MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vmadivsum Structured version   Visualization version   GIF version

Theorem vmadivsum 27369
Description: The sum of the von Mangoldt function over 𝑛 is asymptotic to log𝑥 + 𝑂(1). Equation 9.2.13 of [Shapiro], p. 331. (Contributed by Mario Carneiro, 16-Apr-2016.)
Assertion
Ref Expression
vmadivsum (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1)
Distinct variable group:   𝑥,𝑛

Proof of Theorem vmadivsum
StepHypRef Expression
1 reex 11135 . . . . . . 7 ℝ ∈ V
2 rpssre 12935 . . . . . . 7 + ⊆ ℝ
31, 2ssexi 5272 . . . . . 6 + ∈ V
43a1i 11 . . . . 5 (⊤ → ℝ+ ∈ V)
5 ovexd 7404 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) ∈ V)
6 ovexd 7404 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) ∈ V)
7 eqidd 2730 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))))
8 eqidd 2730 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))))
94, 5, 6, 7, 8offval2 7653 . . . 4 (⊤ → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∘f − (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))))
109mptru 1547 . . 3 ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∘f − (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))))
11 fzfid 13914 . . . . . . 7 (𝑥 ∈ ℝ+ → (1...(⌊‘𝑥)) ∈ Fin)
12 elfznn 13490 . . . . . . . . . 10 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
1312adantl 481 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
14 vmacl 27004 . . . . . . . . 9 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
1513, 14syl 17 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
1615, 13nndivred 12216 . . . . . . 7 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
1711, 16fsumrecl 15676 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℝ)
1817recnd 11178 . . . . 5 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℂ)
19 relogcl 26460 . . . . . 6 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
2019recnd 11178 . . . . 5 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℂ)
21 rprege0 12943 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
22 flge0nn0 13758 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
23 faccl 14224 . . . . . . . . . 10 ((⌊‘𝑥) ∈ ℕ0 → (!‘(⌊‘𝑥)) ∈ ℕ)
2421, 22, 233syl 18 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (!‘(⌊‘𝑥)) ∈ ℕ)
2524nnrpd 12969 . . . . . . . 8 (𝑥 ∈ ℝ+ → (!‘(⌊‘𝑥)) ∈ ℝ+)
2625relogcld 26508 . . . . . . 7 (𝑥 ∈ ℝ+ → (log‘(!‘(⌊‘𝑥))) ∈ ℝ)
27 rerpdivcl 12959 . . . . . . 7 (((log‘(!‘(⌊‘𝑥))) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((log‘(!‘(⌊‘𝑥))) / 𝑥) ∈ ℝ)
2826, 27mpancom 688 . . . . . 6 (𝑥 ∈ ℝ+ → ((log‘(!‘(⌊‘𝑥))) / 𝑥) ∈ ℝ)
2928recnd 11178 . . . . 5 (𝑥 ∈ ℝ+ → ((log‘(!‘(⌊‘𝑥))) / 𝑥) ∈ ℂ)
3018, 20, 29nnncan2d 11544 . . . 4 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)))
3130mpteq2ia 5197 . . 3 (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)))
3210, 31eqtri 2752 . 2 ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∘f − (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)))
33 1red 11151 . . . . 5 (⊤ → 1 ∈ ℝ)
34 chpo1ub 27367 . . . . . 6 (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1)
3534a1i 11 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1))
36 rpre 12936 . . . . . . . . 9 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
37 chpcl 27010 . . . . . . . . 9 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
3836, 37syl 17 . . . . . . . 8 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℝ)
39 rerpdivcl 12959 . . . . . . . 8 (((ψ‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
4038, 39mpancom 688 . . . . . . 7 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
4140recnd 11178 . . . . . 6 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) / 𝑥) ∈ ℂ)
4241adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℂ)
4318, 29subcld 11509 . . . . . 6 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) ∈ ℂ)
4443adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) ∈ ℂ)
4536adantr 480 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
4616, 45remulcld 11180 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · 𝑥) ∈ ℝ)
47 nndivre 12203 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑥 / 𝑛) ∈ ℝ)
4836, 12, 47syl2an 596 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
49 reflcl 13734 . . . . . . . . . . . . 13 ((𝑥 / 𝑛) ∈ ℝ → (⌊‘(𝑥 / 𝑛)) ∈ ℝ)
5048, 49syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑛)) ∈ ℝ)
5115, 50remulcld 11180 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛))) ∈ ℝ)
5246, 51resubcld 11582 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))) ∈ ℝ)
5348, 50resubcld 11582 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ∈ ℝ)
54 1red 11151 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
55 vmage0 27007 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 0 ≤ (Λ‘𝑛))
5613, 55syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (Λ‘𝑛))
57 fracle1 13741 . . . . . . . . . . . . 13 ((𝑥 / 𝑛) ∈ ℝ → ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ≤ 1)
5848, 57syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ≤ 1)
5953, 54, 15, 56, 58lemul2ad 12099 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) ≤ ((Λ‘𝑛) · 1))
6015recnd 11178 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℂ)
6148recnd 11178 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℂ)
6250recnd 11178 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑛)) ∈ ℂ)
6360, 61, 62subdid 11610 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) = (((Λ‘𝑛) · (𝑥 / 𝑛)) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))))
64 rpcn 12938 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
6564adantr 480 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℂ)
6613nnrpd 12969 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
67 rpcnne0 12946 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℝ+ → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
6866, 67syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
69 div23 11832 . . . . . . . . . . . . . . 15 (((Λ‘𝑛) ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((Λ‘𝑛) · 𝑥) / 𝑛) = (((Λ‘𝑛) / 𝑛) · 𝑥))
70 divass 11831 . . . . . . . . . . . . . . 15 (((Λ‘𝑛) ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((Λ‘𝑛) · 𝑥) / 𝑛) = ((Λ‘𝑛) · (𝑥 / 𝑛)))
7169, 70eqtr3d 2766 . . . . . . . . . . . . . 14 (((Λ‘𝑛) ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((Λ‘𝑛) / 𝑛) · 𝑥) = ((Λ‘𝑛) · (𝑥 / 𝑛)))
7260, 65, 68, 71syl3anc 1373 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · 𝑥) = ((Λ‘𝑛) · (𝑥 / 𝑛)))
7372oveq1d 7384 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))) = (((Λ‘𝑛) · (𝑥 / 𝑛)) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))))
7463, 73eqtr4d 2767 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) = ((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))))
7560mulridd 11167 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · 1) = (Λ‘𝑛))
7659, 74, 753brtr3d 5133 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))) ≤ (Λ‘𝑛))
7711, 52, 15, 76fsumle 15741 . . . . . . . . 9 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛))
7816recnd 11178 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
7911, 64, 78fsummulc1 15727 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · 𝑥))
80 logfac2 27104 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (log‘(!‘(⌊‘𝑥))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛))))
8121, 80syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (log‘(!‘(⌊‘𝑥))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛))))
8279, 81oveq12d 7387 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · 𝑥) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))))
8346recnd 11178 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · 𝑥) ∈ ℂ)
8451recnd 11178 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛))) ∈ ℂ)
8511, 83, 84fsumsub 15730 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · 𝑥) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))))
8682, 85eqtr4d 2767 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))))
87 chpval 27008 . . . . . . . . . 10 (𝑥 ∈ ℝ → (ψ‘𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛))
8836, 87syl 17 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (ψ‘𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛))
8977, 86, 883brtr4d 5134 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) ≤ (ψ‘𝑥))
9017, 36remulcld 11180 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) ∈ ℝ)
9190, 26resubcld 11582 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) ∈ ℝ)
92 rpregt0 12942 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
93 lediv1 12024 . . . . . . . . 9 ((((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) ∈ ℝ ∧ (ψ‘𝑥) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) ≤ (ψ‘𝑥) ↔ (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) ≤ ((ψ‘𝑥) / 𝑥)))
9491, 38, 92, 93syl3anc 1373 . . . . . . . 8 (𝑥 ∈ ℝ+ → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) ≤ (ψ‘𝑥) ↔ (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) ≤ ((ψ‘𝑥) / 𝑥)))
9589, 94mpbid 232 . . . . . . 7 (𝑥 ∈ ℝ+ → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) ≤ ((ψ‘𝑥) / 𝑥))
9690recnd 11178 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) ∈ ℂ)
9726recnd 11178 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (log‘(!‘(⌊‘𝑥))) ∈ ℂ)
98 rpcnne0 12946 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
99 divsubdir 11852 . . . . . . . . . . 11 (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) ∈ ℂ ∧ (log‘(!‘(⌊‘𝑥))) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) = (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) / 𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))
10096, 97, 98, 99syl3anc 1373 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) = (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) / 𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))
101 rpne0 12944 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ≠ 0)
10218, 64, 101divcan4d 11940 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) / 𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛))
103102oveq1d 7384 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) / 𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))
104100, 103eqtr2d 2765 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) = (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥))
105104fveq2d 6844 . . . . . . . 8 (𝑥 ∈ ℝ+ → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) = (abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥)))
106 rerpdivcl 12959 . . . . . . . . . 10 ((((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) ∈ ℝ)
10791, 106mpancom 688 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) ∈ ℝ)
108 flle 13737 . . . . . . . . . . . . . . . 16 ((𝑥 / 𝑛) ∈ ℝ → (⌊‘(𝑥 / 𝑛)) ≤ (𝑥 / 𝑛))
10948, 108syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑛)) ≤ (𝑥 / 𝑛))
11048, 50subge0d 11744 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (0 ≤ ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ↔ (⌊‘(𝑥 / 𝑛)) ≤ (𝑥 / 𝑛)))
111109, 110mpbird 257 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))))
11215, 53, 56, 111mulge0d 11731 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((Λ‘𝑛) · ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))))
113112, 74breqtrd 5128 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))))
11411, 52, 113fsumge0 15737 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))))
115114, 86breqtrrd 5130 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → 0 ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))))
116 divge0 12028 . . . . . . . . . 10 (((((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) ∈ ℝ ∧ 0 ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥))))) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → 0 ≤ (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥))
11791, 115, 92, 116syl21anc 837 . . . . . . . . 9 (𝑥 ∈ ℝ+ → 0 ≤ (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥))
118107, 117absidd 15365 . . . . . . . 8 (𝑥 ∈ ℝ+ → (abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥)) = (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥))
119105, 118eqtrd 2764 . . . . . . 7 (𝑥 ∈ ℝ+ → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) = (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥))
120 chpge0 27012 . . . . . . . . . 10 (𝑥 ∈ ℝ → 0 ≤ (ψ‘𝑥))
12136, 120syl 17 . . . . . . . . 9 (𝑥 ∈ ℝ+ → 0 ≤ (ψ‘𝑥))
122 divge0 12028 . . . . . . . . 9 ((((ψ‘𝑥) ∈ ℝ ∧ 0 ≤ (ψ‘𝑥)) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → 0 ≤ ((ψ‘𝑥) / 𝑥))
12338, 121, 92, 122syl21anc 837 . . . . . . . 8 (𝑥 ∈ ℝ+ → 0 ≤ ((ψ‘𝑥) / 𝑥))
12440, 123absidd 15365 . . . . . . 7 (𝑥 ∈ ℝ+ → (abs‘((ψ‘𝑥) / 𝑥)) = ((ψ‘𝑥) / 𝑥))
12595, 119, 1243brtr4d 5134 . . . . . 6 (𝑥 ∈ ℝ+ → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ≤ (abs‘((ψ‘𝑥) / 𝑥)))
126125ad2antrl 728 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ≤ (abs‘((ψ‘𝑥) / 𝑥)))
12733, 35, 42, 44, 126o1le 15595 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∈ 𝑂(1))
128127mptru 1547 . . 3 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∈ 𝑂(1)
129 logfacrlim 27111 . . . 4 (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ⇝𝑟 1
130 rlimo1 15559 . . . 4 ((𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ⇝𝑟 1 → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∈ 𝑂(1))
131129, 130ax-mp 5 . . 3 (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∈ 𝑂(1)
132 o1sub 15558 . . 3 (((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∈ 𝑂(1) ∧ (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∈ 𝑂(1)) → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∘f − (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))) ∈ 𝑂(1))
133128, 131, 132mp2an 692 . 2 ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∘f − (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))) ∈ 𝑂(1)
13432, 133eqeltrri 2825 1 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  wne 2925  Vcvv 3444   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  f cof 7631  cc 11042  cr 11043  0cc0 11044  1c1 11045   · cmul 11049   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  0cn0 12418  +crp 12927  ...cfz 13444  cfl 13728  !cfa 14214  abscabs 15176  𝑟 crli 15427  𝑂(1)co1 15428  Σcsu 15628  logclog 26439  Λcvma 26978  ψcchp 26979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-o1 15432  df-lo1 15433  df-sum 15629  df-ef 16009  df-e 16010  df-sin 16011  df-cos 16012  df-pi 16014  df-dvds 16199  df-gcd 16441  df-prm 16618  df-pc 16784  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-cmp 23250  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744  df-log 26441  df-cxp 26442  df-cht 26983  df-vma 26984  df-chp 26985  df-ppi 26986
This theorem is referenced by:  vmadivsumb  27370  rpvmasumlem  27374  vmalogdivsum2  27425  vmalogdivsum  27426  2vmadivsumlem  27427  selberg3lem1  27444  selberg4lem1  27447  pntrsumo1  27452  selbergr  27455
  Copyright terms: Public domain W3C validator