MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem3 Structured version   Visualization version   GIF version

Theorem dchrisum0lem3 27465
Description: Lemma for dchrisum0 27466. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (β„€/nβ„€β€˜π‘)
rpvmasum.l 𝐿 = (β„€RHomβ€˜π‘)
rpvmasum.a (πœ‘ β†’ 𝑁 ∈ β„•)
rpvmasum2.g 𝐺 = (DChrβ€˜π‘)
rpvmasum2.d 𝐷 = (Baseβ€˜πΊ)
rpvmasum2.1 1 = (0gβ€˜πΊ)
rpvmasum2.w π‘Š = {𝑦 ∈ (𝐷 βˆ– { 1 }) ∣ Ξ£π‘š ∈ β„• ((π‘¦β€˜(πΏβ€˜π‘š)) / π‘š) = 0}
dchrisum0.b (πœ‘ β†’ 𝑋 ∈ π‘Š)
dchrisum0lem1.f 𝐹 = (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / (βˆšβ€˜π‘Ž)))
dchrisum0.c (πœ‘ β†’ 𝐢 ∈ (0[,)+∞))
dchrisum0.s (πœ‘ β†’ seq1( + , 𝐹) ⇝ 𝑆)
dchrisum0.1 (πœ‘ β†’ βˆ€π‘¦ ∈ (1[,)+∞)(absβ€˜((seq1( + , 𝐹)β€˜(βŒŠβ€˜π‘¦)) βˆ’ 𝑆)) ≀ (𝐢 / (βˆšβ€˜π‘¦)))
Assertion
Ref Expression
dchrisum0lem3 (πœ‘ β†’ (π‘₯ ∈ ℝ+ ↦ Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜(π‘š Β· 𝑑)))) ∈ 𝑂(1))
Distinct variable groups:   π‘₯,π‘š,𝑦, 1   π‘š,𝑑,π‘₯,𝑦,𝐢   𝐹,𝑑,π‘₯,𝑦   π‘Ž,𝑑,π‘š,π‘₯,𝑦   π‘š,𝑁,π‘₯,𝑦   πœ‘,𝑑,π‘š,π‘₯   𝑆,𝑑,π‘š,π‘₯,𝑦   π‘₯,π‘Š   π‘š,𝑍,π‘₯,𝑦   𝐷,π‘š,π‘₯,𝑦   𝐿,π‘Ž,𝑑,π‘š,π‘₯,𝑦   𝑋,π‘Ž,𝑑,π‘š,π‘₯,𝑦   π‘š,𝐹
Allowed substitution hints:   πœ‘(𝑦,π‘Ž)   𝐢(π‘Ž)   𝐷(π‘Ž,𝑑)   𝑆(π‘Ž)   1 (π‘Ž,𝑑)   𝐹(π‘Ž)   𝐺(π‘₯,𝑦,π‘š,π‘Ž,𝑑)   𝑁(π‘Ž,𝑑)   π‘Š(𝑦,π‘š,π‘Ž,𝑑)   𝑍(π‘Ž,𝑑)

Proof of Theorem dchrisum0lem3
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1red 11240 . 2 (πœ‘ β†’ 1 ∈ ℝ)
2 sumex 15661 . . . 4 Ξ£π‘š ∈ (1...(βŒŠβ€˜π‘₯))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))(((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜π‘š)) / (βˆšβ€˜π‘‘)) ∈ V
32a1i 11 . . 3 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Ξ£π‘š ∈ (1...(βŒŠβ€˜π‘₯))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))(((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜π‘š)) / (βˆšβ€˜π‘‘)) ∈ V)
4 sumex 15661 . . . 4 Ξ£π‘š ∈ (((βŒŠβ€˜π‘₯) + 1)...(βŒŠβ€˜(π‘₯↑2)))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))(((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜π‘š)) / (βˆšβ€˜π‘‘)) ∈ V
54a1i 11 . . 3 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Ξ£π‘š ∈ (((βŒŠβ€˜π‘₯) + 1)...(βŒŠβ€˜(π‘₯↑2)))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))(((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜π‘š)) / (βˆšβ€˜π‘‘)) ∈ V)
6 rpvmasum.z . . . . 5 𝑍 = (β„€/nβ„€β€˜π‘)
7 rpvmasum.l . . . . 5 𝐿 = (β„€RHomβ€˜π‘)
8 rpvmasum.a . . . . 5 (πœ‘ β†’ 𝑁 ∈ β„•)
9 rpvmasum2.g . . . . 5 𝐺 = (DChrβ€˜π‘)
10 rpvmasum2.d . . . . 5 𝐷 = (Baseβ€˜πΊ)
11 rpvmasum2.1 . . . . 5 1 = (0gβ€˜πΊ)
12 rpvmasum2.w . . . . . . . 8 π‘Š = {𝑦 ∈ (𝐷 βˆ– { 1 }) ∣ Ξ£π‘š ∈ β„• ((π‘¦β€˜(πΏβ€˜π‘š)) / π‘š) = 0}
1312ssrab3 4073 . . . . . . 7 π‘Š βŠ† (𝐷 βˆ– { 1 })
14 difss 4125 . . . . . . 7 (𝐷 βˆ– { 1 }) βŠ† 𝐷
1513, 14sstri 3983 . . . . . 6 π‘Š βŠ† 𝐷
16 dchrisum0.b . . . . . 6 (πœ‘ β†’ 𝑋 ∈ π‘Š)
1715, 16sselid 3971 . . . . 5 (πœ‘ β†’ 𝑋 ∈ 𝐷)
1813, 16sselid 3971 . . . . . 6 (πœ‘ β†’ 𝑋 ∈ (𝐷 βˆ– { 1 }))
19 eldifsni 4790 . . . . . 6 (𝑋 ∈ (𝐷 βˆ– { 1 }) β†’ 𝑋 β‰  1 )
2018, 19syl 17 . . . . 5 (πœ‘ β†’ 𝑋 β‰  1 )
21 eqid 2725 . . . . 5 (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž)) = (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž))
226, 7, 8, 9, 10, 11, 17, 20, 21dchrmusumlema 27439 . . . 4 (πœ‘ β†’ βˆƒπ‘‘βˆƒπ‘ ∈ (0[,)+∞)(seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž))) ⇝ 𝑑 ∧ βˆ€π‘¦ ∈ (1[,)+∞)(absβ€˜((seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž)))β€˜(βŒŠβ€˜π‘¦)) βˆ’ 𝑑)) ≀ (𝑐 / 𝑦)))
238adantr 479 . . . . . . 7 ((πœ‘ ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž))) ⇝ 𝑑 ∧ βˆ€π‘¦ ∈ (1[,)+∞)(absβ€˜((seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž)))β€˜(βŒŠβ€˜π‘¦)) βˆ’ 𝑑)) ≀ (𝑐 / 𝑦)))) β†’ 𝑁 ∈ β„•)
2416adantr 479 . . . . . . 7 ((πœ‘ ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž))) ⇝ 𝑑 ∧ βˆ€π‘¦ ∈ (1[,)+∞)(absβ€˜((seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž)))β€˜(βŒŠβ€˜π‘¦)) βˆ’ 𝑑)) ≀ (𝑐 / 𝑦)))) β†’ 𝑋 ∈ π‘Š)
25 dchrisum0lem1.f . . . . . . 7 𝐹 = (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / (βˆšβ€˜π‘Ž)))
26 dchrisum0.c . . . . . . . 8 (πœ‘ β†’ 𝐢 ∈ (0[,)+∞))
2726adantr 479 . . . . . . 7 ((πœ‘ ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž))) ⇝ 𝑑 ∧ βˆ€π‘¦ ∈ (1[,)+∞)(absβ€˜((seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž)))β€˜(βŒŠβ€˜π‘¦)) βˆ’ 𝑑)) ≀ (𝑐 / 𝑦)))) β†’ 𝐢 ∈ (0[,)+∞))
28 dchrisum0.s . . . . . . . 8 (πœ‘ β†’ seq1( + , 𝐹) ⇝ 𝑆)
2928adantr 479 . . . . . . 7 ((πœ‘ ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž))) ⇝ 𝑑 ∧ βˆ€π‘¦ ∈ (1[,)+∞)(absβ€˜((seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž)))β€˜(βŒŠβ€˜π‘¦)) βˆ’ 𝑑)) ≀ (𝑐 / 𝑦)))) β†’ seq1( + , 𝐹) ⇝ 𝑆)
30 dchrisum0.1 . . . . . . . 8 (πœ‘ β†’ βˆ€π‘¦ ∈ (1[,)+∞)(absβ€˜((seq1( + , 𝐹)β€˜(βŒŠβ€˜π‘¦)) βˆ’ 𝑆)) ≀ (𝐢 / (βˆšβ€˜π‘¦)))
3130adantr 479 . . . . . . 7 ((πœ‘ ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž))) ⇝ 𝑑 ∧ βˆ€π‘¦ ∈ (1[,)+∞)(absβ€˜((seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž)))β€˜(βŒŠβ€˜π‘¦)) βˆ’ 𝑑)) ≀ (𝑐 / 𝑦)))) β†’ βˆ€π‘¦ ∈ (1[,)+∞)(absβ€˜((seq1( + , 𝐹)β€˜(βŒŠβ€˜π‘¦)) βˆ’ 𝑆)) ≀ (𝐢 / (βˆšβ€˜π‘¦)))
32 eqid 2725 . . . . . . 7 (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(βŒŠβ€˜π‘¦))(1 / (βˆšβ€˜π‘‘)) βˆ’ (2 Β· (βˆšβ€˜π‘¦)))) = (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(βŒŠβ€˜π‘¦))(1 / (βˆšβ€˜π‘‘)) βˆ’ (2 Β· (βˆšβ€˜π‘¦))))
3332divsqrsum 26927 . . . . . . . . 9 (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(βŒŠβ€˜π‘¦))(1 / (βˆšβ€˜π‘‘)) βˆ’ (2 Β· (βˆšβ€˜π‘¦)))) ∈ dom β‡π‘Ÿ
3432divsqrsumf 26926 . . . . . . . . . . . 12 (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(βŒŠβ€˜π‘¦))(1 / (βˆšβ€˜π‘‘)) βˆ’ (2 Β· (βˆšβ€˜π‘¦)))):ℝ+βŸΆβ„
35 ax-resscn 11190 . . . . . . . . . . . 12 ℝ βŠ† β„‚
36 fss 6733 . . . . . . . . . . . 12 (((𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(βŒŠβ€˜π‘¦))(1 / (βˆšβ€˜π‘‘)) βˆ’ (2 Β· (βˆšβ€˜π‘¦)))):ℝ+βŸΆβ„ ∧ ℝ βŠ† β„‚) β†’ (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(βŒŠβ€˜π‘¦))(1 / (βˆšβ€˜π‘‘)) βˆ’ (2 Β· (βˆšβ€˜π‘¦)))):ℝ+βŸΆβ„‚)
3734, 35, 36mp2an 690 . . . . . . . . . . 11 (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(βŒŠβ€˜π‘¦))(1 / (βˆšβ€˜π‘‘)) βˆ’ (2 Β· (βˆšβ€˜π‘¦)))):ℝ+βŸΆβ„‚
3837a1i 11 . . . . . . . . . 10 (πœ‘ β†’ (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(βŒŠβ€˜π‘¦))(1 / (βˆšβ€˜π‘‘)) βˆ’ (2 Β· (βˆšβ€˜π‘¦)))):ℝ+βŸΆβ„‚)
39 rpsup 13858 . . . . . . . . . . 11 sup(ℝ+, ℝ*, < ) = +∞
4039a1i 11 . . . . . . . . . 10 (πœ‘ β†’ sup(ℝ+, ℝ*, < ) = +∞)
4138, 40rlimdm 15522 . . . . . . . . 9 (πœ‘ β†’ ((𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(βŒŠβ€˜π‘¦))(1 / (βˆšβ€˜π‘‘)) βˆ’ (2 Β· (βˆšβ€˜π‘¦)))) ∈ dom β‡π‘Ÿ ↔ (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(βŒŠβ€˜π‘¦))(1 / (βˆšβ€˜π‘‘)) βˆ’ (2 Β· (βˆšβ€˜π‘¦)))) β‡π‘Ÿ ( β‡π‘Ÿ β€˜(𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(βŒŠβ€˜π‘¦))(1 / (βˆšβ€˜π‘‘)) βˆ’ (2 Β· (βˆšβ€˜π‘¦)))))))
4233, 41mpbii 232 . . . . . . . 8 (πœ‘ β†’ (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(βŒŠβ€˜π‘¦))(1 / (βˆšβ€˜π‘‘)) βˆ’ (2 Β· (βˆšβ€˜π‘¦)))) β‡π‘Ÿ ( β‡π‘Ÿ β€˜(𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(βŒŠβ€˜π‘¦))(1 / (βˆšβ€˜π‘‘)) βˆ’ (2 Β· (βˆšβ€˜π‘¦))))))
4342adantr 479 . . . . . . 7 ((πœ‘ ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž))) ⇝ 𝑑 ∧ βˆ€π‘¦ ∈ (1[,)+∞)(absβ€˜((seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž)))β€˜(βŒŠβ€˜π‘¦)) βˆ’ 𝑑)) ≀ (𝑐 / 𝑦)))) β†’ (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(βŒŠβ€˜π‘¦))(1 / (βˆšβ€˜π‘‘)) βˆ’ (2 Β· (βˆšβ€˜π‘¦)))) β‡π‘Ÿ ( β‡π‘Ÿ β€˜(𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(βŒŠβ€˜π‘¦))(1 / (βˆšβ€˜π‘‘)) βˆ’ (2 Β· (βˆšβ€˜π‘¦))))))
44 simprl 769 . . . . . . 7 ((πœ‘ ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž))) ⇝ 𝑑 ∧ βˆ€π‘¦ ∈ (1[,)+∞)(absβ€˜((seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž)))β€˜(βŒŠβ€˜π‘¦)) βˆ’ 𝑑)) ≀ (𝑐 / 𝑦)))) β†’ 𝑐 ∈ (0[,)+∞))
45 simprrl 779 . . . . . . 7 ((πœ‘ ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž))) ⇝ 𝑑 ∧ βˆ€π‘¦ ∈ (1[,)+∞)(absβ€˜((seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž)))β€˜(βŒŠβ€˜π‘¦)) βˆ’ 𝑑)) ≀ (𝑐 / 𝑦)))) β†’ seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž))) ⇝ 𝑑)
46 simprrr 780 . . . . . . 7 ((πœ‘ ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž))) ⇝ 𝑑 ∧ βˆ€π‘¦ ∈ (1[,)+∞)(absβ€˜((seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž)))β€˜(βŒŠβ€˜π‘¦)) βˆ’ 𝑑)) ≀ (𝑐 / 𝑦)))) β†’ βˆ€π‘¦ ∈ (1[,)+∞)(absβ€˜((seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž)))β€˜(βŒŠβ€˜π‘¦)) βˆ’ 𝑑)) ≀ (𝑐 / 𝑦))
476, 7, 23, 9, 10, 11, 12, 24, 25, 27, 29, 31, 32, 43, 21, 44, 45, 46dchrisum0lem2 27464 . . . . . 6 ((πœ‘ ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž))) ⇝ 𝑑 ∧ βˆ€π‘¦ ∈ (1[,)+∞)(absβ€˜((seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž)))β€˜(βŒŠβ€˜π‘¦)) βˆ’ 𝑑)) ≀ (𝑐 / 𝑦)))) β†’ (π‘₯ ∈ ℝ+ ↦ Ξ£π‘š ∈ (1...(βŒŠβ€˜π‘₯))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))(((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜π‘š)) / (βˆšβ€˜π‘‘))) ∈ 𝑂(1))
4847rexlimdvaa 3146 . . . . 5 (πœ‘ β†’ (βˆƒπ‘ ∈ (0[,)+∞)(seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž))) ⇝ 𝑑 ∧ βˆ€π‘¦ ∈ (1[,)+∞)(absβ€˜((seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž)))β€˜(βŒŠβ€˜π‘¦)) βˆ’ 𝑑)) ≀ (𝑐 / 𝑦)) β†’ (π‘₯ ∈ ℝ+ ↦ Ξ£π‘š ∈ (1...(βŒŠβ€˜π‘₯))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))(((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜π‘š)) / (βˆšβ€˜π‘‘))) ∈ 𝑂(1)))
4948exlimdv 1928 . . . 4 (πœ‘ β†’ (βˆƒπ‘‘βˆƒπ‘ ∈ (0[,)+∞)(seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž))) ⇝ 𝑑 ∧ βˆ€π‘¦ ∈ (1[,)+∞)(absβ€˜((seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž)))β€˜(βŒŠβ€˜π‘¦)) βˆ’ 𝑑)) ≀ (𝑐 / 𝑦)) β†’ (π‘₯ ∈ ℝ+ ↦ Ξ£π‘š ∈ (1...(βŒŠβ€˜π‘₯))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))(((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜π‘š)) / (βˆšβ€˜π‘‘))) ∈ 𝑂(1)))
5022, 49mpd 15 . . 3 (πœ‘ β†’ (π‘₯ ∈ ℝ+ ↦ Ξ£π‘š ∈ (1...(βŒŠβ€˜π‘₯))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))(((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜π‘š)) / (βˆšβ€˜π‘‘))) ∈ 𝑂(1))
516, 7, 8, 9, 10, 11, 12, 16, 25, 26, 28, 30dchrisum0lem1 27462 . . 3 (πœ‘ β†’ (π‘₯ ∈ ℝ+ ↦ Ξ£π‘š ∈ (((βŒŠβ€˜π‘₯) + 1)...(βŒŠβ€˜(π‘₯↑2)))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))(((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜π‘š)) / (βˆšβ€˜π‘‘))) ∈ 𝑂(1))
523, 5, 50, 51o1add2 15595 . 2 (πœ‘ β†’ (π‘₯ ∈ ℝ+ ↦ (Ξ£π‘š ∈ (1...(βŒŠβ€˜π‘₯))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))(((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜π‘š)) / (βˆšβ€˜π‘‘)) + Ξ£π‘š ∈ (((βŒŠβ€˜π‘₯) + 1)...(βŒŠβ€˜(π‘₯↑2)))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))(((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜π‘š)) / (βˆšβ€˜π‘‘)))) ∈ 𝑂(1))
53 ovexd 7448 . 2 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (Ξ£π‘š ∈ (1...(βŒŠβ€˜π‘₯))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))(((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜π‘š)) / (βˆšβ€˜π‘‘)) + Ξ£π‘š ∈ (((βŒŠβ€˜π‘₯) + 1)...(βŒŠβ€˜(π‘₯↑2)))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))(((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜π‘š)) / (βˆšβ€˜π‘‘))) ∈ V)
54 fzfid 13965 . . 3 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (1...(βŒŠβ€˜(π‘₯↑2))) ∈ Fin)
55 fzfid 13965 . . . 4 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))) β†’ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š))) ∈ Fin)
5617ad2antrr 724 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))) β†’ 𝑋 ∈ 𝐷)
57 elfzelz 13528 . . . . . . . 8 (π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2))) β†’ π‘š ∈ β„€)
5857adantl 480 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))) β†’ π‘š ∈ β„€)
599, 6, 10, 7, 56, 58dchrzrhcl 27191 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))) β†’ (π‘‹β€˜(πΏβ€˜π‘š)) ∈ β„‚)
6059adantr 479 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))) ∧ 𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))) β†’ (π‘‹β€˜(πΏβ€˜π‘š)) ∈ β„‚)
61 elfznn 13557 . . . . . . . . . 10 (π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2))) β†’ π‘š ∈ β„•)
6261adantl 480 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))) β†’ π‘š ∈ β„•)
6362nnrpd 13041 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))) β†’ π‘š ∈ ℝ+)
64 elfznn 13557 . . . . . . . . 9 (𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š))) β†’ 𝑑 ∈ β„•)
6564nnrpd 13041 . . . . . . . 8 (𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š))) β†’ 𝑑 ∈ ℝ+)
66 rpmulcl 13024 . . . . . . . 8 ((π‘š ∈ ℝ+ ∧ 𝑑 ∈ ℝ+) β†’ (π‘š Β· 𝑑) ∈ ℝ+)
6763, 65, 66syl2an 594 . . . . . . 7 ((((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))) ∧ 𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))) β†’ (π‘š Β· 𝑑) ∈ ℝ+)
6867rpsqrtcld 15385 . . . . . 6 ((((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))) ∧ 𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))) β†’ (βˆšβ€˜(π‘š Β· 𝑑)) ∈ ℝ+)
6968rpcnd 13045 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))) ∧ 𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))) β†’ (βˆšβ€˜(π‘š Β· 𝑑)) ∈ β„‚)
7068rpne0d 13048 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))) ∧ 𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))) β†’ (βˆšβ€˜(π‘š Β· 𝑑)) β‰  0)
7160, 69, 70divcld 12015 . . . 4 ((((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))) ∧ 𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))) β†’ ((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜(π‘š Β· 𝑑))) ∈ β„‚)
7255, 71fsumcl 15706 . . 3 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))) β†’ Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜(π‘š Β· 𝑑))) ∈ β„‚)
7354, 72fsumcl 15706 . 2 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜(π‘š Β· 𝑑))) ∈ β„‚)
7473abscld 15410 . . . 4 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (absβ€˜Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜(π‘š Β· 𝑑)))) ∈ ℝ)
7574adantrr 715 . . 3 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ (absβ€˜Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜(π‘š Β· 𝑑)))) ∈ ℝ)
7662adantr 479 . . . . . . . . . . . . 13 ((((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))) ∧ 𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))) β†’ π‘š ∈ β„•)
7776nnrpd 13041 . . . . . . . . . . . 12 ((((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))) ∧ 𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))) β†’ π‘š ∈ ℝ+)
7877rprege0d 13050 . . . . . . . . . . 11 ((((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))) ∧ 𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))) β†’ (π‘š ∈ ℝ ∧ 0 ≀ π‘š))
7964adantl 480 . . . . . . . . . . . . 13 ((((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))) ∧ 𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))) β†’ 𝑑 ∈ β„•)
8079nnrpd 13041 . . . . . . . . . . . 12 ((((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))) ∧ 𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))) β†’ 𝑑 ∈ ℝ+)
8180rprege0d 13050 . . . . . . . . . . 11 ((((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))) ∧ 𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))) β†’ (𝑑 ∈ ℝ ∧ 0 ≀ 𝑑))
82 sqrtmul 15233 . . . . . . . . . . 11 (((π‘š ∈ ℝ ∧ 0 ≀ π‘š) ∧ (𝑑 ∈ ℝ ∧ 0 ≀ 𝑑)) β†’ (βˆšβ€˜(π‘š Β· 𝑑)) = ((βˆšβ€˜π‘š) Β· (βˆšβ€˜π‘‘)))
8378, 81, 82syl2anc 582 . . . . . . . . . 10 ((((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))) ∧ 𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))) β†’ (βˆšβ€˜(π‘š Β· 𝑑)) = ((βˆšβ€˜π‘š) Β· (βˆšβ€˜π‘‘)))
8483oveq2d 7429 . . . . . . . . 9 ((((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))) ∧ 𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))) β†’ ((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜(π‘š Β· 𝑑))) = ((π‘‹β€˜(πΏβ€˜π‘š)) / ((βˆšβ€˜π‘š) Β· (βˆšβ€˜π‘‘))))
8577rpsqrtcld 15385 . . . . . . . . . . 11 ((((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))) ∧ 𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))) β†’ (βˆšβ€˜π‘š) ∈ ℝ+)
8685rpcnne0d 13052 . . . . . . . . . 10 ((((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))) ∧ 𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))) β†’ ((βˆšβ€˜π‘š) ∈ β„‚ ∧ (βˆšβ€˜π‘š) β‰  0))
8780rpsqrtcld 15385 . . . . . . . . . . 11 ((((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))) ∧ 𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))) β†’ (βˆšβ€˜π‘‘) ∈ ℝ+)
8887rpcnne0d 13052 . . . . . . . . . 10 ((((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))) ∧ 𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))) β†’ ((βˆšβ€˜π‘‘) ∈ β„‚ ∧ (βˆšβ€˜π‘‘) β‰  0))
89 divdiv1 11950 . . . . . . . . . 10 (((π‘‹β€˜(πΏβ€˜π‘š)) ∈ β„‚ ∧ ((βˆšβ€˜π‘š) ∈ β„‚ ∧ (βˆšβ€˜π‘š) β‰  0) ∧ ((βˆšβ€˜π‘‘) ∈ β„‚ ∧ (βˆšβ€˜π‘‘) β‰  0)) β†’ (((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜π‘š)) / (βˆšβ€˜π‘‘)) = ((π‘‹β€˜(πΏβ€˜π‘š)) / ((βˆšβ€˜π‘š) Β· (βˆšβ€˜π‘‘))))
9060, 86, 88, 89syl3anc 1368 . . . . . . . . 9 ((((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))) ∧ 𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))) β†’ (((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜π‘š)) / (βˆšβ€˜π‘‘)) = ((π‘‹β€˜(πΏβ€˜π‘š)) / ((βˆšβ€˜π‘š) Β· (βˆšβ€˜π‘‘))))
9184, 90eqtr4d 2768 . . . . . . . 8 ((((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))) ∧ 𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))) β†’ ((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜(π‘š Β· 𝑑))) = (((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜π‘š)) / (βˆšβ€˜π‘‘)))
9291sumeq2dv 15676 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))) β†’ Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜(π‘š Β· 𝑑))) = Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))(((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜π‘š)) / (βˆšβ€˜π‘‘)))
9392sumeq2dv 15676 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜(π‘š Β· 𝑑))) = Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))(((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜π‘š)) / (βˆšβ€˜π‘‘)))
9493adantrr 715 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜(π‘š Β· 𝑑))) = Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))(((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜π‘š)) / (βˆšβ€˜π‘‘)))
95 simpr 483 . . . . . . . . . . 11 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ π‘₯ ∈ ℝ+)
9695rpred 13043 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ π‘₯ ∈ ℝ)
97 reflcl 13788 . . . . . . . . . 10 (π‘₯ ∈ ℝ β†’ (βŒŠβ€˜π‘₯) ∈ ℝ)
9896, 97syl 17 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (βŒŠβ€˜π‘₯) ∈ ℝ)
9998ltp1d 12169 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (βŒŠβ€˜π‘₯) < ((βŒŠβ€˜π‘₯) + 1))
100 fzdisj 13555 . . . . . . . 8 ((βŒŠβ€˜π‘₯) < ((βŒŠβ€˜π‘₯) + 1) β†’ ((1...(βŒŠβ€˜π‘₯)) ∩ (((βŒŠβ€˜π‘₯) + 1)...(βŒŠβ€˜(π‘₯↑2)))) = βˆ…)
10199, 100syl 17 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ ((1...(βŒŠβ€˜π‘₯)) ∩ (((βŒŠβ€˜π‘₯) + 1)...(βŒŠβ€˜(π‘₯↑2)))) = βˆ…)
102101adantrr 715 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ ((1...(βŒŠβ€˜π‘₯)) ∩ (((βŒŠβ€˜π‘₯) + 1)...(βŒŠβ€˜(π‘₯↑2)))) = βˆ…)
10395rprege0d 13050 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (π‘₯ ∈ ℝ ∧ 0 ≀ π‘₯))
104 flge0nn0 13812 . . . . . . . . . 10 ((π‘₯ ∈ ℝ ∧ 0 ≀ π‘₯) β†’ (βŒŠβ€˜π‘₯) ∈ β„•0)
105 nn0p1nn 12536 . . . . . . . . . 10 ((βŒŠβ€˜π‘₯) ∈ β„•0 β†’ ((βŒŠβ€˜π‘₯) + 1) ∈ β„•)
106103, 104, 1053syl 18 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ ((βŒŠβ€˜π‘₯) + 1) ∈ β„•)
107 nnuz 12890 . . . . . . . . 9 β„• = (β„€β‰₯β€˜1)
108106, 107eleqtrdi 2835 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ ((βŒŠβ€˜π‘₯) + 1) ∈ (β„€β‰₯β€˜1))
109108adantrr 715 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ ((βŒŠβ€˜π‘₯) + 1) ∈ (β„€β‰₯β€˜1))
11096adantrr 715 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ π‘₯ ∈ ℝ)
111 2z 12619 . . . . . . . . . . 11 2 ∈ β„€
112 rpexpcl 14072 . . . . . . . . . . 11 ((π‘₯ ∈ ℝ+ ∧ 2 ∈ β„€) β†’ (π‘₯↑2) ∈ ℝ+)
11395, 111, 112sylancl 584 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (π‘₯↑2) ∈ ℝ+)
114113adantrr 715 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ (π‘₯↑2) ∈ ℝ+)
115114rpred 13043 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ (π‘₯↑2) ∈ ℝ)
116110recnd 11267 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ π‘₯ ∈ β„‚)
117116mulridd 11256 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ (π‘₯ Β· 1) = π‘₯)
118 simprr 771 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ 1 ≀ π‘₯)
119 1red 11240 . . . . . . . . . . . 12 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ 1 ∈ ℝ)
120 rpregt0 13015 . . . . . . . . . . . . 13 (π‘₯ ∈ ℝ+ β†’ (π‘₯ ∈ ℝ ∧ 0 < π‘₯))
121120ad2antrl 726 . . . . . . . . . . . 12 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ (π‘₯ ∈ ℝ ∧ 0 < π‘₯))
122 lemul2 12092 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ π‘₯ ∈ ℝ ∧ (π‘₯ ∈ ℝ ∧ 0 < π‘₯)) β†’ (1 ≀ π‘₯ ↔ (π‘₯ Β· 1) ≀ (π‘₯ Β· π‘₯)))
123119, 110, 121, 122syl3anc 1368 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ (1 ≀ π‘₯ ↔ (π‘₯ Β· 1) ≀ (π‘₯ Β· π‘₯)))
124118, 123mpbid 231 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ (π‘₯ Β· 1) ≀ (π‘₯ Β· π‘₯))
125117, 124eqbrtrrd 5168 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ π‘₯ ≀ (π‘₯ Β· π‘₯))
126116sqvald 14134 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ (π‘₯↑2) = (π‘₯ Β· π‘₯))
127125, 126breqtrrd 5172 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ π‘₯ ≀ (π‘₯↑2))
128 flword2 13805 . . . . . . . 8 ((π‘₯ ∈ ℝ ∧ (π‘₯↑2) ∈ ℝ ∧ π‘₯ ≀ (π‘₯↑2)) β†’ (βŒŠβ€˜(π‘₯↑2)) ∈ (β„€β‰₯β€˜(βŒŠβ€˜π‘₯)))
129110, 115, 127, 128syl3anc 1368 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ (βŒŠβ€˜(π‘₯↑2)) ∈ (β„€β‰₯β€˜(βŒŠβ€˜π‘₯)))
130 fzsplit2 13553 . . . . . . 7 ((((βŒŠβ€˜π‘₯) + 1) ∈ (β„€β‰₯β€˜1) ∧ (βŒŠβ€˜(π‘₯↑2)) ∈ (β„€β‰₯β€˜(βŒŠβ€˜π‘₯))) β†’ (1...(βŒŠβ€˜(π‘₯↑2))) = ((1...(βŒŠβ€˜π‘₯)) βˆͺ (((βŒŠβ€˜π‘₯) + 1)...(βŒŠβ€˜(π‘₯↑2)))))
131109, 129, 130syl2anc 582 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ (1...(βŒŠβ€˜(π‘₯↑2))) = ((1...(βŒŠβ€˜π‘₯)) βˆͺ (((βŒŠβ€˜π‘₯) + 1)...(βŒŠβ€˜(π‘₯↑2)))))
132 fzfid 13965 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ (1...(βŒŠβ€˜(π‘₯↑2))) ∈ Fin)
13392, 72eqeltrrd 2826 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))) β†’ Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))(((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜π‘š)) / (βˆšβ€˜π‘‘)) ∈ β„‚)
134133adantlrr 719 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))) β†’ Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))(((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜π‘š)) / (βˆšβ€˜π‘‘)) ∈ β„‚)
135102, 131, 132, 134fsumsplit 15714 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))(((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜π‘š)) / (βˆšβ€˜π‘‘)) = (Ξ£π‘š ∈ (1...(βŒŠβ€˜π‘₯))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))(((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜π‘š)) / (βˆšβ€˜π‘‘)) + Ξ£π‘š ∈ (((βŒŠβ€˜π‘₯) + 1)...(βŒŠβ€˜(π‘₯↑2)))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))(((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜π‘š)) / (βˆšβ€˜π‘‘))))
13694, 135eqtrd 2765 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜(π‘š Β· 𝑑))) = (Ξ£π‘š ∈ (1...(βŒŠβ€˜π‘₯))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))(((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜π‘š)) / (βˆšβ€˜π‘‘)) + Ξ£π‘š ∈ (((βŒŠβ€˜π‘₯) + 1)...(βŒŠβ€˜(π‘₯↑2)))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))(((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜π‘š)) / (βˆšβ€˜π‘‘))))
137136fveq2d 6894 . . 3 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ (absβ€˜Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜(π‘š Β· 𝑑)))) = (absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π‘₯))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))(((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜π‘š)) / (βˆšβ€˜π‘‘)) + Ξ£π‘š ∈ (((βŒŠβ€˜π‘₯) + 1)...(βŒŠβ€˜(π‘₯↑2)))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))(((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜π‘š)) / (βˆšβ€˜π‘‘)))))
13875, 137eqled 11342 . 2 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ (absβ€˜Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜(π‘š Β· 𝑑)))) ≀ (absβ€˜(Ξ£π‘š ∈ (1...(βŒŠβ€˜π‘₯))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))(((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜π‘š)) / (βˆšβ€˜π‘‘)) + Ξ£π‘š ∈ (((βŒŠβ€˜π‘₯) + 1)...(βŒŠβ€˜(π‘₯↑2)))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))(((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜π‘š)) / (βˆšβ€˜π‘‘)))))
1391, 52, 53, 73, 138o1le 15626 1 (πœ‘ β†’ (π‘₯ ∈ ℝ+ ↦ Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯↑2)))Σ𝑑 ∈ (1...(βŒŠβ€˜((π‘₯↑2) / π‘š)))((π‘‹β€˜(πΏβ€˜π‘š)) / (βˆšβ€˜(π‘š Β· 𝑑)))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098   β‰  wne 2930  βˆ€wral 3051  βˆƒwrex 3060  {crab 3419  Vcvv 3463   βˆ– cdif 3938   βˆͺ cun 3939   ∩ cin 3940   βŠ† wss 3941  βˆ…c0 4319  {csn 4625   class class class wbr 5144   ↦ cmpt 5227  dom cdm 5673  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7413  supcsup 9458  β„‚cc 11131  β„cr 11132  0cc0 11133  1c1 11134   + caddc 11136   Β· cmul 11138  +∞cpnf 11270  β„*cxr 11272   < clt 11273   ≀ cle 11274   βˆ’ cmin 11469   / cdiv 11896  β„•cn 12237  2c2 12292  β„•0cn0 12497  β„€cz 12583  β„€β‰₯cuz 12847  β„+crp 13001  [,)cico 13353  ...cfz 13511  βŒŠcfl 13782  seqcseq 13993  β†‘cexp 14053  βˆšcsqrt 15207  abscabs 15208   ⇝ cli 15455   β‡π‘Ÿ crli 15456  π‘‚(1)co1 15457  Ξ£csu 15659  Basecbs 17174  0gc0g 17415  β„€RHomczrh 21424  β„€/nβ„€czn 21427  DChrcdchr 27178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-inf2 9659  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211  ax-addf 11212  ax-mulf 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-iin 4995  df-disj 5110  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7866  df-1st 7987  df-2nd 7988  df-supp 8159  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8718  df-ec 8720  df-qs 8724  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9381  df-fi 9429  df-sup 9460  df-inf 9461  df-oi 9528  df-card 9957  df-acn 9960  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-9 12307  df-n0 12498  df-xnn0 12570  df-z 12584  df-dec 12703  df-uz 12848  df-q 12958  df-rp 13002  df-xneg 13119  df-xadd 13120  df-xmul 13121  df-ioo 13355  df-ioc 13356  df-ico 13357  df-icc 13358  df-fz 13512  df-fzo 13655  df-fl 13784  df-mod 13862  df-seq 13994  df-exp 14054  df-fac 14260  df-bc 14289  df-hash 14317  df-shft 15041  df-cj 15073  df-re 15074  df-im 15075  df-sqrt 15209  df-abs 15210  df-limsup 15442  df-clim 15459  df-rlim 15460  df-o1 15461  df-lo1 15462  df-sum 15660  df-ef 16038  df-sin 16040  df-cos 16041  df-pi 16043  df-dvds 16226  df-gcd 16464  df-phi 16729  df-struct 17110  df-sets 17127  df-slot 17145  df-ndx 17157  df-base 17175  df-ress 17204  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17398  df-topn 17399  df-0g 17417  df-gsum 17418  df-topgen 17419  df-pt 17420  df-prds 17423  df-xrs 17478  df-qtop 17483  df-imas 17484  df-qus 17485  df-xps 17486  df-mre 17560  df-mrc 17561  df-acs 17563  df-mgm 18594  df-sgrp 18673  df-mnd 18689  df-mhm 18734  df-submnd 18735  df-grp 18892  df-minusg 18893  df-sbg 18894  df-mulg 19023  df-subg 19077  df-nsg 19078  df-eqg 19079  df-ghm 19167  df-cntz 19267  df-od 19482  df-cmn 19736  df-abl 19737  df-mgp 20074  df-rng 20092  df-ur 20121  df-ring 20174  df-cring 20175  df-oppr 20272  df-dvdsr 20295  df-unit 20296  df-invr 20326  df-dvr 20339  df-rhm 20410  df-subrng 20482  df-subrg 20507  df-drng 20625  df-lmod 20744  df-lss 20815  df-lsp 20855  df-sra 21057  df-rgmod 21058  df-lidl 21103  df-rsp 21104  df-2idl 21143  df-psmet 21270  df-xmet 21271  df-met 21272  df-bl 21273  df-mopn 21274  df-fbas 21275  df-fg 21276  df-cnfld 21279  df-zring 21372  df-zrh 21428  df-zn 21431  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22862  df-cld 22936  df-ntr 22937  df-cls 22938  df-nei 23015  df-lp 23053  df-perf 23054  df-cn 23144  df-cnp 23145  df-haus 23232  df-cmp 23304  df-tx 23479  df-hmeo 23672  df-fil 23763  df-fm 23855  df-flim 23856  df-flf 23857  df-xms 24239  df-ms 24240  df-tms 24241  df-cncf 24811  df-limc 25808  df-dv 25809  df-log 26503  df-cxp 26504  df-dchr 27179
This theorem is referenced by:  dchrisum0  27466
  Copyright terms: Public domain W3C validator