MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harmonicbnd4 Structured version   Visualization version   GIF version

Theorem harmonicbnd4 26949
Description: The asymptotic behavior of Σ𝑚𝐴, 1 / 𝑚 = log𝐴 + γ + 𝑂(1 / 𝐴). (Contributed by Mario Carneiro, 14-May-2016.)
Assertion
Ref Expression
harmonicbnd4 (𝐴 ∈ ℝ+ → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ≤ (1 / 𝐴))
Distinct variable group:   𝐴,𝑚

Proof of Theorem harmonicbnd4
StepHypRef Expression
1 fzfid 13882 . . . . . 6 (𝐴 ∈ ℝ+ → (1...(⌊‘𝐴)) ∈ Fin)
2 elfznn 13455 . . . . . . . 8 (𝑚 ∈ (1...(⌊‘𝐴)) → 𝑚 ∈ ℕ)
32adantl 481 . . . . . . 7 ((𝐴 ∈ ℝ+𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚 ∈ ℕ)
43nnrecred 12183 . . . . . 6 ((𝐴 ∈ ℝ+𝑚 ∈ (1...(⌊‘𝐴))) → (1 / 𝑚) ∈ ℝ)
51, 4fsumrecl 15643 . . . . 5 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) ∈ ℝ)
65recnd 11147 . . . 4 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) ∈ ℂ)
7 relogcl 26512 . . . . 5 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
87recnd 11147 . . . 4 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℂ)
9 emre 26944 . . . . . 6 γ ∈ ℝ
109a1i 11 . . . . 5 (𝐴 ∈ ℝ+ → γ ∈ ℝ)
1110recnd 11147 . . . 4 (𝐴 ∈ ℝ+ → γ ∈ ℂ)
126, 8, 11subsub4d 11510 . . 3 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − γ) = (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))
1312fveq2d 6832 . 2 (𝐴 ∈ ℝ+ → (abs‘((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − γ)) = (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))))
14 rpreccl 12920 . . . . . 6 (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+)
1514rpred 12936 . . . . 5 (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ)
16 resubcl 11432 . . . . 5 ((γ ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (γ − (1 / 𝐴)) ∈ ℝ)
179, 15, 16sylancr 587 . . . 4 (𝐴 ∈ ℝ+ → (γ − (1 / 𝐴)) ∈ ℝ)
18 rprege0 12908 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
19 flge0nn0 13726 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)
2018, 19syl 17 . . . . . . . 8 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℕ0)
21 nn0p1nn 12427 . . . . . . . 8 ((⌊‘𝐴) ∈ ℕ0 → ((⌊‘𝐴) + 1) ∈ ℕ)
2220, 21syl 17 . . . . . . 7 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) + 1) ∈ ℕ)
2322nnrpd 12934 . . . . . 6 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) + 1) ∈ ℝ+)
24 relogcl 26512 . . . . . 6 (((⌊‘𝐴) + 1) ∈ ℝ+ → (log‘((⌊‘𝐴) + 1)) ∈ ℝ)
2523, 24syl 17 . . . . 5 (𝐴 ∈ ℝ+ → (log‘((⌊‘𝐴) + 1)) ∈ ℝ)
265, 25resubcld 11552 . . . 4 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ ℝ)
275, 7resubcld 11552 . . . 4 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) ∈ ℝ)
2822nnrecred 12183 . . . . . 6 (𝐴 ∈ ℝ+ → (1 / ((⌊‘𝐴) + 1)) ∈ ℝ)
29 fzfid 13882 . . . . . . . 8 (𝐴 ∈ ℝ+ → (1...((⌊‘𝐴) + 1)) ∈ Fin)
30 elfznn 13455 . . . . . . . . . 10 (𝑚 ∈ (1...((⌊‘𝐴) + 1)) → 𝑚 ∈ ℕ)
3130adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝐴) + 1))) → 𝑚 ∈ ℕ)
3231nnrecred 12183 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝐴) + 1))) → (1 / 𝑚) ∈ ℝ)
3329, 32fsumrecl 15643 . . . . . . 7 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) ∈ ℝ)
3433, 25resubcld 11552 . . . . . 6 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ ℝ)
35 harmonicbnd 26942 . . . . . . . 8 (((⌊‘𝐴) + 1) ∈ ℕ → (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (γ[,]1))
3622, 35syl 17 . . . . . . 7 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (γ[,]1))
37 1re 11119 . . . . . . . . 9 1 ∈ ℝ
389, 37elicc2i 13314 . . . . . . . 8 ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (γ[,]1) ↔ ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ ℝ ∧ γ ≤ (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∧ (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ≤ 1))
3938simp2bi 1146 . . . . . . 7 ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (γ[,]1) → γ ≤ (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
4036, 39syl 17 . . . . . 6 (𝐴 ∈ ℝ+ → γ ≤ (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
41 rpre 12901 . . . . . . . 8 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
42 fllep1 13707 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ≤ ((⌊‘𝐴) + 1))
4341, 42syl 17 . . . . . . 7 (𝐴 ∈ ℝ+𝐴 ≤ ((⌊‘𝐴) + 1))
44 rpregt0 12907 . . . . . . . 8 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
4522nnred 12147 . . . . . . . 8 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) + 1) ∈ ℝ)
4622nngt0d 12181 . . . . . . . 8 (𝐴 ∈ ℝ+ → 0 < ((⌊‘𝐴) + 1))
47 lerec 12012 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (((⌊‘𝐴) + 1) ∈ ℝ ∧ 0 < ((⌊‘𝐴) + 1))) → (𝐴 ≤ ((⌊‘𝐴) + 1) ↔ (1 / ((⌊‘𝐴) + 1)) ≤ (1 / 𝐴)))
4844, 45, 46, 47syl12anc 836 . . . . . . 7 (𝐴 ∈ ℝ+ → (𝐴 ≤ ((⌊‘𝐴) + 1) ↔ (1 / ((⌊‘𝐴) + 1)) ≤ (1 / 𝐴)))
4943, 48mpbid 232 . . . . . 6 (𝐴 ∈ ℝ+ → (1 / ((⌊‘𝐴) + 1)) ≤ (1 / 𝐴))
5010, 28, 34, 15, 40, 49le2subd 11744 . . . . 5 (𝐴 ∈ ℝ+ → (γ − (1 / 𝐴)) ≤ ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) − (1 / ((⌊‘𝐴) + 1))))
5133recnd 11147 . . . . . . 7 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) ∈ ℂ)
5225recnd 11147 . . . . . . 7 (𝐴 ∈ ℝ+ → (log‘((⌊‘𝐴) + 1)) ∈ ℂ)
5328recnd 11147 . . . . . . 7 (𝐴 ∈ ℝ+ → (1 / ((⌊‘𝐴) + 1)) ∈ ℂ)
5451, 52, 53sub32d 11511 . . . . . 6 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) − (1 / ((⌊‘𝐴) + 1))) = ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (1 / ((⌊‘𝐴) + 1))) − (log‘((⌊‘𝐴) + 1))))
55 nnuz 12777 . . . . . . . . . . 11 ℕ = (ℤ‘1)
5622, 55eleqtrdi 2843 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) + 1) ∈ (ℤ‘1))
5732recnd 11147 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝐴) + 1))) → (1 / 𝑚) ∈ ℂ)
58 oveq2 7360 . . . . . . . . . 10 (𝑚 = ((⌊‘𝐴) + 1) → (1 / 𝑚) = (1 / ((⌊‘𝐴) + 1)))
5956, 57, 58fsumm1 15660 . . . . . . . . 9 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) = (Σ𝑚 ∈ (1...(((⌊‘𝐴) + 1) − 1))(1 / 𝑚) + (1 / ((⌊‘𝐴) + 1))))
6020nn0cnd 12451 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℂ)
61 ax-1cn 11071 . . . . . . . . . . . . 13 1 ∈ ℂ
62 pncan 11373 . . . . . . . . . . . . 13 (((⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (((⌊‘𝐴) + 1) − 1) = (⌊‘𝐴))
6360, 61, 62sylancl 586 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) + 1) − 1) = (⌊‘𝐴))
6463oveq2d 7368 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (1...(((⌊‘𝐴) + 1) − 1)) = (1...(⌊‘𝐴)))
6564sumeq1d 15609 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...(((⌊‘𝐴) + 1) − 1))(1 / 𝑚) = Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚))
6665oveq1d 7367 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(((⌊‘𝐴) + 1) − 1))(1 / 𝑚) + (1 / ((⌊‘𝐴) + 1))) = (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) + (1 / ((⌊‘𝐴) + 1))))
6759, 66eqtrd 2768 . . . . . . . 8 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) = (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) + (1 / ((⌊‘𝐴) + 1))))
686, 53, 67mvrraddd 11536 . . . . . . 7 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (1 / ((⌊‘𝐴) + 1))) = Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚))
6968oveq1d 7367 . . . . . 6 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (1 / ((⌊‘𝐴) + 1))) − (log‘((⌊‘𝐴) + 1))) = (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
7054, 69eqtrd 2768 . . . . 5 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) − (1 / ((⌊‘𝐴) + 1))) = (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
7150, 70breqtrd 5119 . . . 4 (𝐴 ∈ ℝ+ → (γ − (1 / 𝐴)) ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
72 logleb 26540 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ ((⌊‘𝐴) + 1) ∈ ℝ+) → (𝐴 ≤ ((⌊‘𝐴) + 1) ↔ (log‘𝐴) ≤ (log‘((⌊‘𝐴) + 1))))
7323, 72mpdan 687 . . . . . 6 (𝐴 ∈ ℝ+ → (𝐴 ≤ ((⌊‘𝐴) + 1) ↔ (log‘𝐴) ≤ (log‘((⌊‘𝐴) + 1))))
7443, 73mpbid 232 . . . . 5 (𝐴 ∈ ℝ+ → (log‘𝐴) ≤ (log‘((⌊‘𝐴) + 1)))
757, 25, 5, 74lesub2dd 11741 . . . 4 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)))
7617, 26, 27, 71, 75letrd 11277 . . 3 (𝐴 ∈ ℝ+ → (γ − (1 / 𝐴)) ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)))
7727, 15resubcld 11552 . . . . 5 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − (1 / 𝐴)) ∈ ℝ)
7815recnd 11147 . . . . . . 7 (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℂ)
796, 8, 78subsub4d 11510 . . . . . 6 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − (1 / 𝐴)) = (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + (1 / 𝐴))))
807, 15readdcld 11148 . . . . . . 7 (𝐴 ∈ ℝ+ → ((log‘𝐴) + (1 / 𝐴)) ∈ ℝ)
81 id 22 . . . . . . . . . 10 (𝐴 ∈ ℝ+𝐴 ∈ ℝ+)
8223, 81relogdivd 26563 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (log‘(((⌊‘𝐴) + 1) / 𝐴)) = ((log‘((⌊‘𝐴) + 1)) − (log‘𝐴)))
83 rerpdivcl 12924 . . . . . . . . . . . . 13 ((((⌊‘𝐴) + 1) ∈ ℝ ∧ 𝐴 ∈ ℝ+) → (((⌊‘𝐴) + 1) / 𝐴) ∈ ℝ)
8445, 83mpancom 688 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) + 1) / 𝐴) ∈ ℝ)
8537a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → 1 ∈ ℝ)
8685, 15readdcld 11148 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (1 + (1 / 𝐴)) ∈ ℝ)
8715reefcld 15997 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (exp‘(1 / 𝐴)) ∈ ℝ)
8861a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → 1 ∈ ℂ)
89 rpcnne0 12911 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
90 divdir 11808 . . . . . . . . . . . . . 14 (((⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → (((⌊‘𝐴) + 1) / 𝐴) = (((⌊‘𝐴) / 𝐴) + (1 / 𝐴)))
9160, 88, 89, 90syl3anc 1373 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) + 1) / 𝐴) = (((⌊‘𝐴) / 𝐴) + (1 / 𝐴)))
92 reflcl 13702 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
9341, 92syl 17 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℝ)
94 rerpdivcl 12924 . . . . . . . . . . . . . . 15 (((⌊‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((⌊‘𝐴) / 𝐴) ∈ ℝ)
9593, 94mpancom 688 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) / 𝐴) ∈ ℝ)
96 flle 13705 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
9741, 96syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ≤ 𝐴)
98 rpcn 12903 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
9998mulridd 11136 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ+ → (𝐴 · 1) = 𝐴)
10097, 99breqtrrd 5121 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ≤ (𝐴 · 1))
101 ledivmul 12005 . . . . . . . . . . . . . . . 16 (((⌊‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (((⌊‘𝐴) / 𝐴) ≤ 1 ↔ (⌊‘𝐴) ≤ (𝐴 · 1)))
10293, 85, 44, 101syl3anc 1373 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) / 𝐴) ≤ 1 ↔ (⌊‘𝐴) ≤ (𝐴 · 1)))
103100, 102mpbird 257 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) / 𝐴) ≤ 1)
10495, 85, 15, 103leadd1dd 11738 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) / 𝐴) + (1 / 𝐴)) ≤ (1 + (1 / 𝐴)))
10591, 104eqbrtrd 5115 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) + 1) / 𝐴) ≤ (1 + (1 / 𝐴)))
106 efgt1p 16026 . . . . . . . . . . . . . 14 ((1 / 𝐴) ∈ ℝ+ → (1 + (1 / 𝐴)) < (exp‘(1 / 𝐴)))
10714, 106syl 17 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → (1 + (1 / 𝐴)) < (exp‘(1 / 𝐴)))
10886, 87, 107ltled 11268 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (1 + (1 / 𝐴)) ≤ (exp‘(1 / 𝐴)))
10984, 86, 87, 105, 108letrd 11277 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) + 1) / 𝐴) ≤ (exp‘(1 / 𝐴)))
110 rpdivcl 12919 . . . . . . . . . . . . 13 ((((⌊‘𝐴) + 1) ∈ ℝ+𝐴 ∈ ℝ+) → (((⌊‘𝐴) + 1) / 𝐴) ∈ ℝ+)
11123, 110mpancom 688 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) + 1) / 𝐴) ∈ ℝ+)
11215rpefcld 16016 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (exp‘(1 / 𝐴)) ∈ ℝ+)
113111, 112logled 26564 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → ((((⌊‘𝐴) + 1) / 𝐴) ≤ (exp‘(1 / 𝐴)) ↔ (log‘(((⌊‘𝐴) + 1) / 𝐴)) ≤ (log‘(exp‘(1 / 𝐴)))))
114109, 113mpbid 232 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (log‘(((⌊‘𝐴) + 1) / 𝐴)) ≤ (log‘(exp‘(1 / 𝐴))))
11515relogefd 26565 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (log‘(exp‘(1 / 𝐴))) = (1 / 𝐴))
116114, 115breqtrd 5119 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (log‘(((⌊‘𝐴) + 1) / 𝐴)) ≤ (1 / 𝐴))
11782, 116eqbrtrrd 5117 . . . . . . . 8 (𝐴 ∈ ℝ+ → ((log‘((⌊‘𝐴) + 1)) − (log‘𝐴)) ≤ (1 / 𝐴))
11825, 7, 15lesubadd2d 11723 . . . . . . . 8 (𝐴 ∈ ℝ+ → (((log‘((⌊‘𝐴) + 1)) − (log‘𝐴)) ≤ (1 / 𝐴) ↔ (log‘((⌊‘𝐴) + 1)) ≤ ((log‘𝐴) + (1 / 𝐴))))
119117, 118mpbid 232 . . . . . . 7 (𝐴 ∈ ℝ+ → (log‘((⌊‘𝐴) + 1)) ≤ ((log‘𝐴) + (1 / 𝐴)))
12025, 80, 5, 119lesub2dd 11741 . . . . . 6 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + (1 / 𝐴))) ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
12179, 120eqbrtrd 5115 . . . . 5 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − (1 / 𝐴)) ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
122 harmonicbnd3 26946 . . . . . . 7 ((⌊‘𝐴) ∈ ℕ0 → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (0[,]γ))
12320, 122syl 17 . . . . . 6 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (0[,]γ))
124 0re 11121 . . . . . . . 8 0 ∈ ℝ
125124, 9elicc2i 13314 . . . . . . 7 ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (0[,]γ) ↔ ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ ℝ ∧ 0 ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∧ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ≤ γ))
126125simp3bi 1147 . . . . . 6 ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (0[,]γ) → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ≤ γ)
127123, 126syl 17 . . . . 5 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ≤ γ)
12877, 26, 10, 121, 127letrd 11277 . . . 4 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − (1 / 𝐴)) ≤ γ)
12927, 15, 10lesubaddd 11721 . . . 4 (𝐴 ∈ ℝ+ → (((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − (1 / 𝐴)) ≤ γ ↔ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) ≤ (γ + (1 / 𝐴))))
130128, 129mpbid 232 . . 3 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) ≤ (γ + (1 / 𝐴)))
13127, 10, 15absdifled 15346 . . 3 (𝐴 ∈ ℝ+ → ((abs‘((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − γ)) ≤ (1 / 𝐴) ↔ ((γ − (1 / 𝐴)) ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) ∧ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) ≤ (γ + (1 / 𝐴)))))
13276, 130, 131mpbir2and 713 . 2 (𝐴 ∈ ℝ+ → (abs‘((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − γ)) ≤ (1 / 𝐴))
13313, 132eqbrtrrd 5117 1 (𝐴 ∈ ℝ+ → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ≤ (1 / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929   class class class wbr 5093  cfv 6486  (class class class)co 7352  cc 11011  cr 11012  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018   < clt 11153  cle 11154  cmin 11351   / cdiv 11781  cn 12132  0cn0 12388  cuz 12738  +crp 12892  [,]cicc 13250  ...cfz 13409  cfl 13696  abscabs 15143  Σcsu 15595  expce 15970  logclog 26491  γcem 26930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-xnn0 12462  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-ioc 13252  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-fac 14183  df-bc 14212  df-hash 14240  df-shft 14976  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-limsup 15380  df-clim 15397  df-rlim 15398  df-sum 15596  df-ef 15976  df-e 15977  df-sin 15978  df-cos 15979  df-tan 15980  df-pi 15981  df-dvds 16166  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-fbas 21290  df-fg 21291  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-cmp 23303  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796  df-ulm 26314  df-log 26493  df-atan 26805  df-em 26931
This theorem is referenced by:  mulogsumlem  27470  mulog2sumlem1  27473
  Copyright terms: Public domain W3C validator