Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpge0 | Structured version Visualization version GIF version |
Description: A positive real is greater than or equal to zero. (Contributed by NM, 22-Feb-2008.) |
Ref | Expression |
---|---|
rpge0 | ⊢ (𝐴 ∈ ℝ+ → 0 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 12667 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
2 | rpgt0 12671 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
3 | 0re 10908 | . . 3 ⊢ 0 ∈ ℝ | |
4 | ltle 10994 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴)) | |
5 | 3, 4 | mpan 686 | . 2 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 → 0 ≤ 𝐴)) |
6 | 1, 2, 5 | sylc 65 | 1 ⊢ (𝐴 ∈ ℝ+ → 0 ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5070 ℝcr 10801 0cc0 10802 < clt 10940 ≤ cle 10941 ℝ+crp 12659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-addrcl 10863 ax-rnegex 10873 ax-cnre 10875 ax-pre-lttri 10876 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-rp 12660 |
This theorem is referenced by: rprege0 12674 rpge0d 12705 xralrple 12868 xlemul1 12953 infmrp1 13007 sqrlem1 14882 rpsqrtcl 14904 divrcnv 15492 ef01bndlem 15821 stdbdmet 23578 reconnlem2 23896 cphsqrtcl3 24256 iscmet3lem3 24359 minveclem3 24498 itg2const2 24811 itg2mulclem 24816 aalioulem2 25398 pige3ALT 25581 argregt0 25670 argrege0 25671 2irrexpq 25790 cxpcn3 25806 cxplim 26026 cxp2lim 26031 divsqrtsumlem 26034 logdiflbnd 26049 basellem4 26138 ppiltx 26231 bposlem8 26344 bposlem9 26345 chebbnd1 26525 mulog2sumlem2 26588 selbergb 26602 selberg2b 26605 nmcexi 30289 nmcopexi 30290 nmcfnexi 30314 sqsscirc1 31760 divsqrtid 32474 logdivsqrle 32530 hgt750lem2 32532 subfacval3 33051 ptrecube 35704 heicant 35739 itg2addnclem 35755 itg2gt0cn 35759 areacirclem1 35792 areacirclem4 35795 areacirc 35797 cntotbnd 35881 xralrple4 42802 xralrple3 42803 fourierdlem103 43640 blenre 45808 itscnhlinecirc02plem3 46018 itscnhlinecirc02p 46019 |
Copyright terms: Public domain | W3C validator |