| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpge0 | Structured version Visualization version GIF version | ||
| Description: A positive real is greater than or equal to zero. (Contributed by NM, 22-Feb-2008.) |
| Ref | Expression |
|---|---|
| rpge0 | ⊢ (𝐴 ∈ ℝ+ → 0 ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 12894 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 2 | rpgt0 12898 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
| 3 | 0re 11109 | . . 3 ⊢ 0 ∈ ℝ | |
| 4 | ltle 11196 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴)) | |
| 5 | 3, 4 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 → 0 ≤ 𝐴)) |
| 6 | 1, 2, 5 | sylc 65 | 1 ⊢ (𝐴 ∈ ℝ+ → 0 ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 class class class wbr 5086 ℝcr 11000 0cc0 11001 < clt 11141 ≤ cle 11142 ℝ+crp 12885 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-addrcl 11062 ax-rnegex 11072 ax-cnre 11074 ax-pre-lttri 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-rp 12886 |
| This theorem is referenced by: rprege0 12901 rpge0d 12933 xralrple 13099 xlemul1 13184 infmrp1 13239 01sqrexlem1 15144 rpsqrtcl 15166 divrcnv 15754 ef01bndlem 16088 stdbdmet 24426 reconnlem2 24738 cphsqrtcl3 25109 iscmet3lem3 25212 minveclem3 25351 itg2const2 25664 itg2mulclem 25669 aalioulem2 26263 pige3ALT 26451 argregt0 26541 argrege0 26542 2irrexpq 26662 cxpcn3 26680 cxplim 26904 cxp2lim 26909 divsqrtsumlem 26912 logdiflbnd 26927 basellem4 27016 ppiltx 27109 bposlem8 27224 bposlem9 27225 chebbnd1 27405 mulog2sumlem2 27468 selbergb 27482 selberg2b 27485 nmcexi 31998 nmcopexi 31999 nmcfnexi 32023 sqsscirc1 33913 divsqrtid 34599 logdivsqrle 34655 hgt750lem2 34657 subfacval3 35225 ptrecube 37660 heicant 37695 itg2addnclem 37711 itg2gt0cn 37715 areacirclem1 37748 areacirclem4 37751 areacirc 37753 cntotbnd 37836 rpabsid 42354 xralrple4 45411 xralrple3 45412 fourierdlem103 46247 blenre 48606 itscnhlinecirc02plem3 48816 itscnhlinecirc02p 48817 |
| Copyright terms: Public domain | W3C validator |