| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | oveq1 7438 | . . . . . 6
⊢ (𝑘 = 𝑖 → (𝑘 · 𝑀) = (𝑖 · 𝑀)) | 
| 2 | 1 | oveq1d 7446 | . . . . 5
⊢ (𝑘 = 𝑖 → ((𝑘 · 𝑀) + 𝐵) = ((𝑖 · 𝑀) + 𝐵)) | 
| 3 | 2 | eqeq2d 2748 | . . . 4
⊢ (𝑘 = 𝑖 → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑖 · 𝑀) + 𝐵))) | 
| 4 |  | simpr 484 | . . . . . 6
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℤ) | 
| 5 | 4 | adantr 480 | . . . . 5
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑀
∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝑖 ∈ ℤ) | 
| 6 |  | eqcom 2744 | . . . . . . . . 9
⊢ (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ ((𝑖 · 𝑀) + 𝐵) = 𝐴) | 
| 7 |  | nn0cn 12536 | . . . . . . . . . . . 12
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℂ) | 
| 8 | 7 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) → 𝐴 ∈ ℂ) | 
| 9 | 8 | ad2antrr 726 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝐴 ∈ ℂ) | 
| 10 |  | nn0re 12535 | . . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℝ) | 
| 11 |  | modcl 13913 | . . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+)
→ (𝐴 mod 𝑀) ∈
ℝ) | 
| 12 | 10, 11 | sylan 580 | . . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) → (𝐴 mod 𝑀) ∈ ℝ) | 
| 13 | 12 | recnd 11289 | . . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) → (𝐴 mod 𝑀) ∈ ℂ) | 
| 14 | 13 | adantr 480 | . . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴 mod 𝑀) ∈ ℂ) | 
| 15 |  | eleq1 2829 | . . . . . . . . . . . . 13
⊢ ((𝐴 mod 𝑀) = 𝐵 → ((𝐴 mod 𝑀) ∈ ℂ ↔ 𝐵 ∈ ℂ)) | 
| 16 | 15 | adantl 481 | . . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → ((𝐴 mod 𝑀) ∈ ℂ ↔ 𝐵 ∈ ℂ)) | 
| 17 | 14, 16 | mpbid 232 | . . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐵 ∈ ℂ) | 
| 18 | 17 | adantr 480 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝐵 ∈ ℂ) | 
| 19 |  | zcn 12618 | . . . . . . . . . . . 12
⊢ (𝑖 ∈ ℤ → 𝑖 ∈
ℂ) | 
| 20 | 19 | adantl 481 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ) | 
| 21 |  | rpcn 13045 | . . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℝ+
→ 𝑀 ∈
ℂ) | 
| 22 | 21 | adantl 481 | . . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) → 𝑀 ∈ ℂ) | 
| 23 | 22 | ad2antrr 726 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑀 ∈ ℂ) | 
| 24 | 20, 23 | mulcld 11281 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝑖 · 𝑀) ∈ ℂ) | 
| 25 | 9, 18, 24 | subadd2d 11639 | . . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴 − 𝐵) = (𝑖 · 𝑀) ↔ ((𝑖 · 𝑀) + 𝐵) = 𝐴)) | 
| 26 | 6, 25 | bitr4id 290 | . . . . . . . 8
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ (𝐴 − 𝐵) = (𝑖 · 𝑀))) | 
| 27 | 7 | ad2antrr 726 | . . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐴 ∈ ℂ) | 
| 28 | 27, 17 | subcld 11620 | . . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴 − 𝐵) ∈ ℂ) | 
| 29 | 28 | adantr 480 | . . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 − 𝐵) ∈ ℂ) | 
| 30 |  | rpcnne0 13053 | . . . . . . . . . . 11
⊢ (𝑀 ∈ ℝ+
→ (𝑀 ∈ ℂ
∧ 𝑀 ≠
0)) | 
| 31 | 30 | adantl 481 | . . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) → (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0)) | 
| 32 | 31 | ad2antrr 726 | . . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0)) | 
| 33 |  | divmul3 11927 | . . . . . . . . 9
⊢ (((𝐴 − 𝐵) ∈ ℂ ∧ 𝑖 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0)) → (((𝐴 − 𝐵) / 𝑀) = 𝑖 ↔ (𝐴 − 𝐵) = (𝑖 · 𝑀))) | 
| 34 | 29, 20, 32, 33 | syl3anc 1373 | . . . . . . . 8
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (((𝐴 − 𝐵) / 𝑀) = 𝑖 ↔ (𝐴 − 𝐵) = (𝑖 · 𝑀))) | 
| 35 |  | oveq2 7439 | . . . . . . . . . . . . . 14
⊢ (𝐵 = (𝐴 mod 𝑀) → (𝐴 − 𝐵) = (𝐴 − (𝐴 mod 𝑀))) | 
| 36 | 35 | oveq1d 7446 | . . . . . . . . . . . . 13
⊢ (𝐵 = (𝐴 mod 𝑀) → ((𝐴 − 𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀)) | 
| 37 | 36 | eqcoms 2745 | . . . . . . . . . . . 12
⊢ ((𝐴 mod 𝑀) = 𝐵 → ((𝐴 − 𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀)) | 
| 38 | 37 | adantl 481 | . . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → ((𝐴 − 𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀)) | 
| 39 | 38 | adantr 480 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴 − 𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀)) | 
| 40 |  | moddiffl 13922 | . . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+)
→ ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀))) | 
| 41 | 10, 40 | sylan 580 | . . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀))) | 
| 42 | 41 | ad2antrr 726 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀))) | 
| 43 | 39, 42 | eqtrd 2777 | . . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴 − 𝐵) / 𝑀) = (⌊‘(𝐴 / 𝑀))) | 
| 44 | 43 | eqeq1d 2739 | . . . . . . . 8
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (((𝐴 − 𝐵) / 𝑀) = 𝑖 ↔ (⌊‘(𝐴 / 𝑀)) = 𝑖)) | 
| 45 | 26, 34, 44 | 3bitr2d 307 | . . . . . . 7
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ (⌊‘(𝐴 / 𝑀)) = 𝑖)) | 
| 46 |  | nn0ge0 12551 | . . . . . . . . . . . 12
⊢ (𝐴 ∈ ℕ0
→ 0 ≤ 𝐴) | 
| 47 | 10, 46 | jca 511 | . . . . . . . . . . 11
⊢ (𝐴 ∈ ℕ0
→ (𝐴 ∈ ℝ
∧ 0 ≤ 𝐴)) | 
| 48 |  | rpregt0 13049 | . . . . . . . . . . 11
⊢ (𝑀 ∈ ℝ+
→ (𝑀 ∈ ℝ
∧ 0 < 𝑀)) | 
| 49 |  | divge0 12137 | . . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → 0 ≤ (𝐴 / 𝑀)) | 
| 50 | 47, 48, 49 | syl2an 596 | . . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) → 0 ≤ (𝐴 / 𝑀)) | 
| 51 | 10 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) → 𝐴 ∈ ℝ) | 
| 52 |  | rpre 13043 | . . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℝ+
→ 𝑀 ∈
ℝ) | 
| 53 | 52 | adantl 481 | . . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) → 𝑀 ∈ ℝ) | 
| 54 |  | rpne0 13051 | . . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℝ+
→ 𝑀 ≠
0) | 
| 55 | 54 | adantl 481 | . . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) → 𝑀 ≠ 0) | 
| 56 | 51, 53, 55 | redivcld 12095 | . . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) → (𝐴 / 𝑀) ∈ ℝ) | 
| 57 |  | 0z 12624 | . . . . . . . . . . 11
⊢ 0 ∈
ℤ | 
| 58 |  | flge 13845 | . . . . . . . . . . 11
⊢ (((𝐴 / 𝑀) ∈ ℝ ∧ 0 ∈ ℤ)
→ (0 ≤ (𝐴 / 𝑀) ↔ 0 ≤
(⌊‘(𝐴 / 𝑀)))) | 
| 59 | 56, 57, 58 | sylancl 586 | . . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) → (0 ≤ (𝐴 / 𝑀) ↔ 0 ≤ (⌊‘(𝐴 / 𝑀)))) | 
| 60 | 50, 59 | mpbid 232 | . . . . . . . . 9
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) → 0 ≤ (⌊‘(𝐴 / 𝑀))) | 
| 61 |  | breq2 5147 | . . . . . . . . 9
⊢
((⌊‘(𝐴 /
𝑀)) = 𝑖 → (0 ≤ (⌊‘(𝐴 / 𝑀)) ↔ 0 ≤ 𝑖)) | 
| 62 | 60, 61 | syl5ibcom 245 | . . . . . . . 8
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) → ((⌊‘(𝐴 / 𝑀)) = 𝑖 → 0 ≤ 𝑖)) | 
| 63 | 62 | ad2antrr 726 | . . . . . . 7
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) →
((⌊‘(𝐴 / 𝑀)) = 𝑖 → 0 ≤ 𝑖)) | 
| 64 | 45, 63 | sylbid 240 | . . . . . 6
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) → 0 ≤ 𝑖)) | 
| 65 | 64 | imp 406 | . . . . 5
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑀
∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 0 ≤ 𝑖) | 
| 66 |  | elnn0z 12626 | . . . . 5
⊢ (𝑖 ∈ ℕ0
↔ (𝑖 ∈ ℤ
∧ 0 ≤ 𝑖)) | 
| 67 | 5, 65, 66 | sylanbrc 583 | . . . 4
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑀
∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝑖 ∈ ℕ0) | 
| 68 |  | simpr 484 | . . . 4
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑀
∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝐴 = ((𝑖 · 𝑀) + 𝐵)) | 
| 69 | 3, 67, 68 | rspcedvdw 3625 | . . 3
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑀
∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵)) | 
| 70 |  | nn0z 12638 | . . . . 5
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℤ) | 
| 71 |  | modmuladdim 13955 | . . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+)
→ ((𝐴 mod 𝑀) = 𝐵 → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵))) | 
| 72 | 70, 71 | sylan 580 | . . . 4
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵))) | 
| 73 | 72 | imp 406 | . . 3
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) | 
| 74 | 69, 73 | r19.29a 3162 | . 2
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵)) | 
| 75 | 74 | ex 412 | 1
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵))) |