MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vmadivsum Structured version   Visualization version   GIF version

Theorem vmadivsum 27526
Description: The sum of the von Mangoldt function over 𝑛 is asymptotic to log𝑥 + 𝑂(1). Equation 9.2.13 of [Shapiro], p. 331. (Contributed by Mario Carneiro, 16-Apr-2016.)
Assertion
Ref Expression
vmadivsum (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1)
Distinct variable group:   𝑥,𝑛

Proof of Theorem vmadivsum
StepHypRef Expression
1 reex 11246 . . . . . . 7 ℝ ∈ V
2 rpssre 13042 . . . . . . 7 + ⊆ ℝ
31, 2ssexi 5322 . . . . . 6 + ∈ V
43a1i 11 . . . . 5 (⊤ → ℝ+ ∈ V)
5 ovexd 7466 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) ∈ V)
6 ovexd 7466 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) ∈ V)
7 eqidd 2738 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))))
8 eqidd 2738 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))))
94, 5, 6, 7, 8offval2 7717 . . . 4 (⊤ → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∘f − (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))))
109mptru 1547 . . 3 ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∘f − (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))))
11 fzfid 14014 . . . . . . 7 (𝑥 ∈ ℝ+ → (1...(⌊‘𝑥)) ∈ Fin)
12 elfznn 13593 . . . . . . . . . 10 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
1312adantl 481 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
14 vmacl 27161 . . . . . . . . 9 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
1513, 14syl 17 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
1615, 13nndivred 12320 . . . . . . 7 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
1711, 16fsumrecl 15770 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℝ)
1817recnd 11289 . . . . 5 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℂ)
19 relogcl 26617 . . . . . 6 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
2019recnd 11289 . . . . 5 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℂ)
21 rprege0 13050 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
22 flge0nn0 13860 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
23 faccl 14322 . . . . . . . . . 10 ((⌊‘𝑥) ∈ ℕ0 → (!‘(⌊‘𝑥)) ∈ ℕ)
2421, 22, 233syl 18 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (!‘(⌊‘𝑥)) ∈ ℕ)
2524nnrpd 13075 . . . . . . . 8 (𝑥 ∈ ℝ+ → (!‘(⌊‘𝑥)) ∈ ℝ+)
2625relogcld 26665 . . . . . . 7 (𝑥 ∈ ℝ+ → (log‘(!‘(⌊‘𝑥))) ∈ ℝ)
27 rerpdivcl 13065 . . . . . . 7 (((log‘(!‘(⌊‘𝑥))) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((log‘(!‘(⌊‘𝑥))) / 𝑥) ∈ ℝ)
2826, 27mpancom 688 . . . . . 6 (𝑥 ∈ ℝ+ → ((log‘(!‘(⌊‘𝑥))) / 𝑥) ∈ ℝ)
2928recnd 11289 . . . . 5 (𝑥 ∈ ℝ+ → ((log‘(!‘(⌊‘𝑥))) / 𝑥) ∈ ℂ)
3018, 20, 29nnncan2d 11655 . . . 4 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)))
3130mpteq2ia 5245 . . 3 (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)))
3210, 31eqtri 2765 . 2 ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∘f − (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)))
33 1red 11262 . . . . 5 (⊤ → 1 ∈ ℝ)
34 chpo1ub 27524 . . . . . 6 (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1)
3534a1i 11 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1))
36 rpre 13043 . . . . . . . . 9 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
37 chpcl 27167 . . . . . . . . 9 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
3836, 37syl 17 . . . . . . . 8 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℝ)
39 rerpdivcl 13065 . . . . . . . 8 (((ψ‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
4038, 39mpancom 688 . . . . . . 7 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
4140recnd 11289 . . . . . 6 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) / 𝑥) ∈ ℂ)
4241adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℂ)
4318, 29subcld 11620 . . . . . 6 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) ∈ ℂ)
4443adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) ∈ ℂ)
4536adantr 480 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
4616, 45remulcld 11291 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · 𝑥) ∈ ℝ)
47 nndivre 12307 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑥 / 𝑛) ∈ ℝ)
4836, 12, 47syl2an 596 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
49 reflcl 13836 . . . . . . . . . . . . 13 ((𝑥 / 𝑛) ∈ ℝ → (⌊‘(𝑥 / 𝑛)) ∈ ℝ)
5048, 49syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑛)) ∈ ℝ)
5115, 50remulcld 11291 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛))) ∈ ℝ)
5246, 51resubcld 11691 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))) ∈ ℝ)
5348, 50resubcld 11691 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ∈ ℝ)
54 1red 11262 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
55 vmage0 27164 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 0 ≤ (Λ‘𝑛))
5613, 55syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (Λ‘𝑛))
57 fracle1 13843 . . . . . . . . . . . . 13 ((𝑥 / 𝑛) ∈ ℝ → ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ≤ 1)
5848, 57syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ≤ 1)
5953, 54, 15, 56, 58lemul2ad 12208 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) ≤ ((Λ‘𝑛) · 1))
6015recnd 11289 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℂ)
6148recnd 11289 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℂ)
6250recnd 11289 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑛)) ∈ ℂ)
6360, 61, 62subdid 11719 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) = (((Λ‘𝑛) · (𝑥 / 𝑛)) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))))
64 rpcn 13045 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
6564adantr 480 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℂ)
6613nnrpd 13075 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
67 rpcnne0 13053 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℝ+ → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
6866, 67syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
69 div23 11941 . . . . . . . . . . . . . . 15 (((Λ‘𝑛) ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((Λ‘𝑛) · 𝑥) / 𝑛) = (((Λ‘𝑛) / 𝑛) · 𝑥))
70 divass 11940 . . . . . . . . . . . . . . 15 (((Λ‘𝑛) ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((Λ‘𝑛) · 𝑥) / 𝑛) = ((Λ‘𝑛) · (𝑥 / 𝑛)))
7169, 70eqtr3d 2779 . . . . . . . . . . . . . 14 (((Λ‘𝑛) ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((Λ‘𝑛) / 𝑛) · 𝑥) = ((Λ‘𝑛) · (𝑥 / 𝑛)))
7260, 65, 68, 71syl3anc 1373 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · 𝑥) = ((Λ‘𝑛) · (𝑥 / 𝑛)))
7372oveq1d 7446 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))) = (((Λ‘𝑛) · (𝑥 / 𝑛)) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))))
7463, 73eqtr4d 2780 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) = ((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))))
7560mulridd 11278 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · 1) = (Λ‘𝑛))
7659, 74, 753brtr3d 5174 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))) ≤ (Λ‘𝑛))
7711, 52, 15, 76fsumle 15835 . . . . . . . . 9 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛))
7816recnd 11289 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
7911, 64, 78fsummulc1 15821 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · 𝑥))
80 logfac2 27261 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (log‘(!‘(⌊‘𝑥))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛))))
8121, 80syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (log‘(!‘(⌊‘𝑥))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛))))
8279, 81oveq12d 7449 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · 𝑥) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))))
8346recnd 11289 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · 𝑥) ∈ ℂ)
8451recnd 11289 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛))) ∈ ℂ)
8511, 83, 84fsumsub 15824 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · 𝑥) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))))
8682, 85eqtr4d 2780 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))))
87 chpval 27165 . . . . . . . . . 10 (𝑥 ∈ ℝ → (ψ‘𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛))
8836, 87syl 17 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (ψ‘𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛))
8977, 86, 883brtr4d 5175 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) ≤ (ψ‘𝑥))
9017, 36remulcld 11291 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) ∈ ℝ)
9190, 26resubcld 11691 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) ∈ ℝ)
92 rpregt0 13049 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
93 lediv1 12133 . . . . . . . . 9 ((((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) ∈ ℝ ∧ (ψ‘𝑥) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) ≤ (ψ‘𝑥) ↔ (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) ≤ ((ψ‘𝑥) / 𝑥)))
9491, 38, 92, 93syl3anc 1373 . . . . . . . 8 (𝑥 ∈ ℝ+ → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) ≤ (ψ‘𝑥) ↔ (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) ≤ ((ψ‘𝑥) / 𝑥)))
9589, 94mpbid 232 . . . . . . 7 (𝑥 ∈ ℝ+ → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) ≤ ((ψ‘𝑥) / 𝑥))
9690recnd 11289 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) ∈ ℂ)
9726recnd 11289 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (log‘(!‘(⌊‘𝑥))) ∈ ℂ)
98 rpcnne0 13053 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
99 divsubdir 11961 . . . . . . . . . . 11 (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) ∈ ℂ ∧ (log‘(!‘(⌊‘𝑥))) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) = (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) / 𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))
10096, 97, 98, 99syl3anc 1373 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) = (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) / 𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))
101 rpne0 13051 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ≠ 0)
10218, 64, 101divcan4d 12049 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) / 𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛))
103102oveq1d 7446 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) / 𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))
104100, 103eqtr2d 2778 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) = (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥))
105104fveq2d 6910 . . . . . . . 8 (𝑥 ∈ ℝ+ → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) = (abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥)))
106 rerpdivcl 13065 . . . . . . . . . 10 ((((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) ∈ ℝ)
10791, 106mpancom 688 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) ∈ ℝ)
108 flle 13839 . . . . . . . . . . . . . . . 16 ((𝑥 / 𝑛) ∈ ℝ → (⌊‘(𝑥 / 𝑛)) ≤ (𝑥 / 𝑛))
10948, 108syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑛)) ≤ (𝑥 / 𝑛))
11048, 50subge0d 11853 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (0 ≤ ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ↔ (⌊‘(𝑥 / 𝑛)) ≤ (𝑥 / 𝑛)))
111109, 110mpbird 257 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))))
11215, 53, 56, 111mulge0d 11840 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((Λ‘𝑛) · ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))))
113112, 74breqtrd 5169 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))))
11411, 52, 113fsumge0 15831 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))))
115114, 86breqtrrd 5171 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → 0 ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))))
116 divge0 12137 . . . . . . . . . 10 (((((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) ∈ ℝ ∧ 0 ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥))))) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → 0 ≤ (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥))
11791, 115, 92, 116syl21anc 838 . . . . . . . . 9 (𝑥 ∈ ℝ+ → 0 ≤ (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥))
118107, 117absidd 15461 . . . . . . . 8 (𝑥 ∈ ℝ+ → (abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥)) = (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥))
119105, 118eqtrd 2777 . . . . . . 7 (𝑥 ∈ ℝ+ → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) = (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥))
120 chpge0 27169 . . . . . . . . . 10 (𝑥 ∈ ℝ → 0 ≤ (ψ‘𝑥))
12136, 120syl 17 . . . . . . . . 9 (𝑥 ∈ ℝ+ → 0 ≤ (ψ‘𝑥))
122 divge0 12137 . . . . . . . . 9 ((((ψ‘𝑥) ∈ ℝ ∧ 0 ≤ (ψ‘𝑥)) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → 0 ≤ ((ψ‘𝑥) / 𝑥))
12338, 121, 92, 122syl21anc 838 . . . . . . . 8 (𝑥 ∈ ℝ+ → 0 ≤ ((ψ‘𝑥) / 𝑥))
12440, 123absidd 15461 . . . . . . 7 (𝑥 ∈ ℝ+ → (abs‘((ψ‘𝑥) / 𝑥)) = ((ψ‘𝑥) / 𝑥))
12595, 119, 1243brtr4d 5175 . . . . . 6 (𝑥 ∈ ℝ+ → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ≤ (abs‘((ψ‘𝑥) / 𝑥)))
126125ad2antrl 728 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ≤ (abs‘((ψ‘𝑥) / 𝑥)))
12733, 35, 42, 44, 126o1le 15689 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∈ 𝑂(1))
128127mptru 1547 . . 3 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∈ 𝑂(1)
129 logfacrlim 27268 . . . 4 (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ⇝𝑟 1
130 rlimo1 15653 . . . 4 ((𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ⇝𝑟 1 → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∈ 𝑂(1))
131129, 130ax-mp 5 . . 3 (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∈ 𝑂(1)
132 o1sub 15652 . . 3 (((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∈ 𝑂(1) ∧ (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∈ 𝑂(1)) → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∘f − (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))) ∈ 𝑂(1))
133128, 131, 132mp2an 692 . 2 ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∘f − (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))) ∈ 𝑂(1)
13432, 133eqeltrri 2838 1 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1540  wtru 1541  wcel 2108  wne 2940  Vcvv 3480   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  f cof 7695  cc 11153  cr 11154  0cc0 11155  1c1 11156   · cmul 11160   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  cn 12266  0cn0 12526  +crp 13034  ...cfz 13547  cfl 13830  !cfa 14312  abscabs 15273  𝑟 crli 15521  𝑂(1)co1 15522  Σcsu 15722  logclog 26596  Λcvma 27135  ψcchp 27136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-o1 15526  df-lo1 15527  df-sum 15723  df-ef 16103  df-e 16104  df-sin 16105  df-cos 16106  df-pi 16108  df-dvds 16291  df-gcd 16532  df-prm 16709  df-pc 16875  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-cxp 26599  df-cht 27140  df-vma 27141  df-chp 27142  df-ppi 27143
This theorem is referenced by:  vmadivsumb  27527  rpvmasumlem  27531  vmalogdivsum2  27582  vmalogdivsum  27583  2vmadivsumlem  27584  selberg3lem1  27601  selberg4lem1  27604  pntrsumo1  27609  selbergr  27612
  Copyright terms: Public domain W3C validator