| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpge0 | Structured version Visualization version GIF version | ||
| Description: A positive real is greater than or equal to zero. (Contributed by NM, 22-Feb-2008.) |
| Ref | Expression |
|---|---|
| rpge0 | ⊢ (𝐴 ∈ ℝ+ → 0 ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 12960 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 2 | rpgt0 12964 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
| 3 | 0re 11176 | . . 3 ⊢ 0 ∈ ℝ | |
| 4 | ltle 11262 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴)) | |
| 5 | 3, 4 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 → 0 ≤ 𝐴)) |
| 6 | 1, 2, 5 | sylc 65 | 1 ⊢ (𝐴 ∈ ℝ+ → 0 ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5107 ℝcr 11067 0cc0 11068 < clt 11208 ≤ cle 11209 ℝ+crp 12951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-addrcl 11129 ax-rnegex 11139 ax-cnre 11141 ax-pre-lttri 11142 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-rp 12952 |
| This theorem is referenced by: rprege0 12967 rpge0d 12999 xralrple 13165 xlemul1 13250 infmrp1 13305 01sqrexlem1 15208 rpsqrtcl 15230 divrcnv 15818 ef01bndlem 16152 stdbdmet 24404 reconnlem2 24716 cphsqrtcl3 25087 iscmet3lem3 25190 minveclem3 25329 itg2const2 25642 itg2mulclem 25647 aalioulem2 26241 pige3ALT 26429 argregt0 26519 argrege0 26520 2irrexpq 26640 cxpcn3 26658 cxplim 26882 cxp2lim 26887 divsqrtsumlem 26890 logdiflbnd 26905 basellem4 26994 ppiltx 27087 bposlem8 27202 bposlem9 27203 chebbnd1 27383 mulog2sumlem2 27446 selbergb 27460 selberg2b 27463 nmcexi 31955 nmcopexi 31956 nmcfnexi 31980 sqsscirc1 33898 divsqrtid 34585 logdivsqrle 34641 hgt750lem2 34643 subfacval3 35176 ptrecube 37614 heicant 37649 itg2addnclem 37665 itg2gt0cn 37669 areacirclem1 37702 areacirclem4 37705 areacirc 37707 cntotbnd 37790 rpabsid 42309 xralrple4 45369 xralrple3 45370 fourierdlem103 46207 blenre 48560 itscnhlinecirc02plem3 48770 itscnhlinecirc02p 48771 |
| Copyright terms: Public domain | W3C validator |