MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntibndlem3 Structured version   Visualization version   GIF version

Theorem pntibndlem3 27510
Description: Lemma for pntibnd 27511. Package up pntibndlem2 27509 in quantifiers. (Contributed by Mario Carneiro, 10-Apr-2016.)
Hypotheses
Ref Expression
pntibnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntibndlem1.1 (𝜑𝐴 ∈ ℝ+)
pntibndlem1.l 𝐿 = ((1 / 4) / (𝐴 + 3))
pntibndlem3.2 (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
pntibndlem3.3 (𝜑𝐵 ∈ ℝ+)
pntibndlem3.k 𝐾 = (exp‘(𝐵 / (𝐸 / 2)))
pntibndlem3.c 𝐶 = ((2 · 𝐵) + (log‘2))
pntibndlem3.4 (𝜑𝐸 ∈ (0(,)1))
pntibndlem3.6 (𝜑𝑍 ∈ ℝ+)
pntibndlem3.5 (𝜑 → ∀𝑚 ∈ (𝐾[,)+∞)∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)))
Assertion
Ref Expression
pntibndlem3 (𝜑 → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
Distinct variable groups:   𝑖,𝑎,𝑘,𝑚,𝑢,𝑣,𝑥,𝑦,𝑧,𝐸   𝑢,𝐿,𝑣,𝑥,𝑧   𝑢,𝐴,𝑣,𝑥   𝑢,𝐶,𝑣,𝑥,𝑦   𝑅,𝑖,𝑘,𝑚,𝑢,𝑣,𝑥,𝑦,𝑧   𝑚,𝐾   𝑘,𝑍,𝑚,𝑢,𝑣,𝑥,𝑦   𝜑,𝑘,𝑢,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑧,𝑣,𝑖,𝑚,𝑎)   𝐴(𝑦,𝑧,𝑖,𝑘,𝑚,𝑎)   𝐵(𝑥,𝑦,𝑧,𝑣,𝑢,𝑖,𝑘,𝑚,𝑎)   𝐶(𝑧,𝑖,𝑘,𝑚,𝑎)   𝑅(𝑎)   𝐾(𝑥,𝑦,𝑧,𝑣,𝑢,𝑖,𝑘,𝑎)   𝐿(𝑦,𝑖,𝑘,𝑚,𝑎)   𝑍(𝑧,𝑖,𝑎)

Proof of Theorem pntibndlem3
Dummy variables 𝑛 𝑡 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2re 12267 . . 3 2 ∈ ℝ
2 1le2 12397 . . 3 1 ≤ 2
3 chpdifbnd 27473 . . 3 ((2 ∈ ℝ ∧ 1 ≤ 2) → ∃𝑡 ∈ ℝ+𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))
41, 2, 3mp2an 692 . 2 𝑡 ∈ ℝ+𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣))))
5 simpr 484 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 𝑡 ∈ ℝ+)
6 ioossre 13375 . . . . . . . . . . . . 13 (0(,)1) ⊆ ℝ
7 pntibndlem3.4 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ (0(,)1))
86, 7sselid 3947 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℝ)
9 eliooord 13373 . . . . . . . . . . . . . 14 (𝐸 ∈ (0(,)1) → (0 < 𝐸𝐸 < 1))
107, 9syl 17 . . . . . . . . . . . . 13 (𝜑 → (0 < 𝐸𝐸 < 1))
1110simpld 494 . . . . . . . . . . . 12 (𝜑 → 0 < 𝐸)
128, 11elrpd 12999 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ+)
1312adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → 𝐸 ∈ ℝ+)
14 4nn 12276 . . . . . . . . . . 11 4 ∈ ℕ
15 nnrp 12970 . . . . . . . . . . 11 (4 ∈ ℕ → 4 ∈ ℝ+)
1614, 15ax-mp 5 . . . . . . . . . 10 4 ∈ ℝ+
17 rpdivcl 12985 . . . . . . . . . 10 ((𝐸 ∈ ℝ+ ∧ 4 ∈ ℝ+) → (𝐸 / 4) ∈ ℝ+)
1813, 16, 17sylancl 586 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → (𝐸 / 4) ∈ ℝ+)
195, 18rpdivcld 13019 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → (𝑡 / (𝐸 / 4)) ∈ ℝ+)
2019rpred 13002 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → (𝑡 / (𝐸 / 4)) ∈ ℝ)
2120rpefcld 16080 . . . . . 6 ((𝜑𝑡 ∈ ℝ+) → (exp‘(𝑡 / (𝐸 / 4))) ∈ ℝ+)
22 pntibndlem3.6 . . . . . . 7 (𝜑𝑍 ∈ ℝ+)
2322adantr 480 . . . . . 6 ((𝜑𝑡 ∈ ℝ+) → 𝑍 ∈ ℝ+)
2421, 23rpaddcld 13017 . . . . 5 ((𝜑𝑡 ∈ ℝ+) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) ∈ ℝ+)
2524adantrr 717 . . . 4 ((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) ∈ ℝ+)
26 breq2 5114 . . . . . . . . . . 11 (𝑖 = 𝑛 → (𝑣 < 𝑖𝑣 < 𝑛))
27 breq1 5113 . . . . . . . . . . 11 (𝑖 = 𝑛 → (𝑖 ≤ ((𝑘 / 2) · 𝑣) ↔ 𝑛 ≤ ((𝑘 / 2) · 𝑣)))
2826, 27anbi12d 632 . . . . . . . . . 10 (𝑖 = 𝑛 → ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ↔ (𝑣 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑣))))
29 fveq2 6861 . . . . . . . . . . . . 13 (𝑖 = 𝑛 → (𝑅𝑖) = (𝑅𝑛))
30 id 22 . . . . . . . . . . . . 13 (𝑖 = 𝑛𝑖 = 𝑛)
3129, 30oveq12d 7408 . . . . . . . . . . . 12 (𝑖 = 𝑛 → ((𝑅𝑖) / 𝑖) = ((𝑅𝑛) / 𝑛))
3231fveq2d 6865 . . . . . . . . . . 11 (𝑖 = 𝑛 → (abs‘((𝑅𝑖) / 𝑖)) = (abs‘((𝑅𝑛) / 𝑛)))
3332breq1d 5120 . . . . . . . . . 10 (𝑖 = 𝑛 → ((abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2) ↔ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)))
3428, 33anbi12d 632 . . . . . . . . 9 (𝑖 = 𝑛 → (((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ((𝑣 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))
3534cbvrexvw 3217 . . . . . . . 8 (∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)))
36 breq1 5113 . . . . . . . . . . 11 (𝑣 = 𝑦 → (𝑣 < 𝑛𝑦 < 𝑛))
37 oveq2 7398 . . . . . . . . . . . 12 (𝑣 = 𝑦 → ((𝑘 / 2) · 𝑣) = ((𝑘 / 2) · 𝑦))
3837breq2d 5122 . . . . . . . . . . 11 (𝑣 = 𝑦 → (𝑛 ≤ ((𝑘 / 2) · 𝑣) ↔ 𝑛 ≤ ((𝑘 / 2) · 𝑦)))
3936, 38anbi12d 632 . . . . . . . . . 10 (𝑣 = 𝑦 → ((𝑣 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑣)) ↔ (𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦))))
4039anbi1d 631 . . . . . . . . 9 (𝑣 = 𝑦 → (((𝑣 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)) ↔ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))
4140rexbidv 3158 . . . . . . . 8 (𝑣 = 𝑦 → (∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)) ↔ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))
4235, 41bitrid 283 . . . . . . 7 (𝑣 = 𝑦 → (∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))
43 oveq1 7397 . . . . . . . . . . . . 13 (𝑚 = (𝑘 / 2) → (𝑚 · 𝑣) = ((𝑘 / 2) · 𝑣))
4443breq2d 5122 . . . . . . . . . . . 12 (𝑚 = (𝑘 / 2) → (𝑖 ≤ (𝑚 · 𝑣) ↔ 𝑖 ≤ ((𝑘 / 2) · 𝑣)))
4544anbi2d 630 . . . . . . . . . . 11 (𝑚 = (𝑘 / 2) → ((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ↔ (𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣))))
4645anbi1d 631 . . . . . . . . . 10 (𝑚 = (𝑘 / 2) → (((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2))))
4746rexbidv 3158 . . . . . . . . 9 (𝑚 = (𝑘 / 2) → (∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2))))
4847ralbidv 3157 . . . . . . . 8 (𝑚 = (𝑘 / 2) → (∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2))))
49 pntibndlem3.5 . . . . . . . . 9 (𝜑 → ∀𝑚 ∈ (𝐾[,)+∞)∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)))
5049ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ∀𝑚 ∈ (𝐾[,)+∞)∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)))
51 pntibndlem3.c . . . . . . . . . . . . . . . . 17 𝐶 = ((2 · 𝐵) + (log‘2))
52 pntibndlem3.3 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 ∈ ℝ+)
5352adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ ℝ+) → 𝐵 ∈ ℝ+)
5453rpred 13002 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ ℝ+) → 𝐵 ∈ ℝ)
55 remulcl 11160 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐵) ∈ ℝ)
561, 54, 55sylancr 587 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ ℝ+) → (2 · 𝐵) ∈ ℝ)
57 2rp 12963 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ+
58 relogcl 26491 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
5957, 58ax-mp 5 . . . . . . . . . . . . . . . . . 18 (log‘2) ∈ ℝ
60 readdcl 11158 . . . . . . . . . . . . . . . . . 18 (((2 · 𝐵) ∈ ℝ ∧ (log‘2) ∈ ℝ) → ((2 · 𝐵) + (log‘2)) ∈ ℝ)
6156, 59, 60sylancl 586 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ ℝ+) → ((2 · 𝐵) + (log‘2)) ∈ ℝ)
6251, 61eqeltrid 2833 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ ℝ+) → 𝐶 ∈ ℝ)
6362, 13rerpdivcld 13033 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ ℝ+) → (𝐶 / 𝐸) ∈ ℝ)
6463reefcld 16061 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ ℝ+) → (exp‘(𝐶 / 𝐸)) ∈ ℝ)
65 elicopnf 13413 . . . . . . . . . . . . . 14 ((exp‘(𝐶 / 𝐸)) ∈ ℝ → (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ↔ (𝑘 ∈ ℝ ∧ (exp‘(𝐶 / 𝐸)) ≤ 𝑘)))
6664, 65syl 17 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ ℝ+) → (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ↔ (𝑘 ∈ ℝ ∧ (exp‘(𝐶 / 𝐸)) ≤ 𝑘)))
6766simprbda 498 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → 𝑘 ∈ ℝ)
6867rehalfcld 12436 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (𝑘 / 2) ∈ ℝ)
69 pntibndlem3.k . . . . . . . . . . . 12 𝐾 = (exp‘(𝐵 / (𝐸 / 2)))
7013rphalfcld 13014 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ ℝ+) → (𝐸 / 2) ∈ ℝ+)
7154, 70rerpdivcld 13033 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ ℝ+) → (𝐵 / (𝐸 / 2)) ∈ ℝ)
7271reefcld 16061 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ ℝ+) → (exp‘(𝐵 / (𝐸 / 2))) ∈ ℝ)
73 remulcl 11160 . . . . . . . . . . . . . . . 16 (((exp‘(𝐵 / (𝐸 / 2))) ∈ ℝ ∧ 2 ∈ ℝ) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ∈ ℝ)
7472, 1, 73sylancl 586 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ ℝ+) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ∈ ℝ)
7574adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ∈ ℝ)
7664adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (exp‘(𝐶 / 𝐸)) ∈ ℝ)
7771recnd 11209 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ ℝ+) → (𝐵 / (𝐸 / 2)) ∈ ℂ)
7859recni 11195 . . . . . . . . . . . . . . . . . 18 (log‘2) ∈ ℂ
79 efadd 16067 . . . . . . . . . . . . . . . . . 18 (((𝐵 / (𝐸 / 2)) ∈ ℂ ∧ (log‘2) ∈ ℂ) → (exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) = ((exp‘(𝐵 / (𝐸 / 2))) · (exp‘(log‘2))))
8077, 78, 79sylancl 586 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ ℝ+) → (exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) = ((exp‘(𝐵 / (𝐸 / 2))) · (exp‘(log‘2))))
81 reeflog 26496 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℝ+ → (exp‘(log‘2)) = 2)
8257, 81ax-mp 5 . . . . . . . . . . . . . . . . . 18 (exp‘(log‘2)) = 2
8382oveq2i 7401 . . . . . . . . . . . . . . . . 17 ((exp‘(𝐵 / (𝐸 / 2))) · (exp‘(log‘2))) = ((exp‘(𝐵 / (𝐸 / 2))) · 2)
8480, 83eqtrdi 2781 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ ℝ+) → (exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) = ((exp‘(𝐵 / (𝐸 / 2))) · 2))
8559a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ ℝ+) → (log‘2) ∈ ℝ)
86 rerpdivcl 12990 . . . . . . . . . . . . . . . . . . . 20 (((log‘2) ∈ ℝ ∧ 𝐸 ∈ ℝ+) → ((log‘2) / 𝐸) ∈ ℝ)
8759, 13, 86sylancr 587 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ ℝ+) → ((log‘2) / 𝐸) ∈ ℝ)
8878div1i 11917 . . . . . . . . . . . . . . . . . . . 20 ((log‘2) / 1) = (log‘2)
8910simprd 495 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐸 < 1)
9089adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → 𝐸 < 1)
918adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ ℝ+) → 𝐸 ∈ ℝ)
92 1re 11181 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ
93 ltle 11269 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐸 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐸 < 1 → 𝐸 ≤ 1))
9491, 92, 93sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → (𝐸 < 1 → 𝐸 ≤ 1))
9590, 94mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → 𝐸 ≤ 1)
9613rpregt0d 13008 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → (𝐸 ∈ ℝ ∧ 0 < 𝐸))
97 1rp 12962 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ+
98 rpregt0 12973 . . . . . . . . . . . . . . . . . . . . . . 23 (1 ∈ ℝ+ → (1 ∈ ℝ ∧ 0 < 1))
9997, 98mp1i 13 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → (1 ∈ ℝ ∧ 0 < 1))
100 1lt2 12359 . . . . . . . . . . . . . . . . . . . . . . . 24 1 < 2
101 rplogcl 26520 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2 ∈ ℝ ∧ 1 < 2) → (log‘2) ∈ ℝ+)
1021, 100, 101mp2an 692 . . . . . . . . . . . . . . . . . . . . . . 23 (log‘2) ∈ ℝ+
103 rpregt0 12973 . . . . . . . . . . . . . . . . . . . . . . 23 ((log‘2) ∈ ℝ+ → ((log‘2) ∈ ℝ ∧ 0 < (log‘2)))
104102, 103mp1i 13 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → ((log‘2) ∈ ℝ ∧ 0 < (log‘2)))
105 lediv2 12080 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐸 ∈ ℝ ∧ 0 < 𝐸) ∧ (1 ∈ ℝ ∧ 0 < 1) ∧ ((log‘2) ∈ ℝ ∧ 0 < (log‘2))) → (𝐸 ≤ 1 ↔ ((log‘2) / 1) ≤ ((log‘2) / 𝐸)))
10696, 99, 104, 105syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → (𝐸 ≤ 1 ↔ ((log‘2) / 1) ≤ ((log‘2) / 𝐸)))
10795, 106mpbid 232 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ ℝ+) → ((log‘2) / 1) ≤ ((log‘2) / 𝐸))
10888, 107eqbrtrrid 5146 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ ℝ+) → (log‘2) ≤ ((log‘2) / 𝐸))
10985, 87, 71, 108leadd2dd 11800 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ ℝ+) → ((𝐵 / (𝐸 / 2)) + (log‘2)) ≤ ((𝐵 / (𝐸 / 2)) + ((log‘2) / 𝐸)))
11051oveq1i 7400 . . . . . . . . . . . . . . . . . . . 20 (𝐶 / 𝐸) = (((2 · 𝐵) + (log‘2)) / 𝐸)
11156recnd 11209 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → (2 · 𝐵) ∈ ℂ)
11278a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → (log‘2) ∈ ℂ)
113 rpcnne0 12977 . . . . . . . . . . . . . . . . . . . . . 22 (𝐸 ∈ ℝ+ → (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0))
11413, 113syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0))
115 divdir 11869 . . . . . . . . . . . . . . . . . . . . 21 (((2 · 𝐵) ∈ ℂ ∧ (log‘2) ∈ ℂ ∧ (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0)) → (((2 · 𝐵) + (log‘2)) / 𝐸) = (((2 · 𝐵) / 𝐸) + ((log‘2) / 𝐸)))
116111, 112, 114, 115syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ ℝ+) → (((2 · 𝐵) + (log‘2)) / 𝐸) = (((2 · 𝐵) / 𝐸) + ((log‘2) / 𝐸)))
117110, 116eqtrid 2777 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ ℝ+) → (𝐶 / 𝐸) = (((2 · 𝐵) / 𝐸) + ((log‘2) / 𝐸)))
1181recni 11195 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℂ
11954recnd 11209 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ ℝ+) → 𝐵 ∈ ℂ)
120 mulcom 11161 . . . . . . . . . . . . . . . . . . . . . . 23 ((2 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐵) = (𝐵 · 2))
121118, 119, 120sylancr 587 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → (2 · 𝐵) = (𝐵 · 2))
122121oveq1d 7405 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → ((2 · 𝐵) / 𝐸) = ((𝐵 · 2) / 𝐸))
123 rpcnne0 12977 . . . . . . . . . . . . . . . . . . . . . . 23 (2 ∈ ℝ+ → (2 ∈ ℂ ∧ 2 ≠ 0))
12457, 123mp1i 13 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → (2 ∈ ℂ ∧ 2 ≠ 0))
125 divdiv2 11901 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵 ∈ ℂ ∧ (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (𝐵 / (𝐸 / 2)) = ((𝐵 · 2) / 𝐸))
126119, 114, 124, 125syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → (𝐵 / (𝐸 / 2)) = ((𝐵 · 2) / 𝐸))
127122, 126eqtr4d 2768 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ ℝ+) → ((2 · 𝐵) / 𝐸) = (𝐵 / (𝐸 / 2)))
128127oveq1d 7405 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ ℝ+) → (((2 · 𝐵) / 𝐸) + ((log‘2) / 𝐸)) = ((𝐵 / (𝐸 / 2)) + ((log‘2) / 𝐸)))
129117, 128eqtrd 2765 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ ℝ+) → (𝐶 / 𝐸) = ((𝐵 / (𝐸 / 2)) + ((log‘2) / 𝐸)))
130109, 129breqtrrd 5138 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ ℝ+) → ((𝐵 / (𝐸 / 2)) + (log‘2)) ≤ (𝐶 / 𝐸))
131 readdcl 11158 . . . . . . . . . . . . . . . . . . 19 (((𝐵 / (𝐸 / 2)) ∈ ℝ ∧ (log‘2) ∈ ℝ) → ((𝐵 / (𝐸 / 2)) + (log‘2)) ∈ ℝ)
13271, 59, 131sylancl 586 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ ℝ+) → ((𝐵 / (𝐸 / 2)) + (log‘2)) ∈ ℝ)
133 efle 16093 . . . . . . . . . . . . . . . . . 18 ((((𝐵 / (𝐸 / 2)) + (log‘2)) ∈ ℝ ∧ (𝐶 / 𝐸) ∈ ℝ) → (((𝐵 / (𝐸 / 2)) + (log‘2)) ≤ (𝐶 / 𝐸) ↔ (exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) ≤ (exp‘(𝐶 / 𝐸))))
134132, 63, 133syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ ℝ+) → (((𝐵 / (𝐸 / 2)) + (log‘2)) ≤ (𝐶 / 𝐸) ↔ (exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) ≤ (exp‘(𝐶 / 𝐸))))
135130, 134mpbid 232 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ ℝ+) → (exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) ≤ (exp‘(𝐶 / 𝐸)))
13684, 135eqbrtrrd 5134 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ ℝ+) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ≤ (exp‘(𝐶 / 𝐸)))
137136adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ≤ (exp‘(𝐶 / 𝐸)))
13866simplbda 499 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (exp‘(𝐶 / 𝐸)) ≤ 𝑘)
13975, 76, 67, 137, 138letrd 11338 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ≤ 𝑘)
14072adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (exp‘(𝐵 / (𝐸 / 2))) ∈ ℝ)
141 rpregt0 12973 . . . . . . . . . . . . . . 15 (2 ∈ ℝ+ → (2 ∈ ℝ ∧ 0 < 2))
14257, 141mp1i 13 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (2 ∈ ℝ ∧ 0 < 2))
143 lemuldiv 12070 . . . . . . . . . . . . . 14 (((exp‘(𝐵 / (𝐸 / 2))) ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((exp‘(𝐵 / (𝐸 / 2))) · 2) ≤ 𝑘 ↔ (exp‘(𝐵 / (𝐸 / 2))) ≤ (𝑘 / 2)))
144140, 67, 142, 143syl3anc 1373 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (((exp‘(𝐵 / (𝐸 / 2))) · 2) ≤ 𝑘 ↔ (exp‘(𝐵 / (𝐸 / 2))) ≤ (𝑘 / 2)))
145139, 144mpbid 232 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (exp‘(𝐵 / (𝐸 / 2))) ≤ (𝑘 / 2))
14669, 145eqbrtrid 5145 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → 𝐾 ≤ (𝑘 / 2))
14769, 140eqeltrid 2833 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → 𝐾 ∈ ℝ)
148 elicopnf 13413 . . . . . . . . . . . 12 (𝐾 ∈ ℝ → ((𝑘 / 2) ∈ (𝐾[,)+∞) ↔ ((𝑘 / 2) ∈ ℝ ∧ 𝐾 ≤ (𝑘 / 2))))
149147, 148syl 17 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → ((𝑘 / 2) ∈ (𝐾[,)+∞) ↔ ((𝑘 / 2) ∈ ℝ ∧ 𝐾 ≤ (𝑘 / 2))))
15068, 146, 149mpbir2and 713 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (𝑘 / 2) ∈ (𝐾[,)+∞))
151150adantrr 717 . . . . . . . . 9 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → (𝑘 / 2) ∈ (𝐾[,)+∞))
152151adantlrr 721 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → (𝑘 / 2) ∈ (𝐾[,)+∞))
15348, 50, 152rspcdva 3592 . . . . . . 7 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)))
154 elioore 13343 . . . . . . . . . 10 (𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞) → 𝑦 ∈ ℝ)
155154ad2antll 729 . . . . . . . . 9 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑦 ∈ ℝ)
15623rpred 13002 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ+) → 𝑍 ∈ ℝ)
157156adantr 480 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑍 ∈ ℝ)
15820reefcld 16061 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ℝ+) → (exp‘(𝑡 / (𝐸 / 4))) ∈ ℝ)
159158, 156readdcld 11210 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ+) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) ∈ ℝ)
160159adantr 480 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) ∈ ℝ)
161156, 21ltaddrp2d 13036 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ+) → 𝑍 < ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍))
162161adantr 480 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑍 < ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍))
163 eliooord 13373 . . . . . . . . . . . 12 (𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞) → (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) < 𝑦𝑦 < +∞))
164163simpld 494 . . . . . . . . . . 11 (𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) < 𝑦)
165164ad2antll 729 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) < 𝑦)
166157, 160, 155, 162, 165lttrd 11342 . . . . . . . . 9 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑍 < 𝑦)
167157rexrd 11231 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑍 ∈ ℝ*)
168 elioopnf 13411 . . . . . . . . . 10 (𝑍 ∈ ℝ* → (𝑦 ∈ (𝑍(,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑍 < 𝑦)))
169167, 168syl 17 . . . . . . . . 9 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → (𝑦 ∈ (𝑍(,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑍 < 𝑦)))
170155, 166, 169mpbir2and 713 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑦 ∈ (𝑍(,)+∞))
171170adantlrr 721 . . . . . . 7 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑦 ∈ (𝑍(,)+∞))
17242, 153, 171rspcdva 3592 . . . . . 6 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)))
173 pntibnd.r . . . . . . . 8 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
174 pntibndlem1.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
175174ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝐴 ∈ ℝ+)
176 pntibndlem1.l . . . . . . . 8 𝐿 = ((1 / 4) / (𝐴 + 3))
177 pntibndlem3.2 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
178 fveq2 6861 . . . . . . . . . . . . . 14 (𝑥 = 𝑣 → (𝑅𝑥) = (𝑅𝑣))
179 id 22 . . . . . . . . . . . . . 14 (𝑥 = 𝑣𝑥 = 𝑣)
180178, 179oveq12d 7408 . . . . . . . . . . . . 13 (𝑥 = 𝑣 → ((𝑅𝑥) / 𝑥) = ((𝑅𝑣) / 𝑣))
181180fveq2d 6865 . . . . . . . . . . . 12 (𝑥 = 𝑣 → (abs‘((𝑅𝑥) / 𝑥)) = (abs‘((𝑅𝑣) / 𝑣)))
182181breq1d 5120 . . . . . . . . . . 11 (𝑥 = 𝑣 → ((abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴 ↔ (abs‘((𝑅𝑣) / 𝑣)) ≤ 𝐴))
183182cbvralvw 3216 . . . . . . . . . 10 (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴 ↔ ∀𝑣 ∈ ℝ+ (abs‘((𝑅𝑣) / 𝑣)) ≤ 𝐴)
184177, 183sylib 218 . . . . . . . . 9 (𝜑 → ∀𝑣 ∈ ℝ+ (abs‘((𝑅𝑣) / 𝑣)) ≤ 𝐴)
185184ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → ∀𝑣 ∈ ℝ+ (abs‘((𝑅𝑣) / 𝑣)) ≤ 𝐴)
18652ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝐵 ∈ ℝ+)
1877ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝐸 ∈ (0(,)1))
18822ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝑍 ∈ ℝ+)
189 simprrl 780 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝑛 ∈ ℕ)
190 simplrl 776 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝑡 ∈ ℝ+)
191 simplrr 777 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))
192 eqid 2730 . . . . . . . 8 ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) = ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)
193 simprll 778 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞))
194 simprlr 779 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))
195 simprrr 781 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)))
196173, 175, 176, 185, 186, 69, 51, 187, 188, 189, 190, 191, 192, 193, 194, 195pntibndlem2 27509 . . . . . . 7 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → ∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
197196anassrs 467 . . . . . 6 ((((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)))) → ∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
198172, 197rexlimddv 3141 . . . . 5 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
199198ralrimivva 3181 . . . 4 ((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) → ∀𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
200 oveq1 7397 . . . . . . 7 (𝑥 = ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) → (𝑥(,)+∞) = (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))
201200raleqdv 3301 . . . . . 6 (𝑥 = ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) → (∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∀𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
202201ralbidv 3157 . . . . 5 (𝑥 = ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) → (∀𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∀𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
203202rspcev 3591 . . . 4 ((((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) ∈ ℝ+ ∧ ∀𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
20425, 199, 203syl2anc 584 . . 3 ((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
205204rexlimdvaa 3136 . 2 (𝜑 → (∃𝑡 ∈ ℝ+𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
2064, 205mpi 20 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  +∞cpnf 11212  *cxr 11214   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  3c3 12249  4c4 12250  +crp 12958  (,)cioo 13313  [,)cico 13315  [,]cicc 13316  abscabs 15207  expce 16034  logclog 26470  ψcchp 27010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-o1 15463  df-lo1 15464  df-sum 15660  df-ef 16040  df-e 16041  df-sin 16042  df-cos 16043  df-tan 16044  df-pi 16045  df-dvds 16230  df-gcd 16472  df-prm 16649  df-pc 16815  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-ulm 26293  df-log 26472  df-cxp 26473  df-atan 26784  df-em 26910  df-cht 27014  df-vma 27015  df-chp 27016  df-ppi 27017  df-mu 27018
This theorem is referenced by:  pntibnd  27511
  Copyright terms: Public domain W3C validator