MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modmuladdnn0 Structured version   Visualization version   GIF version

Theorem modmuladdnn0 13933
Description: Implication of a decomposition of a nonnegative integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021.)
Assertion
Ref Expression
modmuladdnn0 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑀

Proof of Theorem modmuladdnn0
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7412 . . . . . 6 (𝑘 = 𝑖 → (𝑘 · 𝑀) = (𝑖 · 𝑀))
21oveq1d 7420 . . . . 5 (𝑘 = 𝑖 → ((𝑘 · 𝑀) + 𝐵) = ((𝑖 · 𝑀) + 𝐵))
32eqeq2d 2746 . . . 4 (𝑘 = 𝑖 → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
4 simpr 484 . . . . . 6 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℤ)
54adantr 480 . . . . 5 (((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝑖 ∈ ℤ)
6 eqcom 2742 . . . . . . . . 9 (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ ((𝑖 · 𝑀) + 𝐵) = 𝐴)
7 nn0cn 12511 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
87adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 𝐴 ∈ ℂ)
98ad2antrr 726 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝐴 ∈ ℂ)
10 nn0re 12510 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
11 modcl 13890 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) ∈ ℝ)
1210, 11sylan 580 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) ∈ ℝ)
1312recnd 11263 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) ∈ ℂ)
1413adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴 mod 𝑀) ∈ ℂ)
15 eleq1 2822 . . . . . . . . . . . . 13 ((𝐴 mod 𝑀) = 𝐵 → ((𝐴 mod 𝑀) ∈ ℂ ↔ 𝐵 ∈ ℂ))
1615adantl 481 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → ((𝐴 mod 𝑀) ∈ ℂ ↔ 𝐵 ∈ ℂ))
1714, 16mpbid 232 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐵 ∈ ℂ)
1817adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝐵 ∈ ℂ)
19 zcn 12593 . . . . . . . . . . . 12 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
2019adantl 481 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ)
21 rpcn 13019 . . . . . . . . . . . . 13 (𝑀 ∈ ℝ+𝑀 ∈ ℂ)
2221adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 𝑀 ∈ ℂ)
2322ad2antrr 726 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑀 ∈ ℂ)
2420, 23mulcld 11255 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝑖 · 𝑀) ∈ ℂ)
259, 18, 24subadd2d 11613 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴𝐵) = (𝑖 · 𝑀) ↔ ((𝑖 · 𝑀) + 𝐵) = 𝐴))
266, 25bitr4id 290 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ (𝐴𝐵) = (𝑖 · 𝑀)))
277ad2antrr 726 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐴 ∈ ℂ)
2827, 17subcld 11594 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴𝐵) ∈ ℂ)
2928adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴𝐵) ∈ ℂ)
30 rpcnne0 13027 . . . . . . . . . . 11 (𝑀 ∈ ℝ+ → (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0))
3130adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0))
3231ad2antrr 726 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0))
33 divmul3 11901 . . . . . . . . 9 (((𝐴𝐵) ∈ ℂ ∧ 𝑖 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0)) → (((𝐴𝐵) / 𝑀) = 𝑖 ↔ (𝐴𝐵) = (𝑖 · 𝑀)))
3429, 20, 32, 33syl3anc 1373 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (((𝐴𝐵) / 𝑀) = 𝑖 ↔ (𝐴𝐵) = (𝑖 · 𝑀)))
35 oveq2 7413 . . . . . . . . . . . . . 14 (𝐵 = (𝐴 mod 𝑀) → (𝐴𝐵) = (𝐴 − (𝐴 mod 𝑀)))
3635oveq1d 7420 . . . . . . . . . . . . 13 (𝐵 = (𝐴 mod 𝑀) → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
3736eqcoms 2743 . . . . . . . . . . . 12 ((𝐴 mod 𝑀) = 𝐵 → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
3837adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
3938adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
40 moddiffl 13899 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
4110, 40sylan 580 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
4241ad2antrr 726 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
4339, 42eqtrd 2770 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴𝐵) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
4443eqeq1d 2737 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (((𝐴𝐵) / 𝑀) = 𝑖 ↔ (⌊‘(𝐴 / 𝑀)) = 𝑖))
4526, 34, 443bitr2d 307 . . . . . . 7 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ (⌊‘(𝐴 / 𝑀)) = 𝑖))
46 nn0ge0 12526 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
4710, 46jca 511 . . . . . . . . . . 11 (𝐴 ∈ ℕ0 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
48 rpregt0 13023 . . . . . . . . . . 11 (𝑀 ∈ ℝ+ → (𝑀 ∈ ℝ ∧ 0 < 𝑀))
49 divge0 12111 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → 0 ≤ (𝐴 / 𝑀))
5047, 48, 49syl2an 596 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 0 ≤ (𝐴 / 𝑀))
5110adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 𝐴 ∈ ℝ)
52 rpre 13017 . . . . . . . . . . . . 13 (𝑀 ∈ ℝ+𝑀 ∈ ℝ)
5352adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 𝑀 ∈ ℝ)
54 rpne0 13025 . . . . . . . . . . . . 13 (𝑀 ∈ ℝ+𝑀 ≠ 0)
5554adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 𝑀 ≠ 0)
5651, 53, 55redivcld 12069 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → (𝐴 / 𝑀) ∈ ℝ)
57 0z 12599 . . . . . . . . . . 11 0 ∈ ℤ
58 flge 13822 . . . . . . . . . . 11 (((𝐴 / 𝑀) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ (𝐴 / 𝑀) ↔ 0 ≤ (⌊‘(𝐴 / 𝑀))))
5956, 57, 58sylancl 586 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → (0 ≤ (𝐴 / 𝑀) ↔ 0 ≤ (⌊‘(𝐴 / 𝑀))))
6050, 59mpbid 232 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 0 ≤ (⌊‘(𝐴 / 𝑀)))
61 breq2 5123 . . . . . . . . 9 ((⌊‘(𝐴 / 𝑀)) = 𝑖 → (0 ≤ (⌊‘(𝐴 / 𝑀)) ↔ 0 ≤ 𝑖))
6260, 61syl5ibcom 245 . . . . . . . 8 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → ((⌊‘(𝐴 / 𝑀)) = 𝑖 → 0 ≤ 𝑖))
6362ad2antrr 726 . . . . . . 7 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((⌊‘(𝐴 / 𝑀)) = 𝑖 → 0 ≤ 𝑖))
6445, 63sylbid 240 . . . . . 6 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) → 0 ≤ 𝑖))
6564imp 406 . . . . 5 (((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 0 ≤ 𝑖)
66 elnn0z 12601 . . . . 5 (𝑖 ∈ ℕ0 ↔ (𝑖 ∈ ℤ ∧ 0 ≤ 𝑖))
675, 65, 66sylanbrc 583 . . . 4 (((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝑖 ∈ ℕ0)
68 simpr 484 . . . 4 (((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝐴 = ((𝑖 · 𝑀) + 𝐵))
693, 67, 68rspcedvdw 3604 . . 3 (((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵))
70 nn0z 12613 . . . . 5 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
71 modmuladdim 13932 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
7270, 71sylan 580 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
7372imp 406 . . 3 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵))
7469, 73r19.29a 3148 . 2 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵))
7574ex 412 1 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wrex 3060   class class class wbr 5119  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129   + caddc 11132   · cmul 11134   < clt 11269  cle 11270  cmin 11466   / cdiv 11894  0cn0 12501  cz 12588  +crp 13008  cfl 13807   mod cmo 13886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-ico 13368  df-fl 13809  df-mod 13887
This theorem is referenced by:  2lgslem3a1  27363  2lgslem3b1  27364  2lgslem3c1  27365  2lgslem3d1  27366
  Copyright terms: Public domain W3C validator