| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpge0 | Structured version Visualization version GIF version | ||
| Description: A positive real is greater than or equal to zero. (Contributed by NM, 22-Feb-2008.) |
| Ref | Expression |
|---|---|
| rpge0 | ⊢ (𝐴 ∈ ℝ+ → 0 ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 12905 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 2 | rpgt0 12909 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
| 3 | 0re 11125 | . . 3 ⊢ 0 ∈ ℝ | |
| 4 | ltle 11212 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴)) | |
| 5 | 3, 4 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 → 0 ≤ 𝐴)) |
| 6 | 1, 2, 5 | sylc 65 | 1 ⊢ (𝐴 ∈ ℝ+ → 0 ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 class class class wbr 5095 ℝcr 11016 0cc0 11017 < clt 11157 ≤ cle 11158 ℝ+crp 12896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-addrcl 11078 ax-rnegex 11088 ax-cnre 11090 ax-pre-lttri 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-rp 12897 |
| This theorem is referenced by: rprege0 12912 rpge0d 12944 xralrple 13111 xlemul1 13196 infmrp1 13251 01sqrexlem1 15156 rpsqrtcl 15178 divrcnv 15766 ef01bndlem 16100 stdbdmet 24451 reconnlem2 24763 cphsqrtcl3 25134 iscmet3lem3 25237 minveclem3 25376 itg2const2 25689 itg2mulclem 25694 aalioulem2 26288 pige3ALT 26476 argregt0 26566 argrege0 26567 2irrexpq 26687 cxpcn3 26705 cxplim 26929 cxp2lim 26934 divsqrtsumlem 26937 logdiflbnd 26952 basellem4 27041 ppiltx 27134 bposlem8 27249 bposlem9 27250 chebbnd1 27430 mulog2sumlem2 27493 selbergb 27507 selberg2b 27510 nmcexi 32027 nmcopexi 32028 nmcfnexi 32052 sqsscirc1 33993 divsqrtid 34679 logdivsqrle 34735 hgt750lem2 34737 subfacval3 35305 ptrecube 37733 heicant 37768 itg2addnclem 37784 itg2gt0cn 37788 areacirclem1 37821 areacirclem4 37824 areacirc 37826 cntotbnd 37909 rpabsid 42491 xralrple4 45533 xralrple3 45534 fourierdlem103 46369 blenre 48736 itscnhlinecirc02plem3 48946 itscnhlinecirc02p 48947 |
| Copyright terms: Public domain | W3C validator |