Step | Hyp | Ref
| Expression |
1 | | 1red 10976 |
. 2
⊢ (𝜑 → 1 ∈
ℝ) |
2 | | sumex 15399 |
. . . 4
⊢
Σ𝑚 ∈
(1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ V |
3 | 2 | a1i 11 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑚 ∈
(1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ V) |
4 | | sumex 15399 |
. . . 4
⊢
Σ𝑚 ∈
(((⌊‘𝑥) +
1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ V |
5 | 4 | a1i 11 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑚 ∈
(((⌊‘𝑥) +
1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ V) |
6 | | rpvmasum.z |
. . . . 5
⊢ 𝑍 =
(ℤ/nℤ‘𝑁) |
7 | | rpvmasum.l |
. . . . 5
⊢ 𝐿 = (ℤRHom‘𝑍) |
8 | | rpvmasum.a |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℕ) |
9 | | rpvmasum2.g |
. . . . 5
⊢ 𝐺 = (DChr‘𝑁) |
10 | | rpvmasum2.d |
. . . . 5
⊢ 𝐷 = (Base‘𝐺) |
11 | | rpvmasum2.1 |
. . . . 5
⊢ 1 =
(0g‘𝐺) |
12 | | rpvmasum2.w |
. . . . . . . 8
⊢ 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} |
13 | 12 | ssrab3 4015 |
. . . . . . 7
⊢ 𝑊 ⊆ (𝐷 ∖ { 1 }) |
14 | | difss 4066 |
. . . . . . 7
⊢ (𝐷 ∖ { 1 }) ⊆ 𝐷 |
15 | 13, 14 | sstri 3930 |
. . . . . 6
⊢ 𝑊 ⊆ 𝐷 |
16 | | dchrisum0.b |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝑊) |
17 | 15, 16 | sselid 3919 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐷) |
18 | 13, 16 | sselid 3919 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ (𝐷 ∖ { 1 })) |
19 | | eldifsni 4723 |
. . . . . 6
⊢ (𝑋 ∈ (𝐷 ∖ { 1 }) → 𝑋 ≠ 1 ) |
20 | 18, 19 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑋 ≠ 1 ) |
21 | | eqid 2738 |
. . . . 5
⊢ (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) |
22 | 6, 7, 8, 9, 10, 11, 17, 20, 21 | dchrmusumlema 26641 |
. . . 4
⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦))) |
23 | 8 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑁 ∈ ℕ) |
24 | 16 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑋 ∈ 𝑊) |
25 | | dchrisum0lem1.f |
. . . . . . 7
⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / (√‘𝑎))) |
26 | | dchrisum0.c |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) |
27 | 26 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝐶 ∈ (0[,)+∞)) |
28 | | dchrisum0.s |
. . . . . . . 8
⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑆) |
29 | 28 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → seq1( + , 𝐹) ⇝ 𝑆) |
30 | | dchrisum0.1 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦))) |
31 | 30 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦))) |
32 | | eqid 2738 |
. . . . . . 7
⊢ (𝑦 ∈ ℝ+
↦ (Σ𝑑 ∈
(1...(⌊‘𝑦))(1 /
(√‘𝑑)) −
(2 · (√‘𝑦)))) = (𝑦 ∈ ℝ+ ↦
(Σ𝑑 ∈
(1...(⌊‘𝑦))(1 /
(√‘𝑑)) −
(2 · (√‘𝑦)))) |
33 | 32 | divsqrsum 26131 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℝ+
↦ (Σ𝑑 ∈
(1...(⌊‘𝑦))(1 /
(√‘𝑑)) −
(2 · (√‘𝑦)))) ∈ dom
⇝𝑟 |
34 | 32 | divsqrsumf 26130 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℝ+
↦ (Σ𝑑 ∈
(1...(⌊‘𝑦))(1 /
(√‘𝑑)) −
(2 · (√‘𝑦)))):ℝ+⟶ℝ |
35 | | ax-resscn 10928 |
. . . . . . . . . . . 12
⊢ ℝ
⊆ ℂ |
36 | | fss 6617 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ ℝ+
↦ (Σ𝑑 ∈
(1...(⌊‘𝑦))(1 /
(√‘𝑑)) −
(2 · (√‘𝑦)))):ℝ+⟶ℝ ∧
ℝ ⊆ ℂ) → (𝑦 ∈ ℝ+ ↦
(Σ𝑑 ∈
(1...(⌊‘𝑦))(1 /
(√‘𝑑)) −
(2 · (√‘𝑦)))):ℝ+⟶ℂ) |
37 | 34, 35, 36 | mp2an 689 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℝ+
↦ (Σ𝑑 ∈
(1...(⌊‘𝑦))(1 /
(√‘𝑑)) −
(2 · (√‘𝑦)))):ℝ+⟶ℂ |
38 | 37 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ∈ ℝ+ ↦
(Σ𝑑 ∈
(1...(⌊‘𝑦))(1 /
(√‘𝑑)) −
(2 · (√‘𝑦)))):ℝ+⟶ℂ) |
39 | | rpsup 13586 |
. . . . . . . . . . 11
⊢
sup(ℝ+, ℝ*, < ) =
+∞ |
40 | 39 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → sup(ℝ+,
ℝ*, < ) = +∞) |
41 | 38, 40 | rlimdm 15260 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑦 ∈ ℝ+ ↦
(Σ𝑑 ∈
(1...(⌊‘𝑦))(1 /
(√‘𝑑)) −
(2 · (√‘𝑦)))) ∈ dom ⇝𝑟
↔ (𝑦 ∈
ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 ·
(√‘𝑦))))
⇝𝑟 ( ⇝𝑟 ‘(𝑦 ∈ ℝ+
↦ (Σ𝑑 ∈
(1...(⌊‘𝑦))(1 /
(√‘𝑑)) −
(2 · (√‘𝑦))))))) |
42 | 33, 41 | mpbii 232 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ ℝ+ ↦
(Σ𝑑 ∈
(1...(⌊‘𝑦))(1 /
(√‘𝑑)) −
(2 · (√‘𝑦)))) ⇝𝑟 (
⇝𝑟 ‘(𝑦 ∈ ℝ+ ↦
(Σ𝑑 ∈
(1...(⌊‘𝑦))(1 /
(√‘𝑑)) −
(2 · (√‘𝑦)))))) |
43 | 42 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → (𝑦 ∈ ℝ+ ↦
(Σ𝑑 ∈
(1...(⌊‘𝑦))(1 /
(√‘𝑑)) −
(2 · (√‘𝑦)))) ⇝𝑟 (
⇝𝑟 ‘(𝑦 ∈ ℝ+ ↦
(Σ𝑑 ∈
(1...(⌊‘𝑦))(1 /
(√‘𝑑)) −
(2 · (√‘𝑦)))))) |
44 | | simprl 768 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑐 ∈ (0[,)+∞)) |
45 | | simprrl 778 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎))) ⇝ 𝑡) |
46 | | simprrr 779 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) |
47 | 6, 7, 23, 9, 10, 11, 12, 24, 25, 27, 29, 31, 32, 43, 21, 44, 45, 46 | dchrisum0lem2 26666 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → (𝑥 ∈ ℝ+ ↦
Σ𝑚 ∈
(1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1)) |
48 | 47 | rexlimdvaa 3214 |
. . . . 5
⊢ (𝜑 → (∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) → (𝑥 ∈ ℝ+ ↦
Σ𝑚 ∈
(1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1))) |
49 | 48 | exlimdv 1936 |
. . . 4
⊢ (𝜑 → (∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) → (𝑥 ∈ ℝ+ ↦
Σ𝑚 ∈
(1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1))) |
50 | 22, 49 | mpd 15 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
Σ𝑚 ∈
(1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1)) |
51 | 6, 7, 8, 9, 10, 11, 12, 16, 25, 26, 28, 30 | dchrisum0lem1 26664 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
Σ𝑚 ∈
(((⌊‘𝑥) +
1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1)) |
52 | 3, 5, 50, 51 | o1add2 15333 |
. 2
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
(Σ𝑚 ∈
(1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)))) ∈ 𝑂(1)) |
53 | | ovexd 7310 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(Σ𝑚 ∈
(1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ V) |
54 | | fzfid 13693 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(1...(⌊‘(𝑥↑2))) ∈ Fin) |
55 | | fzfid 13693 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘(𝑥↑2)))) →
(1...(⌊‘((𝑥↑2) / 𝑚))) ∈ Fin) |
56 | 17 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘(𝑥↑2)))) → 𝑋 ∈ 𝐷) |
57 | | elfzelz 13256 |
. . . . . . . 8
⊢ (𝑚 ∈
(1...(⌊‘(𝑥↑2))) → 𝑚 ∈ ℤ) |
58 | 57 | adantl 482 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘(𝑥↑2)))) → 𝑚 ∈ ℤ) |
59 | 9, 6, 10, 7, 56, 58 | dchrzrhcl 26393 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘(𝑥↑2)))) → (𝑋‘(𝐿‘𝑚)) ∈ ℂ) |
60 | 59 | adantr 481 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (𝑋‘(𝐿‘𝑚)) ∈ ℂ) |
61 | | elfznn 13285 |
. . . . . . . . . 10
⊢ (𝑚 ∈
(1...(⌊‘(𝑥↑2))) → 𝑚 ∈ ℕ) |
62 | 61 | adantl 482 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘(𝑥↑2)))) → 𝑚 ∈ ℕ) |
63 | 62 | nnrpd 12770 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘(𝑥↑2)))) → 𝑚 ∈ ℝ+) |
64 | | elfznn 13285 |
. . . . . . . . 9
⊢ (𝑑 ∈
(1...(⌊‘((𝑥↑2) / 𝑚))) → 𝑑 ∈ ℕ) |
65 | 64 | nnrpd 12770 |
. . . . . . . 8
⊢ (𝑑 ∈
(1...(⌊‘((𝑥↑2) / 𝑚))) → 𝑑 ∈ ℝ+) |
66 | | rpmulcl 12753 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℝ+
∧ 𝑑 ∈
ℝ+) → (𝑚 · 𝑑) ∈
ℝ+) |
67 | 63, 65, 66 | syl2an 596 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (𝑚 · 𝑑) ∈
ℝ+) |
68 | 67 | rpsqrtcld 15123 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (√‘(𝑚 · 𝑑)) ∈
ℝ+) |
69 | 68 | rpcnd 12774 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (√‘(𝑚 · 𝑑)) ∈ ℂ) |
70 | 68 | rpne0d 12777 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (√‘(𝑚 · 𝑑)) ≠ 0) |
71 | 60, 69, 70 | divcld 11751 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → ((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑))) ∈ ℂ) |
72 | 55, 71 | fsumcl 15445 |
. . 3
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘(𝑥↑2)))) → Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑))) ∈ ℂ) |
73 | 54, 72 | fsumcl 15445 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑚 ∈
(1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑))) ∈ ℂ) |
74 | 73 | abscld 15148 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(abs‘Σ𝑚 ∈
(1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ ℝ) |
75 | 74 | adantrr 714 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(abs‘Σ𝑚 ∈
(1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ ℝ) |
76 | 62 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → 𝑚 ∈ ℕ) |
77 | 76 | nnrpd 12770 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → 𝑚 ∈ ℝ+) |
78 | 77 | rprege0d 12779 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (𝑚 ∈ ℝ ∧ 0 ≤ 𝑚)) |
79 | 64 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → 𝑑 ∈ ℕ) |
80 | 79 | nnrpd 12770 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → 𝑑 ∈ ℝ+) |
81 | 80 | rprege0d 12779 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (𝑑 ∈ ℝ ∧ 0 ≤ 𝑑)) |
82 | | sqrtmul 14971 |
. . . . . . . . . . 11
⊢ (((𝑚 ∈ ℝ ∧ 0 ≤
𝑚) ∧ (𝑑 ∈ ℝ ∧ 0 ≤
𝑑)) →
(√‘(𝑚 ·
𝑑)) = ((√‘𝑚) · (√‘𝑑))) |
83 | 78, 81, 82 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (√‘(𝑚 · 𝑑)) = ((√‘𝑚) · (√‘𝑑))) |
84 | 83 | oveq2d 7291 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → ((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑))) = ((𝑋‘(𝐿‘𝑚)) / ((√‘𝑚) · (√‘𝑑)))) |
85 | 77 | rpsqrtcld 15123 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (√‘𝑚) ∈
ℝ+) |
86 | 85 | rpcnne0d 12781 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → ((√‘𝑚) ∈ ℂ ∧
(√‘𝑚) ≠
0)) |
87 | 80 | rpsqrtcld 15123 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (√‘𝑑) ∈
ℝ+) |
88 | 87 | rpcnne0d 12781 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → ((√‘𝑑) ∈ ℂ ∧
(√‘𝑑) ≠
0)) |
89 | | divdiv1 11686 |
. . . . . . . . . 10
⊢ (((𝑋‘(𝐿‘𝑚)) ∈ ℂ ∧ ((√‘𝑚) ∈ ℂ ∧
(√‘𝑚) ≠ 0)
∧ ((√‘𝑑)
∈ ℂ ∧ (√‘𝑑) ≠ 0)) → (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) = ((𝑋‘(𝐿‘𝑚)) / ((√‘𝑚) · (√‘𝑑)))) |
90 | 60, 86, 88, 89 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) = ((𝑋‘(𝐿‘𝑚)) / ((√‘𝑚) · (√‘𝑑)))) |
91 | 84, 90 | eqtr4d 2781 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → ((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑))) = (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) |
92 | 91 | sumeq2dv 15415 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘(𝑥↑2)))) → Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) |
93 | 92 | sumeq2dv 15415 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑚 ∈
(1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑚 ∈ (1...(⌊‘(𝑥↑2)))Σ𝑑 ∈
(1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) |
94 | 93 | adantrr 714 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → Σ𝑚 ∈
(1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑚 ∈ (1...(⌊‘(𝑥↑2)))Σ𝑑 ∈
(1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) |
95 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ+) |
96 | 95 | rpred 12772 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ) |
97 | | reflcl 13516 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ →
(⌊‘𝑥) ∈
ℝ) |
98 | 96, 97 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(⌊‘𝑥) ∈
ℝ) |
99 | 98 | ltp1d 11905 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(⌊‘𝑥) <
((⌊‘𝑥) +
1)) |
100 | | fzdisj 13283 |
. . . . . . . 8
⊢
((⌊‘𝑥)
< ((⌊‘𝑥) +
1) → ((1...(⌊‘𝑥)) ∩ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))) = ∅) |
101 | 99, 100 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((1...(⌊‘𝑥))
∩ (((⌊‘𝑥) +
1)...(⌊‘(𝑥↑2)))) = ∅) |
102 | 101 | adantrr 714 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
((1...(⌊‘𝑥))
∩ (((⌊‘𝑥) +
1)...(⌊‘(𝑥↑2)))) = ∅) |
103 | 95 | rprege0d 12779 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤
𝑥)) |
104 | | flge0nn0 13540 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 0 ≤
𝑥) →
(⌊‘𝑥) ∈
ℕ0) |
105 | | nn0p1nn 12272 |
. . . . . . . . . 10
⊢
((⌊‘𝑥)
∈ ℕ0 → ((⌊‘𝑥) + 1) ∈ ℕ) |
106 | 103, 104,
105 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((⌊‘𝑥) + 1)
∈ ℕ) |
107 | | nnuz 12621 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
108 | 106, 107 | eleqtrdi 2849 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((⌊‘𝑥) + 1)
∈ (ℤ≥‘1)) |
109 | 108 | adantrr 714 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
((⌊‘𝑥) + 1)
∈ (ℤ≥‘1)) |
110 | 96 | adantrr 714 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → 𝑥 ∈
ℝ) |
111 | | 2z 12352 |
. . . . . . . . . . 11
⊢ 2 ∈
ℤ |
112 | | rpexpcl 13801 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 2 ∈ ℤ) → (𝑥↑2) ∈
ℝ+) |
113 | 95, 111, 112 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥↑2) ∈
ℝ+) |
114 | 113 | adantrr 714 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → (𝑥↑2) ∈
ℝ+) |
115 | 114 | rpred 12772 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → (𝑥↑2) ∈
ℝ) |
116 | 110 | recnd 11003 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → 𝑥 ∈
ℂ) |
117 | 116 | mulid1d 10992 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → (𝑥 · 1) = 𝑥) |
118 | | simprr 770 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → 1 ≤ 𝑥) |
119 | | 1red 10976 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → 1 ∈
ℝ) |
120 | | rpregt0 12744 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ∈ ℝ
∧ 0 < 𝑥)) |
121 | 120 | ad2antrl 725 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → (𝑥 ∈ ℝ ∧ 0 <
𝑥)) |
122 | | lemul2 11828 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℝ ∧ 𝑥
∈ ℝ ∧ (𝑥
∈ ℝ ∧ 0 < 𝑥)) → (1 ≤ 𝑥 ↔ (𝑥 · 1) ≤ (𝑥 · 𝑥))) |
123 | 119, 110,
121, 122 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → (1 ≤ 𝑥 ↔ (𝑥 · 1) ≤ (𝑥 · 𝑥))) |
124 | 118, 123 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → (𝑥 · 1) ≤ (𝑥 · 𝑥)) |
125 | 117, 124 | eqbrtrrd 5098 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → 𝑥 ≤ (𝑥 · 𝑥)) |
126 | 116 | sqvald 13861 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → (𝑥↑2) = (𝑥 · 𝑥)) |
127 | 125, 126 | breqtrrd 5102 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → 𝑥 ≤ (𝑥↑2)) |
128 | | flword2 13533 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ ∧ (𝑥↑2) ∈ ℝ ∧
𝑥 ≤ (𝑥↑2)) → (⌊‘(𝑥↑2)) ∈
(ℤ≥‘(⌊‘𝑥))) |
129 | 110, 115,
127, 128 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(⌊‘(𝑥↑2))
∈ (ℤ≥‘(⌊‘𝑥))) |
130 | | fzsplit2 13281 |
. . . . . . 7
⊢
((((⌊‘𝑥)
+ 1) ∈ (ℤ≥‘1) ∧ (⌊‘(𝑥↑2)) ∈
(ℤ≥‘(⌊‘𝑥))) → (1...(⌊‘(𝑥↑2))) =
((1...(⌊‘𝑥))
∪ (((⌊‘𝑥) +
1)...(⌊‘(𝑥↑2))))) |
131 | 109, 129,
130 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(1...(⌊‘(𝑥↑2))) = ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))))) |
132 | | fzfid 13693 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(1...(⌊‘(𝑥↑2))) ∈ Fin) |
133 | 92, 72 | eqeltrrd 2840 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘(𝑥↑2)))) → Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ) |
134 | 133 | adantlrr 718 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑚 ∈
(1...(⌊‘(𝑥↑2)))) → Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ) |
135 | 102, 131,
132, 134 | fsumsplit 15453 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → Σ𝑚 ∈
(1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) = (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)))) |
136 | 94, 135 | eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → Σ𝑚 ∈
(1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑))) = (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)))) |
137 | 136 | fveq2d 6778 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(abs‘Σ𝑚 ∈
(1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑)))) = (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))))) |
138 | 75, 137 | eqled 11078 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(abs‘Σ𝑚 ∈
(1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑)))) ≤ (abs‘(Σ𝑚 ∈
(1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))))) |
139 | 1, 52, 53, 73, 138 | o1le 15364 |
1
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
Σ𝑚 ∈
(1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1)) |