MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harmonicbnd4 Structured version   Visualization version   GIF version

Theorem harmonicbnd4 27068
Description: The asymptotic behavior of Σ𝑚𝐴, 1 / 𝑚 = log𝐴 + γ + 𝑂(1 / 𝐴). (Contributed by Mario Carneiro, 14-May-2016.)
Assertion
Ref Expression
harmonicbnd4 (𝐴 ∈ ℝ+ → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ≤ (1 / 𝐴))
Distinct variable group:   𝐴,𝑚

Proof of Theorem harmonicbnd4
StepHypRef Expression
1 fzfid 14010 . . . . . 6 (𝐴 ∈ ℝ+ → (1...(⌊‘𝐴)) ∈ Fin)
2 elfznn 13589 . . . . . . . 8 (𝑚 ∈ (1...(⌊‘𝐴)) → 𝑚 ∈ ℕ)
32adantl 481 . . . . . . 7 ((𝐴 ∈ ℝ+𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚 ∈ ℕ)
43nnrecred 12314 . . . . . 6 ((𝐴 ∈ ℝ+𝑚 ∈ (1...(⌊‘𝐴))) → (1 / 𝑚) ∈ ℝ)
51, 4fsumrecl 15766 . . . . 5 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) ∈ ℝ)
65recnd 11286 . . . 4 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) ∈ ℂ)
7 relogcl 26631 . . . . 5 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
87recnd 11286 . . . 4 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℂ)
9 emre 27063 . . . . . 6 γ ∈ ℝ
109a1i 11 . . . . 5 (𝐴 ∈ ℝ+ → γ ∈ ℝ)
1110recnd 11286 . . . 4 (𝐴 ∈ ℝ+ → γ ∈ ℂ)
126, 8, 11subsub4d 11648 . . 3 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − γ) = (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))
1312fveq2d 6910 . 2 (𝐴 ∈ ℝ+ → (abs‘((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − γ)) = (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))))
14 rpreccl 13058 . . . . . 6 (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+)
1514rpred 13074 . . . . 5 (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ)
16 resubcl 11570 . . . . 5 ((γ ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (γ − (1 / 𝐴)) ∈ ℝ)
179, 15, 16sylancr 587 . . . 4 (𝐴 ∈ ℝ+ → (γ − (1 / 𝐴)) ∈ ℝ)
18 rprege0 13047 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
19 flge0nn0 13856 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)
2018, 19syl 17 . . . . . . . 8 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℕ0)
21 nn0p1nn 12562 . . . . . . . 8 ((⌊‘𝐴) ∈ ℕ0 → ((⌊‘𝐴) + 1) ∈ ℕ)
2220, 21syl 17 . . . . . . 7 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) + 1) ∈ ℕ)
2322nnrpd 13072 . . . . . 6 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) + 1) ∈ ℝ+)
24 relogcl 26631 . . . . . 6 (((⌊‘𝐴) + 1) ∈ ℝ+ → (log‘((⌊‘𝐴) + 1)) ∈ ℝ)
2523, 24syl 17 . . . . 5 (𝐴 ∈ ℝ+ → (log‘((⌊‘𝐴) + 1)) ∈ ℝ)
265, 25resubcld 11688 . . . 4 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ ℝ)
275, 7resubcld 11688 . . . 4 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) ∈ ℝ)
2822nnrecred 12314 . . . . . 6 (𝐴 ∈ ℝ+ → (1 / ((⌊‘𝐴) + 1)) ∈ ℝ)
29 fzfid 14010 . . . . . . . 8 (𝐴 ∈ ℝ+ → (1...((⌊‘𝐴) + 1)) ∈ Fin)
30 elfznn 13589 . . . . . . . . . 10 (𝑚 ∈ (1...((⌊‘𝐴) + 1)) → 𝑚 ∈ ℕ)
3130adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝐴) + 1))) → 𝑚 ∈ ℕ)
3231nnrecred 12314 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝐴) + 1))) → (1 / 𝑚) ∈ ℝ)
3329, 32fsumrecl 15766 . . . . . . 7 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) ∈ ℝ)
3433, 25resubcld 11688 . . . . . 6 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ ℝ)
35 harmonicbnd 27061 . . . . . . . 8 (((⌊‘𝐴) + 1) ∈ ℕ → (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (γ[,]1))
3622, 35syl 17 . . . . . . 7 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (γ[,]1))
37 1re 11258 . . . . . . . . 9 1 ∈ ℝ
389, 37elicc2i 13449 . . . . . . . 8 ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (γ[,]1) ↔ ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ ℝ ∧ γ ≤ (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∧ (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ≤ 1))
3938simp2bi 1145 . . . . . . 7 ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (γ[,]1) → γ ≤ (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
4036, 39syl 17 . . . . . 6 (𝐴 ∈ ℝ+ → γ ≤ (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
41 rpre 13040 . . . . . . . 8 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
42 fllep1 13837 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ≤ ((⌊‘𝐴) + 1))
4341, 42syl 17 . . . . . . 7 (𝐴 ∈ ℝ+𝐴 ≤ ((⌊‘𝐴) + 1))
44 rpregt0 13046 . . . . . . . 8 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
4522nnred 12278 . . . . . . . 8 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) + 1) ∈ ℝ)
4622nngt0d 12312 . . . . . . . 8 (𝐴 ∈ ℝ+ → 0 < ((⌊‘𝐴) + 1))
47 lerec 12148 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (((⌊‘𝐴) + 1) ∈ ℝ ∧ 0 < ((⌊‘𝐴) + 1))) → (𝐴 ≤ ((⌊‘𝐴) + 1) ↔ (1 / ((⌊‘𝐴) + 1)) ≤ (1 / 𝐴)))
4844, 45, 46, 47syl12anc 837 . . . . . . 7 (𝐴 ∈ ℝ+ → (𝐴 ≤ ((⌊‘𝐴) + 1) ↔ (1 / ((⌊‘𝐴) + 1)) ≤ (1 / 𝐴)))
4943, 48mpbid 232 . . . . . 6 (𝐴 ∈ ℝ+ → (1 / ((⌊‘𝐴) + 1)) ≤ (1 / 𝐴))
5010, 28, 34, 15, 40, 49le2subd 11880 . . . . 5 (𝐴 ∈ ℝ+ → (γ − (1 / 𝐴)) ≤ ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) − (1 / ((⌊‘𝐴) + 1))))
5133recnd 11286 . . . . . . 7 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) ∈ ℂ)
5225recnd 11286 . . . . . . 7 (𝐴 ∈ ℝ+ → (log‘((⌊‘𝐴) + 1)) ∈ ℂ)
5328recnd 11286 . . . . . . 7 (𝐴 ∈ ℝ+ → (1 / ((⌊‘𝐴) + 1)) ∈ ℂ)
5451, 52, 53sub32d 11649 . . . . . 6 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) − (1 / ((⌊‘𝐴) + 1))) = ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (1 / ((⌊‘𝐴) + 1))) − (log‘((⌊‘𝐴) + 1))))
55 nnuz 12918 . . . . . . . . . . 11 ℕ = (ℤ‘1)
5622, 55eleqtrdi 2848 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) + 1) ∈ (ℤ‘1))
5732recnd 11286 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝐴) + 1))) → (1 / 𝑚) ∈ ℂ)
58 oveq2 7438 . . . . . . . . . 10 (𝑚 = ((⌊‘𝐴) + 1) → (1 / 𝑚) = (1 / ((⌊‘𝐴) + 1)))
5956, 57, 58fsumm1 15783 . . . . . . . . 9 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) = (Σ𝑚 ∈ (1...(((⌊‘𝐴) + 1) − 1))(1 / 𝑚) + (1 / ((⌊‘𝐴) + 1))))
6020nn0cnd 12586 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℂ)
61 ax-1cn 11210 . . . . . . . . . . . . 13 1 ∈ ℂ
62 pncan 11511 . . . . . . . . . . . . 13 (((⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (((⌊‘𝐴) + 1) − 1) = (⌊‘𝐴))
6360, 61, 62sylancl 586 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) + 1) − 1) = (⌊‘𝐴))
6463oveq2d 7446 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (1...(((⌊‘𝐴) + 1) − 1)) = (1...(⌊‘𝐴)))
6564sumeq1d 15732 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...(((⌊‘𝐴) + 1) − 1))(1 / 𝑚) = Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚))
6665oveq1d 7445 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(((⌊‘𝐴) + 1) − 1))(1 / 𝑚) + (1 / ((⌊‘𝐴) + 1))) = (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) + (1 / ((⌊‘𝐴) + 1))))
6759, 66eqtrd 2774 . . . . . . . 8 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) = (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) + (1 / ((⌊‘𝐴) + 1))))
686, 53, 67mvrraddd 11672 . . . . . . 7 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (1 / ((⌊‘𝐴) + 1))) = Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚))
6968oveq1d 7445 . . . . . 6 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (1 / ((⌊‘𝐴) + 1))) − (log‘((⌊‘𝐴) + 1))) = (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
7054, 69eqtrd 2774 . . . . 5 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) − (1 / ((⌊‘𝐴) + 1))) = (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
7150, 70breqtrd 5173 . . . 4 (𝐴 ∈ ℝ+ → (γ − (1 / 𝐴)) ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
72 logleb 26659 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ ((⌊‘𝐴) + 1) ∈ ℝ+) → (𝐴 ≤ ((⌊‘𝐴) + 1) ↔ (log‘𝐴) ≤ (log‘((⌊‘𝐴) + 1))))
7323, 72mpdan 687 . . . . . 6 (𝐴 ∈ ℝ+ → (𝐴 ≤ ((⌊‘𝐴) + 1) ↔ (log‘𝐴) ≤ (log‘((⌊‘𝐴) + 1))))
7443, 73mpbid 232 . . . . 5 (𝐴 ∈ ℝ+ → (log‘𝐴) ≤ (log‘((⌊‘𝐴) + 1)))
757, 25, 5, 74lesub2dd 11877 . . . 4 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)))
7617, 26, 27, 71, 75letrd 11415 . . 3 (𝐴 ∈ ℝ+ → (γ − (1 / 𝐴)) ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)))
7727, 15resubcld 11688 . . . . 5 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − (1 / 𝐴)) ∈ ℝ)
7815recnd 11286 . . . . . . 7 (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℂ)
796, 8, 78subsub4d 11648 . . . . . 6 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − (1 / 𝐴)) = (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + (1 / 𝐴))))
807, 15readdcld 11287 . . . . . . 7 (𝐴 ∈ ℝ+ → ((log‘𝐴) + (1 / 𝐴)) ∈ ℝ)
81 id 22 . . . . . . . . . 10 (𝐴 ∈ ℝ+𝐴 ∈ ℝ+)
8223, 81relogdivd 26682 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (log‘(((⌊‘𝐴) + 1) / 𝐴)) = ((log‘((⌊‘𝐴) + 1)) − (log‘𝐴)))
83 rerpdivcl 13062 . . . . . . . . . . . . 13 ((((⌊‘𝐴) + 1) ∈ ℝ ∧ 𝐴 ∈ ℝ+) → (((⌊‘𝐴) + 1) / 𝐴) ∈ ℝ)
8445, 83mpancom 688 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) + 1) / 𝐴) ∈ ℝ)
8537a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → 1 ∈ ℝ)
8685, 15readdcld 11287 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (1 + (1 / 𝐴)) ∈ ℝ)
8715reefcld 16120 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (exp‘(1 / 𝐴)) ∈ ℝ)
8861a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → 1 ∈ ℂ)
89 rpcnne0 13050 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
90 divdir 11944 . . . . . . . . . . . . . 14 (((⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → (((⌊‘𝐴) + 1) / 𝐴) = (((⌊‘𝐴) / 𝐴) + (1 / 𝐴)))
9160, 88, 89, 90syl3anc 1370 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) + 1) / 𝐴) = (((⌊‘𝐴) / 𝐴) + (1 / 𝐴)))
92 reflcl 13832 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
9341, 92syl 17 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℝ)
94 rerpdivcl 13062 . . . . . . . . . . . . . . 15 (((⌊‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((⌊‘𝐴) / 𝐴) ∈ ℝ)
9593, 94mpancom 688 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) / 𝐴) ∈ ℝ)
96 flle 13835 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
9741, 96syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ≤ 𝐴)
98 rpcn 13042 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
9998mulridd 11275 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ+ → (𝐴 · 1) = 𝐴)
10097, 99breqtrrd 5175 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ≤ (𝐴 · 1))
101 ledivmul 12141 . . . . . . . . . . . . . . . 16 (((⌊‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (((⌊‘𝐴) / 𝐴) ≤ 1 ↔ (⌊‘𝐴) ≤ (𝐴 · 1)))
10293, 85, 44, 101syl3anc 1370 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) / 𝐴) ≤ 1 ↔ (⌊‘𝐴) ≤ (𝐴 · 1)))
103100, 102mpbird 257 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) / 𝐴) ≤ 1)
10495, 85, 15, 103leadd1dd 11874 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) / 𝐴) + (1 / 𝐴)) ≤ (1 + (1 / 𝐴)))
10591, 104eqbrtrd 5169 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) + 1) / 𝐴) ≤ (1 + (1 / 𝐴)))
106 efgt1p 16147 . . . . . . . . . . . . . 14 ((1 / 𝐴) ∈ ℝ+ → (1 + (1 / 𝐴)) < (exp‘(1 / 𝐴)))
10714, 106syl 17 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → (1 + (1 / 𝐴)) < (exp‘(1 / 𝐴)))
10886, 87, 107ltled 11406 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (1 + (1 / 𝐴)) ≤ (exp‘(1 / 𝐴)))
10984, 86, 87, 105, 108letrd 11415 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) + 1) / 𝐴) ≤ (exp‘(1 / 𝐴)))
110 rpdivcl 13057 . . . . . . . . . . . . 13 ((((⌊‘𝐴) + 1) ∈ ℝ+𝐴 ∈ ℝ+) → (((⌊‘𝐴) + 1) / 𝐴) ∈ ℝ+)
11123, 110mpancom 688 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) + 1) / 𝐴) ∈ ℝ+)
11215rpefcld 16137 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (exp‘(1 / 𝐴)) ∈ ℝ+)
113111, 112logled 26683 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → ((((⌊‘𝐴) + 1) / 𝐴) ≤ (exp‘(1 / 𝐴)) ↔ (log‘(((⌊‘𝐴) + 1) / 𝐴)) ≤ (log‘(exp‘(1 / 𝐴)))))
114109, 113mpbid 232 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (log‘(((⌊‘𝐴) + 1) / 𝐴)) ≤ (log‘(exp‘(1 / 𝐴))))
11515relogefd 26684 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (log‘(exp‘(1 / 𝐴))) = (1 / 𝐴))
116114, 115breqtrd 5173 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (log‘(((⌊‘𝐴) + 1) / 𝐴)) ≤ (1 / 𝐴))
11782, 116eqbrtrrd 5171 . . . . . . . 8 (𝐴 ∈ ℝ+ → ((log‘((⌊‘𝐴) + 1)) − (log‘𝐴)) ≤ (1 / 𝐴))
11825, 7, 15lesubadd2d 11859 . . . . . . . 8 (𝐴 ∈ ℝ+ → (((log‘((⌊‘𝐴) + 1)) − (log‘𝐴)) ≤ (1 / 𝐴) ↔ (log‘((⌊‘𝐴) + 1)) ≤ ((log‘𝐴) + (1 / 𝐴))))
119117, 118mpbid 232 . . . . . . 7 (𝐴 ∈ ℝ+ → (log‘((⌊‘𝐴) + 1)) ≤ ((log‘𝐴) + (1 / 𝐴)))
12025, 80, 5, 119lesub2dd 11877 . . . . . 6 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + (1 / 𝐴))) ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
12179, 120eqbrtrd 5169 . . . . 5 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − (1 / 𝐴)) ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
122 harmonicbnd3 27065 . . . . . . 7 ((⌊‘𝐴) ∈ ℕ0 → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (0[,]γ))
12320, 122syl 17 . . . . . 6 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (0[,]γ))
124 0re 11260 . . . . . . . 8 0 ∈ ℝ
125124, 9elicc2i 13449 . . . . . . 7 ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (0[,]γ) ↔ ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ ℝ ∧ 0 ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∧ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ≤ γ))
126125simp3bi 1146 . . . . . 6 ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (0[,]γ) → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ≤ γ)
127123, 126syl 17 . . . . 5 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ≤ γ)
12877, 26, 10, 121, 127letrd 11415 . . . 4 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − (1 / 𝐴)) ≤ γ)
12927, 15, 10lesubaddd 11857 . . . 4 (𝐴 ∈ ℝ+ → (((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − (1 / 𝐴)) ≤ γ ↔ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) ≤ (γ + (1 / 𝐴))))
130128, 129mpbid 232 . . 3 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) ≤ (γ + (1 / 𝐴)))
13127, 10, 15absdifled 15469 . . 3 (𝐴 ∈ ℝ+ → ((abs‘((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − γ)) ≤ (1 / 𝐴) ↔ ((γ − (1 / 𝐴)) ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) ∧ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) ≤ (γ + (1 / 𝐴)))))
13276, 130, 131mpbir2and 713 . 2 (𝐴 ∈ ℝ+ → (abs‘((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − γ)) ≤ (1 / 𝐴))
13313, 132eqbrtrrd 5171 1 (𝐴 ∈ ℝ+ → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ≤ (1 / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wne 2937   class class class wbr 5147  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cle 11293  cmin 11489   / cdiv 11917  cn 12263  0cn0 12523  cuz 12875  +crp 13031  [,]cicc 13386  ...cfz 13543  cfl 13826  abscabs 15269  Σcsu 15718  expce 16093  logclog 26610  γcem 27049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-xnn0 12597  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-e 16100  df-sin 16101  df-cos 16102  df-tan 16103  df-pi 16104  df-dvds 16287  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-cmp 23410  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-limc 25915  df-dv 25916  df-ulm 26434  df-log 26612  df-atan 26924  df-em 27050
This theorem is referenced by:  mulogsumlem  27589  mulog2sumlem1  27592
  Copyright terms: Public domain W3C validator