| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpge0 | Structured version Visualization version GIF version | ||
| Description: A positive real is greater than or equal to zero. (Contributed by NM, 22-Feb-2008.) |
| Ref | Expression |
|---|---|
| rpge0 | ⊢ (𝐴 ∈ ℝ+ → 0 ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 13022 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 2 | rpgt0 13026 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
| 3 | 0re 11242 | . . 3 ⊢ 0 ∈ ℝ | |
| 4 | ltle 11328 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴)) | |
| 5 | 3, 4 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 → 0 ≤ 𝐴)) |
| 6 | 1, 2, 5 | sylc 65 | 1 ⊢ (𝐴 ∈ ℝ+ → 0 ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5124 ℝcr 11133 0cc0 11134 < clt 11274 ≤ cle 11275 ℝ+crp 13013 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-addrcl 11195 ax-rnegex 11205 ax-cnre 11207 ax-pre-lttri 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-rp 13014 |
| This theorem is referenced by: rprege0 13029 rpge0d 13060 xralrple 13226 xlemul1 13311 infmrp1 13366 01sqrexlem1 15266 rpsqrtcl 15288 divrcnv 15873 ef01bndlem 16207 stdbdmet 24460 reconnlem2 24772 cphsqrtcl3 25144 iscmet3lem3 25247 minveclem3 25386 itg2const2 25699 itg2mulclem 25704 aalioulem2 26298 pige3ALT 26486 argregt0 26576 argrege0 26577 2irrexpq 26697 cxpcn3 26715 cxplim 26939 cxp2lim 26944 divsqrtsumlem 26947 logdiflbnd 26962 basellem4 27051 ppiltx 27144 bposlem8 27259 bposlem9 27260 chebbnd1 27440 mulog2sumlem2 27503 selbergb 27517 selberg2b 27520 nmcexi 32012 nmcopexi 32013 nmcfnexi 32037 sqsscirc1 33944 divsqrtid 34631 logdivsqrle 34687 hgt750lem2 34689 subfacval3 35216 ptrecube 37649 heicant 37684 itg2addnclem 37700 itg2gt0cn 37704 areacirclem1 37737 areacirclem4 37740 areacirc 37742 cntotbnd 37825 rpabsid 42337 xralrple4 45367 xralrple3 45368 fourierdlem103 46205 blenre 48521 itscnhlinecirc02plem3 48731 itscnhlinecirc02p 48732 |
| Copyright terms: Public domain | W3C validator |