MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modmuladdnn0 Structured version   Visualization version   GIF version

Theorem modmuladdnn0 13819
Description: Implication of a decomposition of a nonnegative integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021.)
Assertion
Ref Expression
modmuladdnn0 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑀

Proof of Theorem modmuladdnn0
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7353 . . . . . 6 (𝑘 = 𝑖 → (𝑘 · 𝑀) = (𝑖 · 𝑀))
21oveq1d 7361 . . . . 5 (𝑘 = 𝑖 → ((𝑘 · 𝑀) + 𝐵) = ((𝑖 · 𝑀) + 𝐵))
32eqeq2d 2742 . . . 4 (𝑘 = 𝑖 → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
4 simpr 484 . . . . . 6 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℤ)
54adantr 480 . . . . 5 (((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝑖 ∈ ℤ)
6 eqcom 2738 . . . . . . . . 9 (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ ((𝑖 · 𝑀) + 𝐵) = 𝐴)
7 nn0cn 12388 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
87adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 𝐴 ∈ ℂ)
98ad2antrr 726 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝐴 ∈ ℂ)
10 nn0re 12387 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
11 modcl 13774 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) ∈ ℝ)
1210, 11sylan 580 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) ∈ ℝ)
1312recnd 11137 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) ∈ ℂ)
1413adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴 mod 𝑀) ∈ ℂ)
15 eleq1 2819 . . . . . . . . . . . . 13 ((𝐴 mod 𝑀) = 𝐵 → ((𝐴 mod 𝑀) ∈ ℂ ↔ 𝐵 ∈ ℂ))
1615adantl 481 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → ((𝐴 mod 𝑀) ∈ ℂ ↔ 𝐵 ∈ ℂ))
1714, 16mpbid 232 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐵 ∈ ℂ)
1817adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝐵 ∈ ℂ)
19 zcn 12470 . . . . . . . . . . . 12 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
2019adantl 481 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ)
21 rpcn 12898 . . . . . . . . . . . . 13 (𝑀 ∈ ℝ+𝑀 ∈ ℂ)
2221adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 𝑀 ∈ ℂ)
2322ad2antrr 726 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑀 ∈ ℂ)
2420, 23mulcld 11129 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝑖 · 𝑀) ∈ ℂ)
259, 18, 24subadd2d 11488 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴𝐵) = (𝑖 · 𝑀) ↔ ((𝑖 · 𝑀) + 𝐵) = 𝐴))
266, 25bitr4id 290 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ (𝐴𝐵) = (𝑖 · 𝑀)))
277ad2antrr 726 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐴 ∈ ℂ)
2827, 17subcld 11469 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴𝐵) ∈ ℂ)
2928adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴𝐵) ∈ ℂ)
30 rpcnne0 12906 . . . . . . . . . . 11 (𝑀 ∈ ℝ+ → (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0))
3130adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0))
3231ad2antrr 726 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0))
33 divmul3 11778 . . . . . . . . 9 (((𝐴𝐵) ∈ ℂ ∧ 𝑖 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0)) → (((𝐴𝐵) / 𝑀) = 𝑖 ↔ (𝐴𝐵) = (𝑖 · 𝑀)))
3429, 20, 32, 33syl3anc 1373 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (((𝐴𝐵) / 𝑀) = 𝑖 ↔ (𝐴𝐵) = (𝑖 · 𝑀)))
35 oveq2 7354 . . . . . . . . . . . . . 14 (𝐵 = (𝐴 mod 𝑀) → (𝐴𝐵) = (𝐴 − (𝐴 mod 𝑀)))
3635oveq1d 7361 . . . . . . . . . . . . 13 (𝐵 = (𝐴 mod 𝑀) → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
3736eqcoms 2739 . . . . . . . . . . . 12 ((𝐴 mod 𝑀) = 𝐵 → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
3837adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
3938adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
40 moddiffl 13783 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
4110, 40sylan 580 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
4241ad2antrr 726 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
4339, 42eqtrd 2766 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴𝐵) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
4443eqeq1d 2733 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (((𝐴𝐵) / 𝑀) = 𝑖 ↔ (⌊‘(𝐴 / 𝑀)) = 𝑖))
4526, 34, 443bitr2d 307 . . . . . . 7 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ (⌊‘(𝐴 / 𝑀)) = 𝑖))
46 nn0ge0 12403 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
4710, 46jca 511 . . . . . . . . . . 11 (𝐴 ∈ ℕ0 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
48 rpregt0 12902 . . . . . . . . . . 11 (𝑀 ∈ ℝ+ → (𝑀 ∈ ℝ ∧ 0 < 𝑀))
49 divge0 11988 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → 0 ≤ (𝐴 / 𝑀))
5047, 48, 49syl2an 596 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 0 ≤ (𝐴 / 𝑀))
5110adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 𝐴 ∈ ℝ)
52 rpre 12896 . . . . . . . . . . . . 13 (𝑀 ∈ ℝ+𝑀 ∈ ℝ)
5352adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 𝑀 ∈ ℝ)
54 rpne0 12904 . . . . . . . . . . . . 13 (𝑀 ∈ ℝ+𝑀 ≠ 0)
5554adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 𝑀 ≠ 0)
5651, 53, 55redivcld 11946 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → (𝐴 / 𝑀) ∈ ℝ)
57 0z 12476 . . . . . . . . . . 11 0 ∈ ℤ
58 flge 13706 . . . . . . . . . . 11 (((𝐴 / 𝑀) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ (𝐴 / 𝑀) ↔ 0 ≤ (⌊‘(𝐴 / 𝑀))))
5956, 57, 58sylancl 586 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → (0 ≤ (𝐴 / 𝑀) ↔ 0 ≤ (⌊‘(𝐴 / 𝑀))))
6050, 59mpbid 232 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 0 ≤ (⌊‘(𝐴 / 𝑀)))
61 breq2 5095 . . . . . . . . 9 ((⌊‘(𝐴 / 𝑀)) = 𝑖 → (0 ≤ (⌊‘(𝐴 / 𝑀)) ↔ 0 ≤ 𝑖))
6260, 61syl5ibcom 245 . . . . . . . 8 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → ((⌊‘(𝐴 / 𝑀)) = 𝑖 → 0 ≤ 𝑖))
6362ad2antrr 726 . . . . . . 7 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((⌊‘(𝐴 / 𝑀)) = 𝑖 → 0 ≤ 𝑖))
6445, 63sylbid 240 . . . . . 6 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) → 0 ≤ 𝑖))
6564imp 406 . . . . 5 (((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 0 ≤ 𝑖)
66 elnn0z 12478 . . . . 5 (𝑖 ∈ ℕ0 ↔ (𝑖 ∈ ℤ ∧ 0 ≤ 𝑖))
675, 65, 66sylanbrc 583 . . . 4 (((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝑖 ∈ ℕ0)
68 simpr 484 . . . 4 (((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝐴 = ((𝑖 · 𝑀) + 𝐵))
693, 67, 68rspcedvdw 3580 . . 3 (((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵))
70 nn0z 12490 . . . . 5 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
71 modmuladdim 13818 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
7270, 71sylan 580 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
7372imp 406 . . 3 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵))
7469, 73r19.29a 3140 . 2 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵))
7574ex 412 1 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wrex 3056   class class class wbr 5091  cfv 6481  (class class class)co 7346  cc 11001  cr 11002  0cc0 11003   + caddc 11006   · cmul 11008   < clt 11143  cle 11144  cmin 11341   / cdiv 11771  0cn0 12378  cz 12465  +crp 12887  cfl 13691   mod cmo 13770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-ico 13248  df-fl 13693  df-mod 13771
This theorem is referenced by:  2lgslem3a1  27336  2lgslem3b1  27337  2lgslem3c1  27338  2lgslem3d1  27339
  Copyright terms: Public domain W3C validator