| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpge0 | Structured version Visualization version GIF version | ||
| Description: A positive real is greater than or equal to zero. (Contributed by NM, 22-Feb-2008.) |
| Ref | Expression |
|---|---|
| rpge0 | ⊢ (𝐴 ∈ ℝ+ → 0 ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 12921 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 2 | rpgt0 12925 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
| 3 | 0re 11136 | . . 3 ⊢ 0 ∈ ℝ | |
| 4 | ltle 11223 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴)) | |
| 5 | 3, 4 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 → 0 ≤ 𝐴)) |
| 6 | 1, 2, 5 | sylc 65 | 1 ⊢ (𝐴 ∈ ℝ+ → 0 ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5095 ℝcr 11027 0cc0 11028 < clt 11168 ≤ cle 11169 ℝ+crp 12912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-addrcl 11089 ax-rnegex 11099 ax-cnre 11101 ax-pre-lttri 11102 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-rp 12913 |
| This theorem is referenced by: rprege0 12928 rpge0d 12960 xralrple 13126 xlemul1 13211 infmrp1 13266 01sqrexlem1 15168 rpsqrtcl 15190 divrcnv 15778 ef01bndlem 16112 stdbdmet 24421 reconnlem2 24733 cphsqrtcl3 25104 iscmet3lem3 25207 minveclem3 25346 itg2const2 25659 itg2mulclem 25664 aalioulem2 26258 pige3ALT 26446 argregt0 26536 argrege0 26537 2irrexpq 26657 cxpcn3 26675 cxplim 26899 cxp2lim 26904 divsqrtsumlem 26907 logdiflbnd 26922 basellem4 27011 ppiltx 27104 bposlem8 27219 bposlem9 27220 chebbnd1 27400 mulog2sumlem2 27463 selbergb 27477 selberg2b 27480 nmcexi 31989 nmcopexi 31990 nmcfnexi 32014 sqsscirc1 33894 divsqrtid 34581 logdivsqrle 34637 hgt750lem2 34639 subfacval3 35181 ptrecube 37619 heicant 37654 itg2addnclem 37670 itg2gt0cn 37674 areacirclem1 37707 areacirclem4 37710 areacirc 37712 cntotbnd 37795 rpabsid 42314 xralrple4 45372 xralrple3 45373 fourierdlem103 46210 blenre 48579 itscnhlinecirc02plem3 48789 itscnhlinecirc02p 48790 |
| Copyright terms: Public domain | W3C validator |