Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpge0 | Structured version Visualization version GIF version |
Description: A positive real is greater than or equal to zero. (Contributed by NM, 22-Feb-2008.) |
Ref | Expression |
---|---|
rpge0 | ⊢ (𝐴 ∈ ℝ+ → 0 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 12811 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
2 | rpgt0 12815 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
3 | 0re 11050 | . . 3 ⊢ 0 ∈ ℝ | |
4 | ltle 11136 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴)) | |
5 | 3, 4 | mpan 687 | . 2 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 → 0 ≤ 𝐴)) |
6 | 1, 2, 5 | sylc 65 | 1 ⊢ (𝐴 ∈ ℝ+ → 0 ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 class class class wbr 5087 ℝcr 10943 0cc0 10944 < clt 11082 ≤ cle 11083 ℝ+crp 12803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-resscn 11001 ax-1cn 11002 ax-addrcl 11005 ax-rnegex 11015 ax-cnre 11017 ax-pre-lttri 11018 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-er 8546 df-en 8782 df-dom 8783 df-sdom 8784 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-rp 12804 |
This theorem is referenced by: rprege0 12818 rpge0d 12849 xralrple 13012 xlemul1 13097 infmrp1 13151 sqrlem1 15026 rpsqrtcl 15048 divrcnv 15636 ef01bndlem 15965 stdbdmet 23744 reconnlem2 24062 cphsqrtcl3 24423 iscmet3lem3 24526 minveclem3 24665 itg2const2 24978 itg2mulclem 24983 aalioulem2 25565 pige3ALT 25748 argregt0 25837 argrege0 25838 2irrexpq 25957 cxpcn3 25973 cxplim 26193 cxp2lim 26198 divsqrtsumlem 26201 logdiflbnd 26216 basellem4 26305 ppiltx 26398 bposlem8 26511 bposlem9 26512 chebbnd1 26692 mulog2sumlem2 26755 selbergb 26769 selberg2b 26772 nmcexi 30497 nmcopexi 30498 nmcfnexi 30522 sqsscirc1 31964 divsqrtid 32680 logdivsqrle 32736 hgt750lem2 32738 subfacval3 33256 ptrecube 35833 heicant 35868 itg2addnclem 35884 itg2gt0cn 35888 areacirclem1 35921 areacirclem4 35924 areacirc 35926 cntotbnd 36010 xralrple4 43148 xralrple3 43149 fourierdlem103 43987 blenre 46172 itscnhlinecirc02plem3 46382 itscnhlinecirc02p 46383 |
Copyright terms: Public domain | W3C validator |