MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem2 Structured version   Visualization version   GIF version

Theorem dchrisum0lem2 27580
Description: Lemma for dchrisum0 27582. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
dchrisum0lem1.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
dchrisum0.c (𝜑𝐶 ∈ (0[,)+∞))
dchrisum0.s (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
dchrisum0.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
dchrisum0lem2.h 𝐻 = (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦))))
dchrisum0lem2.u (𝜑𝐻𝑟 𝑈)
dchrisum0lem2.k 𝐾 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
dchrisum0lem2.e (𝜑𝐸 ∈ (0[,)+∞))
dchrisum0lem2.t (𝜑 → seq1( + , 𝐾) ⇝ 𝑇)
dchrisum0lem2.3 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 / 𝑦))
Assertion
Ref Expression
dchrisum0lem2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑚,𝑦, 1   𝑚,𝑑,𝑥,𝑦,𝐶   𝐹,𝑑,𝑥,𝑦   𝑎,𝑑,𝑚,𝑥,𝑦   𝐸,𝑑,𝑚,𝑥,𝑦   𝑚,𝐾,𝑦   𝑚,𝑁,𝑥,𝑦   𝜑,𝑑,𝑚,𝑥   𝑇,𝑑,𝑚,𝑥,𝑦   𝑆,𝑑,𝑚,𝑥,𝑦   𝑈,𝑚,𝑥   𝑥,𝑊   𝑚,𝑍,𝑥,𝑦   𝐷,𝑚,𝑥,𝑦   𝐿,𝑎,𝑑,𝑚,𝑥,𝑦   𝑋,𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝐹
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑎)   𝐷(𝑎,𝑑)   𝑆(𝑎)   𝑇(𝑎)   𝑈(𝑦,𝑎,𝑑)   1 (𝑎,𝑑)   𝐸(𝑎)   𝐹(𝑎)   𝐺(𝑥,𝑦,𝑚,𝑎,𝑑)   𝐻(𝑥,𝑦,𝑚,𝑎,𝑑)   𝐾(𝑥,𝑎,𝑑)   𝑁(𝑎,𝑑)   𝑊(𝑦,𝑚,𝑎,𝑑)   𝑍(𝑎,𝑑)

Proof of Theorem dchrisum0lem2
StepHypRef Expression
1 2cnd 12371 . . 3 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℂ)
2 rpcn 13067 . . . . 5 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
32adantl 481 . . . 4 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
4 fzfid 14024 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
5 rpvmasum2.g . . . . . . 7 𝐺 = (DChr‘𝑁)
6 rpvmasum.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
7 rpvmasum2.d . . . . . . 7 𝐷 = (Base‘𝐺)
8 rpvmasum.l . . . . . . 7 𝐿 = (ℤRHom‘𝑍)
9 rpvmasum2.w . . . . . . . . . . 11 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
109ssrab3 4105 . . . . . . . . . 10 𝑊 ⊆ (𝐷 ∖ { 1 })
11 dchrisum0.b . . . . . . . . . 10 (𝜑𝑋𝑊)
1210, 11sselid 4006 . . . . . . . . 9 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
1312eldifad 3988 . . . . . . . 8 (𝜑𝑋𝐷)
1413ad2antrr 725 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑋𝐷)
15 elfzelz 13584 . . . . . . . 8 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℤ)
1615adantl 481 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℤ)
175, 6, 7, 8, 14, 16dchrzrhcl 27307 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
18 elfznn 13613 . . . . . . . . 9 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℕ)
1918nnrpd 13097 . . . . . . . 8 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℝ+)
2019adantl 481 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℝ+)
2120rpcnd 13101 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℂ)
2220rpne0d 13104 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ≠ 0)
2317, 21, 22divcld 12070 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
244, 23fsumcl 15781 . . . 4 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
253, 24mulcld 11310 . . 3 ((𝜑𝑥 ∈ ℝ+) → (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ ℂ)
26 rpssre 13064 . . . . 5 + ⊆ ℝ
27 2cn 12368 . . . . 5 2 ∈ ℂ
28 o1const 15666 . . . . 5 ((ℝ+ ⊆ ℝ ∧ 2 ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1))
2926, 27, 28mp2an 691 . . . 4 (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1)
3029a1i 11 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1))
3126a1i 11 . . . 4 (𝜑 → ℝ+ ⊆ ℝ)
32 1red 11291 . . . 4 (𝜑 → 1 ∈ ℝ)
33 dchrisum0lem2.e . . . . 5 (𝜑𝐸 ∈ (0[,)+∞))
34 elrege0 13514 . . . . . 6 (𝐸 ∈ (0[,)+∞) ↔ (𝐸 ∈ ℝ ∧ 0 ≤ 𝐸))
3534simplbi 497 . . . . 5 (𝐸 ∈ (0[,)+∞) → 𝐸 ∈ ℝ)
3633, 35syl 17 . . . 4 (𝜑𝐸 ∈ ℝ)
373, 24absmuld 15503 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (abs‘(𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) = ((abs‘𝑥) · (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))))
38 rprege0 13072 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
3938adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
40 absid 15345 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (abs‘𝑥) = 𝑥)
4139, 40syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (abs‘𝑥) = 𝑥)
4241oveq1d 7463 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((abs‘𝑥) · (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) = (𝑥 · (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))))
4337, 42eqtrd 2780 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (abs‘(𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) = (𝑥 · (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))))
4443adantrr 716 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) = (𝑥 · (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))))
4524adantrr 716 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
4645subid1d 11636 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚) − 0) = Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))
4718adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℕ)
48 2fveq3 6925 . . . . . . . . . . . . . . 15 (𝑎 = 𝑚 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑚)))
49 id 22 . . . . . . . . . . . . . . 15 (𝑎 = 𝑚𝑎 = 𝑚)
5048, 49oveq12d 7466 . . . . . . . . . . . . . 14 (𝑎 = 𝑚 → ((𝑋‘(𝐿𝑎)) / 𝑎) = ((𝑋‘(𝐿𝑚)) / 𝑚))
51 dchrisum0lem2.k . . . . . . . . . . . . . 14 𝐾 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
52 ovex 7481 . . . . . . . . . . . . . 14 ((𝑋‘(𝐿𝑎)) / 𝑎) ∈ V
5350, 51, 52fvmpt3i 7034 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → (𝐾𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
5447, 53syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐾𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
5554adantlrr 720 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐾𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
56 rpregt0 13071 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
5756ad2antrl 727 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
5857simpld 494 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ)
59 simprr 772 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
60 flge1nn 13872 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ)
6158, 59, 60syl2anc 583 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ∈ ℕ)
62 nnuz 12946 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
6361, 62eleqtrdi 2854 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ∈ (ℤ‘1))
6423adantlrr 720 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
6555, 63, 64fsumser 15778 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚) = (seq1( + , 𝐾)‘(⌊‘𝑥)))
66 rpvmasum.a . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
67 rpvmasum2.1 . . . . . . . . . . . . . 14 1 = (0g𝐺)
68 eldifsni 4815 . . . . . . . . . . . . . . 15 (𝑋 ∈ (𝐷 ∖ { 1 }) → 𝑋1 )
6912, 68syl 17 . . . . . . . . . . . . . 14 (𝜑𝑋1 )
70 dchrisum0lem2.t . . . . . . . . . . . . . 14 (𝜑 → seq1( + , 𝐾) ⇝ 𝑇)
71 dchrisum0lem2.3 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 / 𝑦))
726, 8, 66, 5, 7, 67, 13, 69, 51, 33, 70, 71, 9dchrvmaeq0 27566 . . . . . . . . . . . . 13 (𝜑 → (𝑋𝑊𝑇 = 0))
7311, 72mpbid 232 . . . . . . . . . . . 12 (𝜑𝑇 = 0)
7473adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑇 = 0)
7574eqcomd 2746 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 = 𝑇)
7665, 75oveq12d 7466 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚) − 0) = ((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇))
7746, 76eqtr3d 2782 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚) = ((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇))
7877fveq2d 6924 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) = (abs‘((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇)))
79 2fveq3 6925 . . . . . . . . . 10 (𝑦 = 𝑥 → (seq1( + , 𝐾)‘(⌊‘𝑦)) = (seq1( + , 𝐾)‘(⌊‘𝑥)))
8079fvoveq1d 7470 . . . . . . . . 9 (𝑦 = 𝑥 → (abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) = (abs‘((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇)))
81 oveq2 7456 . . . . . . . . 9 (𝑦 = 𝑥 → (𝐸 / 𝑦) = (𝐸 / 𝑥))
8280, 81breq12d 5179 . . . . . . . 8 (𝑦 = 𝑥 → ((abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 / 𝑦) ↔ (abs‘((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇)) ≤ (𝐸 / 𝑥)))
8371adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 / 𝑦))
84 1re 11290 . . . . . . . . . 10 1 ∈ ℝ
85 elicopnf 13505 . . . . . . . . . 10 (1 ∈ ℝ → (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)))
8684, 85ax-mp 5 . . . . . . . . 9 (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥))
8758, 59, 86sylanbrc 582 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ (1[,)+∞))
8882, 83, 87rspcdva 3636 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇)) ≤ (𝐸 / 𝑥))
8978, 88eqbrtrd 5188 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) ≤ (𝐸 / 𝑥))
9045abscld 15485 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ ℝ)
9136adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝐸 ∈ ℝ)
92 lemuldiv2 12176 . . . . . . 7 (((abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ ℝ ∧ 𝐸 ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → ((𝑥 · (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) ≤ 𝐸 ↔ (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) ≤ (𝐸 / 𝑥)))
9390, 91, 57, 92syl3anc 1371 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑥 · (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) ≤ 𝐸 ↔ (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) ≤ (𝐸 / 𝑥)))
9489, 93mpbird 257 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 · (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) ≤ 𝐸)
9544, 94eqbrtrd 5188 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) ≤ 𝐸)
9631, 25, 32, 36, 95elo1d 15582 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) ∈ 𝑂(1))
971, 25, 30, 96o1mul2 15671 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)))) ∈ 𝑂(1))
98 fzfid 14024 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘((𝑥↑2) / 𝑚))) ∈ Fin)
9920rpsqrtcld 15460 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘𝑚) ∈ ℝ+)
10099rpcnd 13101 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘𝑚) ∈ ℂ)
10199rpne0d 13104 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘𝑚) ≠ 0)
10217, 100, 101divcld 12070 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
103102adantr 480 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
104 elfznn 13613 . . . . . . . . . 10 (𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))) → 𝑑 ∈ ℕ)
105104adantl 481 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → 𝑑 ∈ ℕ)
106105nnrpd 13097 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → 𝑑 ∈ ℝ+)
107106rpsqrtcld 15460 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (√‘𝑑) ∈ ℝ+)
108107rpcnd 13101 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (√‘𝑑) ∈ ℂ)
109107rpne0d 13104 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (√‘𝑑) ≠ 0)
110103, 108, 109divcld 12070 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
11198, 110fsumcl 15781 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
1124, 111fsumcl 15781 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
113 mulcl 11268 . . . 4 ((2 ∈ ℂ ∧ (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ ℂ) → (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) ∈ ℂ)
11427, 25, 113sylancr 586 . . 3 ((𝜑𝑥 ∈ ℝ+) → (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) ∈ ℂ)
115 2re 12367 . . . . . . . . . 10 2 ∈ ℝ
116 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
117 2z 12675 . . . . . . . . . . . . . 14 2 ∈ ℤ
118 rpexpcl 14131 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑥↑2) ∈ ℝ+)
119116, 117, 118sylancl 585 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) ∈ ℝ+)
120 rpdivcl 13082 . . . . . . . . . . . . 13 (((𝑥↑2) ∈ ℝ+𝑚 ∈ ℝ+) → ((𝑥↑2) / 𝑚) ∈ ℝ+)
121119, 19, 120syl2an 595 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑥↑2) / 𝑚) ∈ ℝ+)
122121rpsqrtcld 15460 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘((𝑥↑2) / 𝑚)) ∈ ℝ+)
123122rpred 13099 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘((𝑥↑2) / 𝑚)) ∈ ℝ)
124 remulcl 11269 . . . . . . . . . 10 ((2 ∈ ℝ ∧ (√‘((𝑥↑2) / 𝑚)) ∈ ℝ) → (2 · (√‘((𝑥↑2) / 𝑚))) ∈ ℝ)
125115, 123, 124sylancr 586 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (2 · (√‘((𝑥↑2) / 𝑚))) ∈ ℝ)
126125recnd 11318 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (2 · (√‘((𝑥↑2) / 𝑚))) ∈ ℂ)
127102, 126mulcld 11310 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚)))) ∈ ℂ)
1284, 111, 127fsumsub 15836 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚))))) = (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚))))))
129107rpcnne0d 13108 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → ((√‘𝑑) ∈ ℂ ∧ (√‘𝑑) ≠ 0))
130 reccl 11956 . . . . . . . . . . 11 (((√‘𝑑) ∈ ℂ ∧ (√‘𝑑) ≠ 0) → (1 / (√‘𝑑)) ∈ ℂ)
131129, 130syl 17 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (1 / (√‘𝑑)) ∈ ℂ)
13298, 131fsumcl 15781 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)) ∈ ℂ)
133102, 132, 126subdid 11746 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)) − (2 · (√‘((𝑥↑2) / 𝑚))))) = ((((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑))) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚))))))
134 fveq2 6920 . . . . . . . . . . . . . 14 (𝑦 = ((𝑥↑2) / 𝑚) → (⌊‘𝑦) = (⌊‘((𝑥↑2) / 𝑚)))
135134oveq2d 7464 . . . . . . . . . . . . 13 (𝑦 = ((𝑥↑2) / 𝑚) → (1...(⌊‘𝑦)) = (1...(⌊‘((𝑥↑2) / 𝑚))))
136135sumeq1d 15748 . . . . . . . . . . . 12 (𝑦 = ((𝑥↑2) / 𝑚) → Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) = Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)))
137 fveq2 6920 . . . . . . . . . . . . 13 (𝑦 = ((𝑥↑2) / 𝑚) → (√‘𝑦) = (√‘((𝑥↑2) / 𝑚)))
138137oveq2d 7464 . . . . . . . . . . . 12 (𝑦 = ((𝑥↑2) / 𝑚) → (2 · (√‘𝑦)) = (2 · (√‘((𝑥↑2) / 𝑚))))
139136, 138oveq12d 7466 . . . . . . . . . . 11 (𝑦 = ((𝑥↑2) / 𝑚) → (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦))) = (Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)) − (2 · (√‘((𝑥↑2) / 𝑚)))))
140 dchrisum0lem2.h . . . . . . . . . . 11 𝐻 = (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦))))
141 ovex 7481 . . . . . . . . . . 11 𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦))) ∈ V
142139, 140, 141fvmpt3i 7034 . . . . . . . . . 10 (((𝑥↑2) / 𝑚) ∈ ℝ+ → (𝐻‘((𝑥↑2) / 𝑚)) = (Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)) − (2 · (√‘((𝑥↑2) / 𝑚)))))
143121, 142syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐻‘((𝑥↑2) / 𝑚)) = (Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)) − (2 · (√‘((𝑥↑2) / 𝑚)))))
144143oveq2d 7464 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) = (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)) − (2 · (√‘((𝑥↑2) / 𝑚))))))
145103, 108, 109divrecd 12073 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) = (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (1 / (√‘𝑑))))
146145sumeq2dv 15750 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) = Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (1 / (√‘𝑑))))
14798, 102, 131fsummulc2 15832 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑))) = Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (1 / (√‘𝑑))))
148146, 147eqtr4d 2783 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) = (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑))))
149148oveq1d 7463 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚))))) = ((((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑))) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚))))))
150133, 144, 1493eqtr4d 2790 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) = (Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚))))))
151150sumeq2dv 15750 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘𝑥))(Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚))))))
152 mulcl 11268 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (2 · 𝑥) ∈ ℂ)
15327, 3, 152sylancr 586 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (2 · 𝑥) ∈ ℂ)
1544, 153, 23fsummulc2 15832 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((2 · 𝑥) · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘𝑥))((2 · 𝑥) · ((𝑋‘(𝐿𝑚)) / 𝑚)))
1551, 3, 24mulassd 11313 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((2 · 𝑥) · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) = (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))))
156153adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (2 · 𝑥) ∈ ℂ)
157156, 102, 100, 101div12d 12106 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((2 · 𝑥) · (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑚))) = (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((2 · 𝑥) / (√‘𝑚))))
15899rpcnne0d 13108 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0))
159 divdiv1 12005 . . . . . . . . . . . . 13 (((𝑋‘(𝐿𝑚)) ∈ ℂ ∧ ((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0) ∧ ((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0)) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑚)) = ((𝑋‘(𝐿𝑚)) / ((√‘𝑚) · (√‘𝑚))))
16017, 158, 158, 159syl3anc 1371 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑚)) = ((𝑋‘(𝐿𝑚)) / ((√‘𝑚) · (√‘𝑚))))
16120rprege0d 13106 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑚 ∈ ℝ ∧ 0 ≤ 𝑚))
162 remsqsqrt 15305 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℝ ∧ 0 ≤ 𝑚) → ((√‘𝑚) · (√‘𝑚)) = 𝑚)
163161, 162syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘𝑚) · (√‘𝑚)) = 𝑚)
164163oveq2d 7464 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / ((√‘𝑚) · (√‘𝑚))) = ((𝑋‘(𝐿𝑚)) / 𝑚))
165160, 164eqtr2d 2781 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / 𝑚) = (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑚)))
166165oveq2d 7464 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((2 · 𝑥) · ((𝑋‘(𝐿𝑚)) / 𝑚)) = ((2 · 𝑥) · (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑚))))
167119adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑥↑2) ∈ ℝ+)
168167rprege0d 13106 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑥↑2) ∈ ℝ ∧ 0 ≤ (𝑥↑2)))
169 sqrtdiv 15314 . . . . . . . . . . . . . . 15 ((((𝑥↑2) ∈ ℝ ∧ 0 ≤ (𝑥↑2)) ∧ 𝑚 ∈ ℝ+) → (√‘((𝑥↑2) / 𝑚)) = ((√‘(𝑥↑2)) / (√‘𝑚)))
170168, 20, 169syl2anc 583 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘((𝑥↑2) / 𝑚)) = ((√‘(𝑥↑2)) / (√‘𝑚)))
17138ad2antlr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
172 sqrtsq 15318 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (√‘(𝑥↑2)) = 𝑥)
173171, 172syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘(𝑥↑2)) = 𝑥)
174173oveq1d 7463 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘(𝑥↑2)) / (√‘𝑚)) = (𝑥 / (√‘𝑚)))
175170, 174eqtrd 2780 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘((𝑥↑2) / 𝑚)) = (𝑥 / (√‘𝑚)))
176175oveq2d 7464 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (2 · (√‘((𝑥↑2) / 𝑚))) = (2 · (𝑥 / (√‘𝑚))))
177 2cnd 12371 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 2 ∈ ℂ)
1783adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℂ)
179 divass 11967 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ ((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0)) → ((2 · 𝑥) / (√‘𝑚)) = (2 · (𝑥 / (√‘𝑚))))
180177, 178, 158, 179syl3anc 1371 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((2 · 𝑥) / (√‘𝑚)) = (2 · (𝑥 / (√‘𝑚))))
181176, 180eqtr4d 2783 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (2 · (√‘((𝑥↑2) / 𝑚))) = ((2 · 𝑥) / (√‘𝑚)))
182181oveq2d 7464 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚)))) = (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((2 · 𝑥) / (√‘𝑚))))
183157, 166, 1823eqtr4d 2790 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((2 · 𝑥) · ((𝑋‘(𝐿𝑚)) / 𝑚)) = (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚)))))
184183sumeq2dv 15750 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))((2 · 𝑥) · ((𝑋‘(𝐿𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚)))))
185154, 155, 1843eqtr3d 2788 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚)))))
186185oveq2d 7464 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)))) = (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚))))))
187128, 151, 1863eqtr4d 2790 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) = (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)))))
188187mpteq2dva 5266 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))))))
189 dchrisum0lem1.f . . . . 5 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
190 dchrisum0.c . . . . 5 (𝜑𝐶 ∈ (0[,)+∞))
191 dchrisum0.s . . . . 5 (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
192 dchrisum0.1 . . . . 5 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
193 dchrisum0lem2.u . . . . 5 (𝜑𝐻𝑟 𝑈)
1946, 8, 66, 5, 7, 67, 9, 11, 189, 190, 191, 192, 140, 193dchrisum0lem2a 27579 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚)))) ∈ 𝑂(1))
195188, 194eqeltrrd 2845 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))))) ∈ 𝑂(1))
196112, 114, 195o1dif 15676 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1) ↔ (𝑥 ∈ ℝ+ ↦ (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)))) ∈ 𝑂(1)))
19797, 196mpbird 257 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  {crab 3443  cdif 3973  wss 3976  {csn 4648   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  +∞cpnf 11321   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  cz 12639  cuz 12903  +crp 13057  [,)cico 13409  ...cfz 13567  cfl 13841  seqcseq 14052  cexp 14112  csqrt 15282  abscabs 15283  cli 15530  𝑟 crli 15531  𝑂(1)co1 15532  Σcsu 15734  Basecbs 17258  0gc0g 17499  ℤRHomczrh 21533  ℤ/nczn 21536  DChrcdchr 27294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-o1 15536  df-lo1 15537  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-dvds 16303  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-qus 17569  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-nsg 19164  df-eqg 19165  df-ghm 19253  df-cntz 19357  df-od 19570  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-drng 20753  df-lmod 20882  df-lss 20953  df-lsp 20993  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242  df-2idl 21283  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-zring 21481  df-zrh 21537  df-zn 21540  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616  df-cxp 26617  df-dchr 27295
This theorem is referenced by:  dchrisum0lem3  27581
  Copyright terms: Public domain W3C validator