (𝑣[,](2 ·
𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤 − 𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛 ∧ 𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅‘𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → ∀𝑣 ∈ ℝ+
(abs‘((𝑅‘𝑣) / 𝑣)) ≤ 𝐴) |
186 | 52 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧
∀𝑣 ∈
(1(,)+∞)∀𝑤
∈ (𝑣[,](2 ·
𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤 − 𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛 ∧ 𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅‘𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝐵 ∈
ℝ+) |
187 | 7 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧
∀𝑣 ∈
(1(,)+∞)∀𝑤
∈ (𝑣[,](2 ·
𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤 − 𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛 ∧ 𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅‘𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝐸 ∈ (0(,)1)) |
188 | 22 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧
∀𝑣 ∈
(1(,)+∞)∀𝑤
∈ (𝑣[,](2 ·
𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤 − 𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛 ∧ 𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅‘𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝑍 ∈
ℝ+) |
189 | | simprrl 778 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧
∀𝑣 ∈
(1(,)+∞)∀𝑤
∈ (𝑣[,](2 ·
𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤 − 𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛 ∧ 𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅‘𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝑛 ∈ ℕ) |
190 | | simplrl 774 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧
∀𝑣 ∈
(1(,)+∞)∀𝑤
∈ (𝑣[,](2 ·
𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤 − 𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛 ∧ 𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅‘𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝑡 ∈ ℝ+) |
191 | | simplrr 775 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧
∀𝑣 ∈
(1(,)+∞)∀𝑤
∈ (𝑣[,](2 ·
𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤 − 𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛 ∧ 𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅‘𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤 − 𝑣)) + (𝑡 · (𝑣 / (log‘𝑣))))) |
192 | | eqid 2740 |
. . . . . . . 8
⊢
((exp‘(𝑡 /
(𝐸 / 4))) + 𝑍) = ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) |
193 | | simprll 776 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧
∀𝑣 ∈
(1(,)+∞)∀𝑤
∈ (𝑣[,](2 ·
𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤 − 𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛 ∧ 𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅‘𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) |
194 | | simprlr 777 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧
∀𝑣 ∈
(1(,)+∞)∀𝑤
∈ (𝑣[,](2 ·
𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤 − 𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛 ∧ 𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅‘𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) |
195 | | simprrr 779 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧
∀𝑣 ∈
(1(,)+∞)∀𝑤
∈ (𝑣[,](2 ·
𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤 − 𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛 ∧ 𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅‘𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → ((𝑦 < 𝑛 ∧ 𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅‘𝑛) / 𝑛)) ≤ (𝐸 / 2))) |
196 | 173, 175,
176, 185, 186, 69, 51, 187, 188, 189, 190, 191, 192, 193, 194, 195 | pntibndlem2 26737 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧
∀𝑣 ∈
(1(,)+∞)∀𝑤
∈ (𝑣[,](2 ·
𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤 − 𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛 ∧ 𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅‘𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → ∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) |
197 | 196 | anassrs 468 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑡 ∈ ℝ+ ∧
∀𝑣 ∈
(1(,)+∞)∀𝑤
∈ (𝑣[,](2 ·
𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤 − 𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛 ∧ 𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅‘𝑛) / 𝑛)) ≤ (𝐸 / 2)))) → ∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) |
198 | 172, 197 | rexlimddv 3222 |
. . . . 5
⊢ (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧
∀𝑣 ∈
(1(,)+∞)∀𝑤
∈ (𝑣[,](2 ·
𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤 − 𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ∃𝑧 ∈ ℝ+
((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) |
199 | 198 | ralrimivva 3117 |
. . . 4
⊢ ((𝜑 ∧ (𝑡 ∈ ℝ+ ∧
∀𝑣 ∈
(1(,)+∞)∀𝑤
∈ (𝑣[,](2 ·
𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤 − 𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) → ∀𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) |
200 | | oveq1 7278 |
. . . . . . 7
⊢ (𝑥 = ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) → (𝑥(,)+∞) = (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) |
201 | 200 | raleqdv 3347 |
. . . . . 6
⊢ (𝑥 = ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) → (∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸) ↔ ∀𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸))) |
202 | 201 | ralbidv 3123 |
. . . . 5
⊢ (𝑥 = ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) → (∀𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸) ↔ ∀𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸))) |
203 | 202 | rspcev 3561 |
. . . 4
⊢
((((exp‘(𝑡 /
(𝐸 / 4))) + 𝑍) ∈ ℝ+
∧ ∀𝑘 ∈
((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) → ∃𝑥 ∈ ℝ+ ∀𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) |
204 | 25, 199, 203 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ (𝑡 ∈ ℝ+ ∧
∀𝑣 ∈
(1(,)+∞)∀𝑤
∈ (𝑣[,](2 ·
𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤 − 𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) → ∃𝑥 ∈ ℝ+ ∀𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) |
205 | 204 | rexlimdvaa 3216 |
. 2
⊢ (𝜑 → (∃𝑡 ∈ ℝ+ ∀𝑣 ∈
(1(,)+∞)∀𝑤
∈ (𝑣[,](2 ·
𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤 − 𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))) → ∃𝑥 ∈ ℝ+ ∀𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸))) |
206 | 4, 205 | mpi 20 |
1
⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) |