| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpge0 | Structured version Visualization version GIF version | ||
| Description: A positive real is greater than or equal to zero. (Contributed by NM, 22-Feb-2008.) |
| Ref | Expression |
|---|---|
| rpge0 | ⊢ (𝐴 ∈ ℝ+ → 0 ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 12936 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 2 | rpgt0 12940 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
| 3 | 0re 11152 | . . 3 ⊢ 0 ∈ ℝ | |
| 4 | ltle 11238 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴)) | |
| 5 | 3, 4 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 → 0 ≤ 𝐴)) |
| 6 | 1, 2, 5 | sylc 65 | 1 ⊢ (𝐴 ∈ ℝ+ → 0 ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5102 ℝcr 11043 0cc0 11044 < clt 11184 ≤ cle 11185 ℝ+crp 12927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-addrcl 11105 ax-rnegex 11115 ax-cnre 11117 ax-pre-lttri 11118 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-rp 12928 |
| This theorem is referenced by: rprege0 12943 rpge0d 12975 xralrple 13141 xlemul1 13226 infmrp1 13281 01sqrexlem1 15184 rpsqrtcl 15206 divrcnv 15794 ef01bndlem 16128 stdbdmet 24380 reconnlem2 24692 cphsqrtcl3 25063 iscmet3lem3 25166 minveclem3 25305 itg2const2 25618 itg2mulclem 25623 aalioulem2 26217 pige3ALT 26405 argregt0 26495 argrege0 26496 2irrexpq 26616 cxpcn3 26634 cxplim 26858 cxp2lim 26863 divsqrtsumlem 26866 logdiflbnd 26881 basellem4 26970 ppiltx 27063 bposlem8 27178 bposlem9 27179 chebbnd1 27359 mulog2sumlem2 27422 selbergb 27436 selberg2b 27439 nmcexi 31928 nmcopexi 31929 nmcfnexi 31953 sqsscirc1 33871 divsqrtid 34558 logdivsqrle 34614 hgt750lem2 34616 subfacval3 35149 ptrecube 37587 heicant 37622 itg2addnclem 37638 itg2gt0cn 37642 areacirclem1 37675 areacirclem4 37678 areacirc 37680 cntotbnd 37763 rpabsid 42282 xralrple4 45342 xralrple3 45343 fourierdlem103 46180 blenre 48536 itscnhlinecirc02plem3 48746 itscnhlinecirc02p 48747 |
| Copyright terms: Public domain | W3C validator |