MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modmuladdnn0 Structured version   Visualization version   GIF version

Theorem modmuladdnn0 13563
Description: Implication of a decomposition of a nonnegative integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021.)
Assertion
Ref Expression
modmuladdnn0 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑀

Proof of Theorem modmuladdnn0
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℤ)
21adantr 480 . . . . 5 (((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝑖 ∈ ℤ)
3 eqcom 2745 . . . . . . . . 9 (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ ((𝑖 · 𝑀) + 𝐵) = 𝐴)
4 nn0cn 12173 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
54adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 𝐴 ∈ ℂ)
65ad2antrr 722 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝐴 ∈ ℂ)
7 nn0re 12172 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
8 modcl 13521 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) ∈ ℝ)
97, 8sylan 579 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) ∈ ℝ)
109recnd 10934 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) ∈ ℂ)
1110adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴 mod 𝑀) ∈ ℂ)
12 eleq1 2826 . . . . . . . . . . . . 13 ((𝐴 mod 𝑀) = 𝐵 → ((𝐴 mod 𝑀) ∈ ℂ ↔ 𝐵 ∈ ℂ))
1312adantl 481 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → ((𝐴 mod 𝑀) ∈ ℂ ↔ 𝐵 ∈ ℂ))
1411, 13mpbid 231 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐵 ∈ ℂ)
1514adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝐵 ∈ ℂ)
16 zcn 12254 . . . . . . . . . . . 12 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
1716adantl 481 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ)
18 rpcn 12669 . . . . . . . . . . . . 13 (𝑀 ∈ ℝ+𝑀 ∈ ℂ)
1918adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 𝑀 ∈ ℂ)
2019ad2antrr 722 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑀 ∈ ℂ)
2117, 20mulcld 10926 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝑖 · 𝑀) ∈ ℂ)
226, 15, 21subadd2d 11281 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴𝐵) = (𝑖 · 𝑀) ↔ ((𝑖 · 𝑀) + 𝐵) = 𝐴))
233, 22bitr4id 289 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ (𝐴𝐵) = (𝑖 · 𝑀)))
244ad2antrr 722 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐴 ∈ ℂ)
2524, 14subcld 11262 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴𝐵) ∈ ℂ)
2625adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴𝐵) ∈ ℂ)
27 rpcnne0 12677 . . . . . . . . . . 11 (𝑀 ∈ ℝ+ → (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0))
2827adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0))
2928ad2antrr 722 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0))
30 divmul3 11568 . . . . . . . . 9 (((𝐴𝐵) ∈ ℂ ∧ 𝑖 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0)) → (((𝐴𝐵) / 𝑀) = 𝑖 ↔ (𝐴𝐵) = (𝑖 · 𝑀)))
3126, 17, 29, 30syl3anc 1369 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (((𝐴𝐵) / 𝑀) = 𝑖 ↔ (𝐴𝐵) = (𝑖 · 𝑀)))
32 oveq2 7263 . . . . . . . . . . . . . 14 (𝐵 = (𝐴 mod 𝑀) → (𝐴𝐵) = (𝐴 − (𝐴 mod 𝑀)))
3332oveq1d 7270 . . . . . . . . . . . . 13 (𝐵 = (𝐴 mod 𝑀) → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
3433eqcoms 2746 . . . . . . . . . . . 12 ((𝐴 mod 𝑀) = 𝐵 → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
3534adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
3635adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
37 moddiffl 13530 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
387, 37sylan 579 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
3938ad2antrr 722 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
4036, 39eqtrd 2778 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴𝐵) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
4140eqeq1d 2740 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (((𝐴𝐵) / 𝑀) = 𝑖 ↔ (⌊‘(𝐴 / 𝑀)) = 𝑖))
4223, 31, 413bitr2d 306 . . . . . . 7 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ (⌊‘(𝐴 / 𝑀)) = 𝑖))
43 nn0ge0 12188 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
447, 43jca 511 . . . . . . . . . . 11 (𝐴 ∈ ℕ0 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
45 rpregt0 12673 . . . . . . . . . . 11 (𝑀 ∈ ℝ+ → (𝑀 ∈ ℝ ∧ 0 < 𝑀))
46 divge0 11774 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → 0 ≤ (𝐴 / 𝑀))
4744, 45, 46syl2an 595 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 0 ≤ (𝐴 / 𝑀))
487adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 𝐴 ∈ ℝ)
49 rpre 12667 . . . . . . . . . . . . 13 (𝑀 ∈ ℝ+𝑀 ∈ ℝ)
5049adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 𝑀 ∈ ℝ)
51 rpne0 12675 . . . . . . . . . . . . 13 (𝑀 ∈ ℝ+𝑀 ≠ 0)
5251adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 𝑀 ≠ 0)
5348, 50, 52redivcld 11733 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → (𝐴 / 𝑀) ∈ ℝ)
54 0z 12260 . . . . . . . . . . 11 0 ∈ ℤ
55 flge 13453 . . . . . . . . . . 11 (((𝐴 / 𝑀) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ (𝐴 / 𝑀) ↔ 0 ≤ (⌊‘(𝐴 / 𝑀))))
5653, 54, 55sylancl 585 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → (0 ≤ (𝐴 / 𝑀) ↔ 0 ≤ (⌊‘(𝐴 / 𝑀))))
5747, 56mpbid 231 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 0 ≤ (⌊‘(𝐴 / 𝑀)))
58 breq2 5074 . . . . . . . . 9 ((⌊‘(𝐴 / 𝑀)) = 𝑖 → (0 ≤ (⌊‘(𝐴 / 𝑀)) ↔ 0 ≤ 𝑖))
5957, 58syl5ibcom 244 . . . . . . . 8 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → ((⌊‘(𝐴 / 𝑀)) = 𝑖 → 0 ≤ 𝑖))
6059ad2antrr 722 . . . . . . 7 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((⌊‘(𝐴 / 𝑀)) = 𝑖 → 0 ≤ 𝑖))
6142, 60sylbid 239 . . . . . 6 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) → 0 ≤ 𝑖))
6261imp 406 . . . . 5 (((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 0 ≤ 𝑖)
63 elnn0z 12262 . . . . 5 (𝑖 ∈ ℕ0 ↔ (𝑖 ∈ ℤ ∧ 0 ≤ 𝑖))
642, 62, 63sylanbrc 582 . . . 4 (((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝑖 ∈ ℕ0)
65 oveq1 7262 . . . . . . 7 (𝑘 = 𝑖 → (𝑘 · 𝑀) = (𝑖 · 𝑀))
6665oveq1d 7270 . . . . . 6 (𝑘 = 𝑖 → ((𝑘 · 𝑀) + 𝐵) = ((𝑖 · 𝑀) + 𝐵))
6766eqeq2d 2749 . . . . 5 (𝑘 = 𝑖 → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
6867adantl 481 . . . 4 ((((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) ∧ 𝑘 = 𝑖) → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
69 simpr 484 . . . 4 (((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝐴 = ((𝑖 · 𝑀) + 𝐵))
7064, 68, 69rspcedvd 3555 . . 3 (((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵))
71 nn0z 12273 . . . . 5 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
72 modmuladdim 13562 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
7371, 72sylan 579 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
7473imp 406 . . 3 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵))
7570, 74r19.29a 3217 . 2 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵))
7675ex 412 1 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wrex 3064   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  0cn0 12163  cz 12249  +crp 12659  cfl 13438   mod cmo 13517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-fl 13440  df-mod 13518
This theorem is referenced by:  2lgslem3a1  26453  2lgslem3b1  26454  2lgslem3c1  26455  2lgslem3d1  26456
  Copyright terms: Public domain W3C validator