![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpge0 | Structured version Visualization version GIF version |
Description: A positive real is greater than or equal to zero. (Contributed by NM, 22-Feb-2008.) |
Ref | Expression |
---|---|
rpge0 | ⊢ (𝐴 ∈ ℝ+ → 0 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 13065 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
2 | rpgt0 13069 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
3 | 0re 11292 | . . 3 ⊢ 0 ∈ ℝ | |
4 | ltle 11378 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴)) | |
5 | 3, 4 | mpan 689 | . 2 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 → 0 ≤ 𝐴)) |
6 | 1, 2, 5 | sylc 65 | 1 ⊢ (𝐴 ∈ ℝ+ → 0 ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5166 ℝcr 11183 0cc0 11184 < clt 11324 ≤ cle 11325 ℝ+crp 13057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-addrcl 11245 ax-rnegex 11255 ax-cnre 11257 ax-pre-lttri 11258 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-rp 13058 |
This theorem is referenced by: rprege0 13072 rpge0d 13103 xralrple 13267 xlemul1 13352 infmrp1 13406 01sqrexlem1 15291 rpsqrtcl 15313 divrcnv 15900 ef01bndlem 16232 stdbdmet 24550 reconnlem2 24868 cphsqrtcl3 25240 iscmet3lem3 25343 minveclem3 25482 itg2const2 25796 itg2mulclem 25801 aalioulem2 26393 pige3ALT 26580 argregt0 26670 argrege0 26671 2irrexpq 26791 cxpcn3 26809 cxplim 27033 cxp2lim 27038 divsqrtsumlem 27041 logdiflbnd 27056 basellem4 27145 ppiltx 27238 bposlem8 27353 bposlem9 27354 chebbnd1 27534 mulog2sumlem2 27597 selbergb 27611 selberg2b 27614 nmcexi 32058 nmcopexi 32059 nmcfnexi 32083 sqsscirc1 33854 divsqrtid 34571 logdivsqrle 34627 hgt750lem2 34629 subfacval3 35157 ptrecube 37580 heicant 37615 itg2addnclem 37631 itg2gt0cn 37635 areacirclem1 37668 areacirclem4 37671 areacirc 37673 cntotbnd 37756 xralrple4 45288 xralrple3 45289 fourierdlem103 46130 blenre 48308 itscnhlinecirc02plem3 48518 itscnhlinecirc02p 48519 |
Copyright terms: Public domain | W3C validator |