| Step | Hyp | Ref
| Expression |
| 1 | | oveq1 7412 |
. . . . . 6
⊢ (𝑘 = 𝑖 → (𝑘 · 𝑀) = (𝑖 · 𝑀)) |
| 2 | 1 | oveq1d 7420 |
. . . . 5
⊢ (𝑘 = 𝑖 → ((𝑘 · 𝑀) + 𝐵) = ((𝑖 · 𝑀) + 𝐵)) |
| 3 | 2 | eqeq2d 2746 |
. . . 4
⊢ (𝑘 = 𝑖 → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑖 · 𝑀) + 𝐵))) |
| 4 | | simpr 484 |
. . . . . 6
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℤ) |
| 5 | 4 | adantr 480 |
. . . . 5
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑀
∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝑖 ∈ ℤ) |
| 6 | | eqcom 2742 |
. . . . . . . . 9
⊢ (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ ((𝑖 · 𝑀) + 𝐵) = 𝐴) |
| 7 | | nn0cn 12511 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℂ) |
| 8 | 7 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) → 𝐴 ∈ ℂ) |
| 9 | 8 | ad2antrr 726 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝐴 ∈ ℂ) |
| 10 | | nn0re 12510 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℝ) |
| 11 | | modcl 13890 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+)
→ (𝐴 mod 𝑀) ∈
ℝ) |
| 12 | 10, 11 | sylan 580 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) → (𝐴 mod 𝑀) ∈ ℝ) |
| 13 | 12 | recnd 11263 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) → (𝐴 mod 𝑀) ∈ ℂ) |
| 14 | 13 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴 mod 𝑀) ∈ ℂ) |
| 15 | | eleq1 2822 |
. . . . . . . . . . . . 13
⊢ ((𝐴 mod 𝑀) = 𝐵 → ((𝐴 mod 𝑀) ∈ ℂ ↔ 𝐵 ∈ ℂ)) |
| 16 | 15 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → ((𝐴 mod 𝑀) ∈ ℂ ↔ 𝐵 ∈ ℂ)) |
| 17 | 14, 16 | mpbid 232 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐵 ∈ ℂ) |
| 18 | 17 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝐵 ∈ ℂ) |
| 19 | | zcn 12593 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ ℤ → 𝑖 ∈
ℂ) |
| 20 | 19 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ) |
| 21 | | rpcn 13019 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℝ+
→ 𝑀 ∈
ℂ) |
| 22 | 21 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) → 𝑀 ∈ ℂ) |
| 23 | 22 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑀 ∈ ℂ) |
| 24 | 20, 23 | mulcld 11255 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝑖 · 𝑀) ∈ ℂ) |
| 25 | 9, 18, 24 | subadd2d 11613 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴 − 𝐵) = (𝑖 · 𝑀) ↔ ((𝑖 · 𝑀) + 𝐵) = 𝐴)) |
| 26 | 6, 25 | bitr4id 290 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ (𝐴 − 𝐵) = (𝑖 · 𝑀))) |
| 27 | 7 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐴 ∈ ℂ) |
| 28 | 27, 17 | subcld 11594 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴 − 𝐵) ∈ ℂ) |
| 29 | 28 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 − 𝐵) ∈ ℂ) |
| 30 | | rpcnne0 13027 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℝ+
→ (𝑀 ∈ ℂ
∧ 𝑀 ≠
0)) |
| 31 | 30 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) → (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0)) |
| 32 | 31 | ad2antrr 726 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0)) |
| 33 | | divmul3 11901 |
. . . . . . . . 9
⊢ (((𝐴 − 𝐵) ∈ ℂ ∧ 𝑖 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0)) → (((𝐴 − 𝐵) / 𝑀) = 𝑖 ↔ (𝐴 − 𝐵) = (𝑖 · 𝑀))) |
| 34 | 29, 20, 32, 33 | syl3anc 1373 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (((𝐴 − 𝐵) / 𝑀) = 𝑖 ↔ (𝐴 − 𝐵) = (𝑖 · 𝑀))) |
| 35 | | oveq2 7413 |
. . . . . . . . . . . . . 14
⊢ (𝐵 = (𝐴 mod 𝑀) → (𝐴 − 𝐵) = (𝐴 − (𝐴 mod 𝑀))) |
| 36 | 35 | oveq1d 7420 |
. . . . . . . . . . . . 13
⊢ (𝐵 = (𝐴 mod 𝑀) → ((𝐴 − 𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀)) |
| 37 | 36 | eqcoms 2743 |
. . . . . . . . . . . 12
⊢ ((𝐴 mod 𝑀) = 𝐵 → ((𝐴 − 𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀)) |
| 38 | 37 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → ((𝐴 − 𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀)) |
| 39 | 38 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴 − 𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀)) |
| 40 | | moddiffl 13899 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+)
→ ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀))) |
| 41 | 10, 40 | sylan 580 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀))) |
| 42 | 41 | ad2antrr 726 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀))) |
| 43 | 39, 42 | eqtrd 2770 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴 − 𝐵) / 𝑀) = (⌊‘(𝐴 / 𝑀))) |
| 44 | 43 | eqeq1d 2737 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (((𝐴 − 𝐵) / 𝑀) = 𝑖 ↔ (⌊‘(𝐴 / 𝑀)) = 𝑖)) |
| 45 | 26, 34, 44 | 3bitr2d 307 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ (⌊‘(𝐴 / 𝑀)) = 𝑖)) |
| 46 | | nn0ge0 12526 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℕ0
→ 0 ≤ 𝐴) |
| 47 | 10, 46 | jca 511 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℕ0
→ (𝐴 ∈ ℝ
∧ 0 ≤ 𝐴)) |
| 48 | | rpregt0 13023 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℝ+
→ (𝑀 ∈ ℝ
∧ 0 < 𝑀)) |
| 49 | | divge0 12111 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → 0 ≤ (𝐴 / 𝑀)) |
| 50 | 47, 48, 49 | syl2an 596 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) → 0 ≤ (𝐴 / 𝑀)) |
| 51 | 10 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) → 𝐴 ∈ ℝ) |
| 52 | | rpre 13017 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℝ+
→ 𝑀 ∈
ℝ) |
| 53 | 52 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) → 𝑀 ∈ ℝ) |
| 54 | | rpne0 13025 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℝ+
→ 𝑀 ≠
0) |
| 55 | 54 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) → 𝑀 ≠ 0) |
| 56 | 51, 53, 55 | redivcld 12069 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) → (𝐴 / 𝑀) ∈ ℝ) |
| 57 | | 0z 12599 |
. . . . . . . . . . 11
⊢ 0 ∈
ℤ |
| 58 | | flge 13822 |
. . . . . . . . . . 11
⊢ (((𝐴 / 𝑀) ∈ ℝ ∧ 0 ∈ ℤ)
→ (0 ≤ (𝐴 / 𝑀) ↔ 0 ≤
(⌊‘(𝐴 / 𝑀)))) |
| 59 | 56, 57, 58 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) → (0 ≤ (𝐴 / 𝑀) ↔ 0 ≤ (⌊‘(𝐴 / 𝑀)))) |
| 60 | 50, 59 | mpbid 232 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) → 0 ≤ (⌊‘(𝐴 / 𝑀))) |
| 61 | | breq2 5123 |
. . . . . . . . 9
⊢
((⌊‘(𝐴 /
𝑀)) = 𝑖 → (0 ≤ (⌊‘(𝐴 / 𝑀)) ↔ 0 ≤ 𝑖)) |
| 62 | 60, 61 | syl5ibcom 245 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) → ((⌊‘(𝐴 / 𝑀)) = 𝑖 → 0 ≤ 𝑖)) |
| 63 | 62 | ad2antrr 726 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) →
((⌊‘(𝐴 / 𝑀)) = 𝑖 → 0 ≤ 𝑖)) |
| 64 | 45, 63 | sylbid 240 |
. . . . . 6
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) → 0 ≤ 𝑖)) |
| 65 | 64 | imp 406 |
. . . . 5
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑀
∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 0 ≤ 𝑖) |
| 66 | | elnn0z 12601 |
. . . . 5
⊢ (𝑖 ∈ ℕ0
↔ (𝑖 ∈ ℤ
∧ 0 ≤ 𝑖)) |
| 67 | 5, 65, 66 | sylanbrc 583 |
. . . 4
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑀
∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝑖 ∈ ℕ0) |
| 68 | | simpr 484 |
. . . 4
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑀
∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝐴 = ((𝑖 · 𝑀) + 𝐵)) |
| 69 | 3, 67, 68 | rspcedvdw 3604 |
. . 3
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑀
∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵)) |
| 70 | | nn0z 12613 |
. . . . 5
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℤ) |
| 71 | | modmuladdim 13932 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+)
→ ((𝐴 mod 𝑀) = 𝐵 → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵))) |
| 72 | 70, 71 | sylan 580 |
. . . 4
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵))) |
| 73 | 72 | imp 406 |
. . 3
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) |
| 74 | 69, 73 | r19.29a 3148 |
. 2
⊢ (((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵)) |
| 75 | 74 | ex 412 |
1
⊢ ((𝐴 ∈ ℕ0
∧ 𝑀 ∈
ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵))) |