Proof of Theorem dchrisum0lem2
Step | Hyp | Ref
| Expression |
1 | | 2cnd 11981 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 2 ∈
ℂ) |
2 | | rpcn 12669 |
. . . . 5
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℂ) |
3 | 2 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℂ) |
4 | | fzfid 13621 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(1...(⌊‘𝑥))
∈ Fin) |
5 | | rpvmasum2.g |
. . . . . . 7
⊢ 𝐺 = (DChr‘𝑁) |
6 | | rpvmasum.z |
. . . . . . 7
⊢ 𝑍 =
(ℤ/nℤ‘𝑁) |
7 | | rpvmasum2.d |
. . . . . . 7
⊢ 𝐷 = (Base‘𝐺) |
8 | | rpvmasum.l |
. . . . . . 7
⊢ 𝐿 = (ℤRHom‘𝑍) |
9 | | rpvmasum2.w |
. . . . . . . . . . 11
⊢ 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} |
10 | 9 | ssrab3 4011 |
. . . . . . . . . 10
⊢ 𝑊 ⊆ (𝐷 ∖ { 1 }) |
11 | | dchrisum0.b |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ 𝑊) |
12 | 10, 11 | sselid 3915 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ (𝐷 ∖ { 1 })) |
13 | 12 | eldifad 3895 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ 𝐷) |
14 | 13 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ 𝑋 ∈ 𝐷) |
15 | | elfzelz 13185 |
. . . . . . . 8
⊢ (𝑚 ∈
(1...(⌊‘𝑥))
→ 𝑚 ∈
ℤ) |
16 | 15 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ 𝑚 ∈
ℤ) |
17 | 5, 6, 7, 8, 14, 16 | dchrzrhcl 26298 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (𝑋‘(𝐿‘𝑚)) ∈ ℂ) |
18 | | elfznn 13214 |
. . . . . . . . 9
⊢ (𝑚 ∈
(1...(⌊‘𝑥))
→ 𝑚 ∈
ℕ) |
19 | 18 | nnrpd 12699 |
. . . . . . . 8
⊢ (𝑚 ∈
(1...(⌊‘𝑥))
→ 𝑚 ∈
ℝ+) |
20 | 19 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ 𝑚 ∈
ℝ+) |
21 | 20 | rpcnd 12703 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ 𝑚 ∈
ℂ) |
22 | 20 | rpne0d 12706 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ 𝑚 ≠
0) |
23 | 17, 21, 22 | divcld 11681 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ ((𝑋‘(𝐿‘𝑚)) / 𝑚) ∈ ℂ) |
24 | 4, 23 | fsumcl 15373 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚) ∈ ℂ) |
25 | 3, 24 | mulcld 10926 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥 · Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚)) ∈ ℂ) |
26 | | rpssre 12666 |
. . . . 5
⊢
ℝ+ ⊆ ℝ |
27 | | 2cn 11978 |
. . . . 5
⊢ 2 ∈
ℂ |
28 | | o1const 15257 |
. . . . 5
⊢
((ℝ+ ⊆ ℝ ∧ 2 ∈ ℂ) →
(𝑥 ∈
ℝ+ ↦ 2) ∈ 𝑂(1)) |
29 | 26, 27, 28 | mp2an 688 |
. . . 4
⊢ (𝑥 ∈ ℝ+
↦ 2) ∈ 𝑂(1) |
30 | 29 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ 2) ∈
𝑂(1)) |
31 | 26 | a1i 11 |
. . . 4
⊢ (𝜑 → ℝ+
⊆ ℝ) |
32 | | 1red 10907 |
. . . 4
⊢ (𝜑 → 1 ∈
ℝ) |
33 | | dchrisum0lem2.e |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ (0[,)+∞)) |
34 | | elrege0 13115 |
. . . . . 6
⊢ (𝐸 ∈ (0[,)+∞) ↔
(𝐸 ∈ ℝ ∧ 0
≤ 𝐸)) |
35 | 34 | simplbi 497 |
. . . . 5
⊢ (𝐸 ∈ (0[,)+∞) →
𝐸 ∈
ℝ) |
36 | 33, 35 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐸 ∈ ℝ) |
37 | 3, 24 | absmuld 15094 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(abs‘(𝑥 ·
Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚))) = ((abs‘𝑥) · (abs‘Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚)))) |
38 | | rprege0 12674 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ∈ ℝ
∧ 0 ≤ 𝑥)) |
39 | 38 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤
𝑥)) |
40 | | absid 14936 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ 0 ≤
𝑥) → (abs‘𝑥) = 𝑥) |
41 | 39, 40 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(abs‘𝑥) = 𝑥) |
42 | 41 | oveq1d 7270 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((abs‘𝑥) ·
(abs‘Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚))) = (𝑥 · (abs‘Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚)))) |
43 | 37, 42 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(abs‘(𝑥 ·
Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚))) = (𝑥 · (abs‘Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚)))) |
44 | 43 | adantrr 713 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(abs‘(𝑥 ·
Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚))) = (𝑥 · (abs‘Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚)))) |
45 | 24 | adantrr 713 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚) ∈ ℂ) |
46 | 45 | subid1d 11251 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → (Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚) − 0) = Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚)) |
47 | 18 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ 𝑚 ∈
ℕ) |
48 | | 2fveq3 6761 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑚 → (𝑋‘(𝐿‘𝑎)) = (𝑋‘(𝐿‘𝑚))) |
49 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑚 → 𝑎 = 𝑚) |
50 | 48, 49 | oveq12d 7273 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑚 → ((𝑋‘(𝐿‘𝑎)) / 𝑎) = ((𝑋‘(𝐿‘𝑚)) / 𝑚)) |
51 | | dchrisum0lem2.k |
. . . . . . . . . . . . . 14
⊢ 𝐾 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) |
52 | | ovex 7288 |
. . . . . . . . . . . . . 14
⊢ ((𝑋‘(𝐿‘𝑎)) / 𝑎) ∈ V |
53 | 50, 51, 52 | fvmpt3i 6862 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ → (𝐾‘𝑚) = ((𝑋‘(𝐿‘𝑚)) / 𝑚)) |
54 | 47, 53 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (𝐾‘𝑚) = ((𝑋‘(𝐿‘𝑚)) / 𝑚)) |
55 | 54 | adantlrr 717 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (𝐾‘𝑚) = ((𝑋‘(𝐿‘𝑚)) / 𝑚)) |
56 | | rpregt0 12673 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ∈ ℝ
∧ 0 < 𝑥)) |
57 | 56 | ad2antrl 724 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → (𝑥 ∈ ℝ ∧ 0 <
𝑥)) |
58 | 57 | simpld 494 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → 𝑥 ∈
ℝ) |
59 | | simprr 769 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → 1 ≤ 𝑥) |
60 | | flge1nn 13469 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 1 ≤
𝑥) →
(⌊‘𝑥) ∈
ℕ) |
61 | 58, 59, 60 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(⌊‘𝑥) ∈
ℕ) |
62 | | nnuz 12550 |
. . . . . . . . . . . 12
⊢ ℕ =
(ℤ≥‘1) |
63 | 61, 62 | eleqtrdi 2849 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(⌊‘𝑥) ∈
(ℤ≥‘1)) |
64 | 23 | adantlrr 717 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ ((𝑋‘(𝐿‘𝑚)) / 𝑚) ∈ ℂ) |
65 | 55, 63, 64 | fsumser 15370 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚) = (seq1( + , 𝐾)‘(⌊‘𝑥))) |
66 | | rpvmasum.a |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈ ℕ) |
67 | | rpvmasum2.1 |
. . . . . . . . . . . . . 14
⊢ 1 =
(0g‘𝐺) |
68 | | eldifsni 4720 |
. . . . . . . . . . . . . . 15
⊢ (𝑋 ∈ (𝐷 ∖ { 1 }) → 𝑋 ≠ 1 ) |
69 | 12, 68 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑋 ≠ 1 ) |
70 | | dchrisum0lem2.t |
. . . . . . . . . . . . . 14
⊢ (𝜑 → seq1( + , 𝐾) ⇝ 𝑇) |
71 | | dchrisum0lem2.3 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 / 𝑦)) |
72 | 6, 8, 66, 5, 7, 67, 13, 69, 51, 33, 70, 71, 9 | dchrvmaeq0 26557 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑋 ∈ 𝑊 ↔ 𝑇 = 0)) |
73 | 11, 72 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑇 = 0) |
74 | 73 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → 𝑇 = 0) |
75 | 74 | eqcomd 2744 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → 0 = 𝑇) |
76 | 65, 75 | oveq12d 7273 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → (Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚) − 0) = ((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇)) |
77 | 46, 76 | eqtr3d 2780 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚) = ((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇)) |
78 | 77 | fveq2d 6760 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(abs‘Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚)) = (abs‘((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇))) |
79 | | 2fveq3 6761 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (seq1( + , 𝐾)‘(⌊‘𝑦)) = (seq1( + , 𝐾)‘(⌊‘𝑥))) |
80 | 79 | fvoveq1d 7277 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) = (abs‘((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇))) |
81 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝐸 / 𝑦) = (𝐸 / 𝑥)) |
82 | 80, 81 | breq12d 5083 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → ((abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 / 𝑦) ↔ (abs‘((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇)) ≤ (𝐸 / 𝑥))) |
83 | 71 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → ∀𝑦 ∈
(1[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 / 𝑦)) |
84 | | 1re 10906 |
. . . . . . . . . 10
⊢ 1 ∈
ℝ |
85 | | elicopnf 13106 |
. . . . . . . . . 10
⊢ (1 ∈
ℝ → (𝑥 ∈
(1[,)+∞) ↔ (𝑥
∈ ℝ ∧ 1 ≤ 𝑥))) |
86 | 84, 85 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝑥 ∈ (1[,)+∞) ↔
(𝑥 ∈ ℝ ∧ 1
≤ 𝑥)) |
87 | 58, 59, 86 | sylanbrc 582 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → 𝑥 ∈
(1[,)+∞)) |
88 | 82, 83, 87 | rspcdva 3554 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(abs‘((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇)) ≤ (𝐸 / 𝑥)) |
89 | 78, 88 | eqbrtrd 5092 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(abs‘Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚)) ≤ (𝐸 / 𝑥)) |
90 | 45 | abscld 15076 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(abs‘Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚)) ∈ ℝ) |
91 | 36 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → 𝐸 ∈
ℝ) |
92 | | lemuldiv2 11786 |
. . . . . . 7
⊢
(((abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚)) ∈ ℝ ∧ 𝐸 ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → ((𝑥 · (abs‘Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚))) ≤ 𝐸 ↔ (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚)) ≤ (𝐸 / 𝑥))) |
93 | 90, 91, 57, 92 | syl3anc 1369 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → ((𝑥 ·
(abs‘Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚))) ≤ 𝐸 ↔ (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚)) ≤ (𝐸 / 𝑥))) |
94 | 89, 93 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → (𝑥 ·
(abs‘Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚))) ≤ 𝐸) |
95 | 44, 94 | eqbrtrd 5092 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(abs‘(𝑥 ·
Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚))) ≤ 𝐸) |
96 | 31, 25, 32, 36, 95 | elo1d 15173 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝑥 · Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚))) ∈ 𝑂(1)) |
97 | 1, 25, 30, 96 | o1mul2 15262 |
. 2
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (2
· (𝑥 ·
Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚)))) ∈ 𝑂(1)) |
98 | | fzfid 13621 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (1...(⌊‘((𝑥↑2) / 𝑚))) ∈ Fin) |
99 | 20 | rpsqrtcld 15051 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (√‘𝑚)
∈ ℝ+) |
100 | 99 | rpcnd 12703 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (√‘𝑚)
∈ ℂ) |
101 | 99 | rpne0d 12706 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (√‘𝑚)
≠ 0) |
102 | 17, 100, 101 | divcld 11681 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ ((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) ∈ ℂ) |
103 | 102 | adantr 480 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
∧ 𝑑 ∈
(1...(⌊‘((𝑥↑2) / 𝑚)))) → ((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) ∈ ℂ) |
104 | | elfznn 13214 |
. . . . . . . . . 10
⊢ (𝑑 ∈
(1...(⌊‘((𝑥↑2) / 𝑚))) → 𝑑 ∈ ℕ) |
105 | 104 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
∧ 𝑑 ∈
(1...(⌊‘((𝑥↑2) / 𝑚)))) → 𝑑 ∈ ℕ) |
106 | 105 | nnrpd 12699 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
∧ 𝑑 ∈
(1...(⌊‘((𝑥↑2) / 𝑚)))) → 𝑑 ∈ ℝ+) |
107 | 106 | rpsqrtcld 15051 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
∧ 𝑑 ∈
(1...(⌊‘((𝑥↑2) / 𝑚)))) → (√‘𝑑) ∈
ℝ+) |
108 | 107 | rpcnd 12703 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
∧ 𝑑 ∈
(1...(⌊‘((𝑥↑2) / 𝑚)))) → (√‘𝑑) ∈ ℂ) |
109 | 107 | rpne0d 12706 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
∧ 𝑑 ∈
(1...(⌊‘((𝑥↑2) / 𝑚)))) → (√‘𝑑) ≠ 0) |
110 | 103, 108,
109 | divcld 11681 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
∧ 𝑑 ∈
(1...(⌊‘((𝑥↑2) / 𝑚)))) → (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ) |
111 | 98, 110 | fsumcl 15373 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ Σ𝑑 ∈
(1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ) |
112 | 4, 111 | fsumcl 15373 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑚 ∈
(1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ) |
113 | | mulcl 10886 |
. . . 4
⊢ ((2
∈ ℂ ∧ (𝑥
· Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚)) ∈ ℂ) → (2 · (𝑥 · Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚))) ∈ ℂ) |
114 | 27, 25, 113 | sylancr 586 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (2
· (𝑥 ·
Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚))) ∈ ℂ) |
115 | | 2re 11977 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
116 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ+) |
117 | | 2z 12282 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℤ |
118 | | rpexpcl 13729 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ+
∧ 2 ∈ ℤ) → (𝑥↑2) ∈
ℝ+) |
119 | 116, 117,
118 | sylancl 585 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥↑2) ∈
ℝ+) |
120 | | rpdivcl 12684 |
. . . . . . . . . . . . 13
⊢ (((𝑥↑2) ∈
ℝ+ ∧ 𝑚
∈ ℝ+) → ((𝑥↑2) / 𝑚) ∈
ℝ+) |
121 | 119, 19, 120 | syl2an 595 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ ((𝑥↑2) / 𝑚) ∈
ℝ+) |
122 | 121 | rpsqrtcld 15051 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (√‘((𝑥↑2) / 𝑚)) ∈
ℝ+) |
123 | 122 | rpred 12701 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (√‘((𝑥↑2) / 𝑚)) ∈ ℝ) |
124 | | remulcl 10887 |
. . . . . . . . . 10
⊢ ((2
∈ ℝ ∧ (√‘((𝑥↑2) / 𝑚)) ∈ ℝ) → (2 ·
(√‘((𝑥↑2)
/ 𝑚))) ∈
ℝ) |
125 | 115, 123,
124 | sylancr 586 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (2 · (√‘((𝑥↑2) / 𝑚))) ∈ ℝ) |
126 | 125 | recnd 10934 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (2 · (√‘((𝑥↑2) / 𝑚))) ∈ ℂ) |
127 | 102, 126 | mulcld 10926 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) · (2 ·
(√‘((𝑥↑2)
/ 𝑚)))) ∈
ℂ) |
128 | 4, 111, 127 | fsumsub 15428 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑚 ∈
(1...(⌊‘𝑥))(Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) · (2 ·
(√‘((𝑥↑2)
/ 𝑚))))) = (Σ𝑚 ∈
(1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) − Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) · (2 ·
(√‘((𝑥↑2)
/ 𝑚)))))) |
129 | 107 | rpcnne0d 12710 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
∧ 𝑑 ∈
(1...(⌊‘((𝑥↑2) / 𝑚)))) → ((√‘𝑑) ∈ ℂ ∧
(√‘𝑑) ≠
0)) |
130 | | reccl 11570 |
. . . . . . . . . . 11
⊢
(((√‘𝑑)
∈ ℂ ∧ (√‘𝑑) ≠ 0) → (1 / (√‘𝑑)) ∈
ℂ) |
131 | 129, 130 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
∧ 𝑑 ∈
(1...(⌊‘((𝑥↑2) / 𝑚)))) → (1 / (√‘𝑑)) ∈
ℂ) |
132 | 98, 131 | fsumcl 15373 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ Σ𝑑 ∈
(1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)) ∈ ℂ) |
133 | 102, 132,
126 | subdid 11361 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) · (Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)) − (2 · (√‘((𝑥↑2) / 𝑚))))) = ((((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) · Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑))) − (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) · (2 ·
(√‘((𝑥↑2)
/ 𝑚)))))) |
134 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = ((𝑥↑2) / 𝑚) → (⌊‘𝑦) = (⌊‘((𝑥↑2) / 𝑚))) |
135 | 134 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ((𝑥↑2) / 𝑚) → (1...(⌊‘𝑦)) = (1...(⌊‘((𝑥↑2) / 𝑚)))) |
136 | 135 | sumeq1d 15341 |
. . . . . . . . . . . 12
⊢ (𝑦 = ((𝑥↑2) / 𝑚) → Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) = Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑))) |
137 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ((𝑥↑2) / 𝑚) → (√‘𝑦) = (√‘((𝑥↑2) / 𝑚))) |
138 | 137 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (𝑦 = ((𝑥↑2) / 𝑚) → (2 · (√‘𝑦)) = (2 ·
(√‘((𝑥↑2)
/ 𝑚)))) |
139 | 136, 138 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ (𝑦 = ((𝑥↑2) / 𝑚) → (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 ·
(√‘𝑦))) =
(Σ𝑑 ∈
(1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)) − (2 · (√‘((𝑥↑2) / 𝑚))))) |
140 | | dchrisum0lem2.h |
. . . . . . . . . . 11
⊢ 𝐻 = (𝑦 ∈ ℝ+ ↦
(Σ𝑑 ∈
(1...(⌊‘𝑦))(1 /
(√‘𝑑)) −
(2 · (√‘𝑦)))) |
141 | | ovex 7288 |
. . . . . . . . . . 11
⊢
(Σ𝑑 ∈
(1...(⌊‘𝑦))(1 /
(√‘𝑑)) −
(2 · (√‘𝑦))) ∈ V |
142 | 139, 140,
141 | fvmpt3i 6862 |
. . . . . . . . . 10
⊢ (((𝑥↑2) / 𝑚) ∈ ℝ+ → (𝐻‘((𝑥↑2) / 𝑚)) = (Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)) − (2 · (√‘((𝑥↑2) / 𝑚))))) |
143 | 121, 142 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (𝐻‘((𝑥↑2) / 𝑚)) = (Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)) − (2 · (√‘((𝑥↑2) / 𝑚))))) |
144 | 143 | oveq2d 7271 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) = (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) · (Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)) − (2 · (√‘((𝑥↑2) / 𝑚)))))) |
145 | 103, 108,
109 | divrecd 11684 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
∧ 𝑑 ∈
(1...(⌊‘((𝑥↑2) / 𝑚)))) → (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) = (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) · (1 / (√‘𝑑)))) |
146 | 145 | sumeq2dv 15343 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ Σ𝑑 ∈
(1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) = Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) · (1 / (√‘𝑑)))) |
147 | 98, 102, 131 | fsummulc2 15424 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) · Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑))) = Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) · (1 / (√‘𝑑)))) |
148 | 146, 147 | eqtr4d 2781 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ Σ𝑑 ∈
(1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) = (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) · Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)))) |
149 | 148 | oveq1d 7270 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (Σ𝑑 ∈
(1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) · (2 ·
(√‘((𝑥↑2)
/ 𝑚))))) = ((((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) · Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑))) − (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) · (2 ·
(√‘((𝑥↑2)
/ 𝑚)))))) |
150 | 133, 144,
149 | 3eqtr4d 2788 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) = (Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) · (2 ·
(√‘((𝑥↑2)
/ 𝑚)))))) |
151 | 150 | sumeq2dv 15343 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑚 ∈
(1...(⌊‘𝑥))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘𝑥))(Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) · (2 ·
(√‘((𝑥↑2)
/ 𝑚)))))) |
152 | | mulcl 10886 |
. . . . . . . . . 10
⊢ ((2
∈ ℂ ∧ 𝑥
∈ ℂ) → (2 · 𝑥) ∈ ℂ) |
153 | 27, 3, 152 | sylancr 586 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (2
· 𝑥) ∈
ℂ) |
154 | 4, 153, 23 | fsummulc2 15424 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((2
· 𝑥) ·
Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘𝑥))((2 · 𝑥) · ((𝑋‘(𝐿‘𝑚)) / 𝑚))) |
155 | 1, 3, 24 | mulassd 10929 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((2
· 𝑥) ·
Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚)) = (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚)))) |
156 | 153 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (2 · 𝑥)
∈ ℂ) |
157 | 156, 102,
100, 101 | div12d 11717 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ ((2 · 𝑥)
· (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑚))) = (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) · ((2 · 𝑥) / (√‘𝑚)))) |
158 | 99 | rpcnne0d 12710 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ ((√‘𝑚)
∈ ℂ ∧ (√‘𝑚) ≠ 0)) |
159 | | divdiv1 11616 |
. . . . . . . . . . . . 13
⊢ (((𝑋‘(𝐿‘𝑚)) ∈ ℂ ∧ ((√‘𝑚) ∈ ℂ ∧
(√‘𝑚) ≠ 0)
∧ ((√‘𝑚)
∈ ℂ ∧ (√‘𝑚) ≠ 0)) → (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑚)) = ((𝑋‘(𝐿‘𝑚)) / ((√‘𝑚) · (√‘𝑚)))) |
160 | 17, 158, 158, 159 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑚)) = ((𝑋‘(𝐿‘𝑚)) / ((√‘𝑚) · (√‘𝑚)))) |
161 | 20 | rprege0d 12708 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (𝑚 ∈ ℝ
∧ 0 ≤ 𝑚)) |
162 | | remsqsqrt 14896 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈ ℝ ∧ 0 ≤
𝑚) →
((√‘𝑚) ·
(√‘𝑚)) = 𝑚) |
163 | 161, 162 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ ((√‘𝑚)
· (√‘𝑚))
= 𝑚) |
164 | 163 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ ((𝑋‘(𝐿‘𝑚)) / ((√‘𝑚) · (√‘𝑚))) = ((𝑋‘(𝐿‘𝑚)) / 𝑚)) |
165 | 160, 164 | eqtr2d 2779 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ ((𝑋‘(𝐿‘𝑚)) / 𝑚) = (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑚))) |
166 | 165 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ ((2 · 𝑥)
· ((𝑋‘(𝐿‘𝑚)) / 𝑚)) = ((2 · 𝑥) · (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑚)))) |
167 | 119 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (𝑥↑2) ∈
ℝ+) |
168 | 167 | rprege0d 12708 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ ((𝑥↑2) ∈
ℝ ∧ 0 ≤ (𝑥↑2))) |
169 | | sqrtdiv 14905 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥↑2) ∈ ℝ ∧ 0
≤ (𝑥↑2)) ∧
𝑚 ∈
ℝ+) → (√‘((𝑥↑2) / 𝑚)) = ((√‘(𝑥↑2)) / (√‘𝑚))) |
170 | 168, 20, 169 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (√‘((𝑥↑2) / 𝑚)) = ((√‘(𝑥↑2)) / (√‘𝑚))) |
171 | 38 | ad2antlr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (𝑥 ∈ ℝ
∧ 0 ≤ 𝑥)) |
172 | | sqrtsq 14909 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ 0 ≤
𝑥) →
(√‘(𝑥↑2))
= 𝑥) |
173 | 171, 172 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (√‘(𝑥↑2)) = 𝑥) |
174 | 173 | oveq1d 7270 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ ((√‘(𝑥↑2)) / (√‘𝑚)) = (𝑥 / (√‘𝑚))) |
175 | 170, 174 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (√‘((𝑥↑2) / 𝑚)) = (𝑥 / (√‘𝑚))) |
176 | 175 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (2 · (√‘((𝑥↑2) / 𝑚))) = (2 · (𝑥 / (√‘𝑚)))) |
177 | | 2cnd 11981 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ 2 ∈ ℂ) |
178 | 3 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ 𝑥 ∈
ℂ) |
179 | | divass 11581 |
. . . . . . . . . . . . 13
⊢ ((2
∈ ℂ ∧ 𝑥
∈ ℂ ∧ ((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0)) → ((2 ·
𝑥) / (√‘𝑚)) = (2 · (𝑥 / (√‘𝑚)))) |
180 | 177, 178,
158, 179 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ ((2 · 𝑥) /
(√‘𝑚)) = (2
· (𝑥 /
(√‘𝑚)))) |
181 | 176, 180 | eqtr4d 2781 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (2 · (√‘((𝑥↑2) / 𝑚))) = ((2 · 𝑥) / (√‘𝑚))) |
182 | 181 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) · (2 ·
(√‘((𝑥↑2)
/ 𝑚)))) = (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) · ((2 · 𝑥) / (√‘𝑚)))) |
183 | 157, 166,
182 | 3eqtr4d 2788 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ ((2 · 𝑥)
· ((𝑋‘(𝐿‘𝑚)) / 𝑚)) = (((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) · (2 ·
(√‘((𝑥↑2)
/ 𝑚))))) |
184 | 183 | sumeq2dv 15343 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑚 ∈
(1...(⌊‘𝑥))((2
· 𝑥) ·
((𝑋‘(𝐿‘𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) · (2 ·
(√‘((𝑥↑2)
/ 𝑚))))) |
185 | 154, 155,
184 | 3eqtr3d 2786 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (2
· (𝑥 ·
Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) · (2 ·
(√‘((𝑥↑2)
/ 𝑚))))) |
186 | 185 | oveq2d 7271 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(Σ𝑚 ∈
(1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚)))) = (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) − Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) · (2 ·
(√‘((𝑥↑2)
/ 𝑚)))))) |
187 | 128, 151,
186 | 3eqtr4d 2788 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑚 ∈
(1...(⌊‘𝑥))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) = (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚))))) |
188 | 187 | mpteq2dva 5170 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
Σ𝑚 ∈
(1...(⌊‘𝑥))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚)))) = (𝑥 ∈ ℝ+ ↦
(Σ𝑚 ∈
(1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚)))))) |
189 | | dchrisum0lem1.f |
. . . . 5
⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / (√‘𝑎))) |
190 | | dchrisum0.c |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) |
191 | | dchrisum0.s |
. . . . 5
⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑆) |
192 | | dchrisum0.1 |
. . . . 5
⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦))) |
193 | | dchrisum0lem2.u |
. . . . 5
⊢ (𝜑 → 𝐻 ⇝𝑟 𝑈) |
194 | 6, 8, 66, 5, 7, 67, 9, 11, 189, 190, 191, 192, 140, 193 | dchrisum0lem2a 26570 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
Σ𝑚 ∈
(1...(⌊‘𝑥))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚)))) ∈ 𝑂(1)) |
195 | 188, 194 | eqeltrrd 2840 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
(Σ𝑚 ∈
(1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚))))) ∈ 𝑂(1)) |
196 | 112, 114,
195 | o1dif 15267 |
. 2
⊢ (𝜑 → ((𝑥 ∈ ℝ+ ↦
Σ𝑚 ∈
(1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1) ↔ (𝑥 ∈ ℝ+
↦ (2 · (𝑥
· Σ𝑚 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑚)) / 𝑚)))) ∈ 𝑂(1))) |
197 | 97, 196 | mpbird 256 |
1
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
Σ𝑚 ∈
(1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1)) |