![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > divgt1b | Structured version Visualization version GIF version |
Description: The ratio of a real number to a positive real number is greater than 1 iff the divisor (the positive real number) is less than the dividend (the real number). (Contributed by AV, 30-May-2020.) |
Ref | Expression |
---|---|
divgt1b | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 1 < (𝐵 / 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpcn 12124 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) | |
2 | 1 | adantr 474 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℂ) |
3 | 2 | mulid2d 10375 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (1 · 𝐴) = 𝐴) |
4 | 3 | eqcomd 2831 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → 𝐴 = (1 · 𝐴)) |
5 | 4 | breq1d 4883 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (1 · 𝐴) < 𝐵)) |
6 | 1red 10357 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → 1 ∈ ℝ) | |
7 | simpr 479 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ) | |
8 | rpregt0 12128 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
9 | 8 | adantr 474 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
10 | ltmuldiv 11226 | . . 3 ⊢ ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((1 · 𝐴) < 𝐵 ↔ 1 < (𝐵 / 𝐴))) | |
11 | 6, 7, 9, 10 | syl3anc 1494 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → ((1 · 𝐴) < 𝐵 ↔ 1 < (𝐵 / 𝐴))) |
12 | 5, 11 | bitrd 271 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 1 < (𝐵 / 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∈ wcel 2164 class class class wbr 4873 (class class class)co 6905 ℂcc 10250 ℝcr 10251 0cc0 10252 1c1 10253 · cmul 10257 < clt 10391 / cdiv 11009 ℝ+crp 12112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-po 5263 df-so 5264 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-er 8009 df-en 8223 df-dom 8224 df-sdom 8225 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-div 11010 df-rp 12113 |
This theorem is referenced by: pw2m1lepw2m1 43150 |
Copyright terms: Public domain | W3C validator |