![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpge0 | Structured version Visualization version GIF version |
Description: A positive real is greater than or equal to zero. (Contributed by NM, 22-Feb-2008.) |
Ref | Expression |
---|---|
rpge0 | ⊢ (𝐴 ∈ ℝ+ → 0 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 13041 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
2 | rpgt0 13045 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
3 | 0re 11261 | . . 3 ⊢ 0 ∈ ℝ | |
4 | ltle 11347 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴)) | |
5 | 3, 4 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 → 0 ≤ 𝐴)) |
6 | 1, 2, 5 | sylc 65 | 1 ⊢ (𝐴 ∈ ℝ+ → 0 ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 class class class wbr 5148 ℝcr 11152 0cc0 11153 < clt 11293 ≤ cle 11294 ℝ+crp 13032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-addrcl 11214 ax-rnegex 11224 ax-cnre 11226 ax-pre-lttri 11227 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-rp 13033 |
This theorem is referenced by: rprege0 13048 rpge0d 13079 xralrple 13244 xlemul1 13329 infmrp1 13383 01sqrexlem1 15278 rpsqrtcl 15300 divrcnv 15885 ef01bndlem 16217 stdbdmet 24545 reconnlem2 24863 cphsqrtcl3 25235 iscmet3lem3 25338 minveclem3 25477 itg2const2 25791 itg2mulclem 25796 aalioulem2 26390 pige3ALT 26577 argregt0 26667 argrege0 26668 2irrexpq 26788 cxpcn3 26806 cxplim 27030 cxp2lim 27035 divsqrtsumlem 27038 logdiflbnd 27053 basellem4 27142 ppiltx 27235 bposlem8 27350 bposlem9 27351 chebbnd1 27531 mulog2sumlem2 27594 selbergb 27608 selberg2b 27611 nmcexi 32055 nmcopexi 32056 nmcfnexi 32080 sqsscirc1 33869 divsqrtid 34588 logdivsqrle 34644 hgt750lem2 34646 subfacval3 35174 ptrecube 37607 heicant 37642 itg2addnclem 37658 itg2gt0cn 37662 areacirclem1 37695 areacirclem4 37698 areacirc 37700 cntotbnd 37783 rpabsid 42335 xralrple4 45323 xralrple3 45324 fourierdlem103 46165 blenre 48424 itscnhlinecirc02plem3 48634 itscnhlinecirc02p 48635 |
Copyright terms: Public domain | W3C validator |