Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpge0 | Structured version Visualization version GIF version |
Description: A positive real is greater than or equal to zero. (Contributed by NM, 22-Feb-2008.) |
Ref | Expression |
---|---|
rpge0 | ⊢ (𝐴 ∈ ℝ+ → 0 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 12738 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
2 | rpgt0 12742 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
3 | 0re 10977 | . . 3 ⊢ 0 ∈ ℝ | |
4 | ltle 11063 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴)) | |
5 | 3, 4 | mpan 687 | . 2 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 → 0 ≤ 𝐴)) |
6 | 1, 2, 5 | sylc 65 | 1 ⊢ (𝐴 ∈ ℝ+ → 0 ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 class class class wbr 5074 ℝcr 10870 0cc0 10871 < clt 11009 ≤ cle 11010 ℝ+crp 12730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-addrcl 10932 ax-rnegex 10942 ax-cnre 10944 ax-pre-lttri 10945 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-rp 12731 |
This theorem is referenced by: rprege0 12745 rpge0d 12776 xralrple 12939 xlemul1 13024 infmrp1 13078 sqrlem1 14954 rpsqrtcl 14976 divrcnv 15564 ef01bndlem 15893 stdbdmet 23672 reconnlem2 23990 cphsqrtcl3 24351 iscmet3lem3 24454 minveclem3 24593 itg2const2 24906 itg2mulclem 24911 aalioulem2 25493 pige3ALT 25676 argregt0 25765 argrege0 25766 2irrexpq 25885 cxpcn3 25901 cxplim 26121 cxp2lim 26126 divsqrtsumlem 26129 logdiflbnd 26144 basellem4 26233 ppiltx 26326 bposlem8 26439 bposlem9 26440 chebbnd1 26620 mulog2sumlem2 26683 selbergb 26697 selberg2b 26700 nmcexi 30388 nmcopexi 30389 nmcfnexi 30413 sqsscirc1 31858 divsqrtid 32574 logdivsqrle 32630 hgt750lem2 32632 subfacval3 33151 ptrecube 35777 heicant 35812 itg2addnclem 35828 itg2gt0cn 35832 areacirclem1 35865 areacirclem4 35868 areacirc 35870 cntotbnd 35954 xralrple4 42912 xralrple3 42913 fourierdlem103 43750 blenre 45920 itscnhlinecirc02plem3 46130 itscnhlinecirc02p 46131 |
Copyright terms: Public domain | W3C validator |