MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vmadivsum Structured version   Visualization version   GIF version

Theorem vmadivsum 26070
Description: The sum of the von Mangoldt function over 𝑛 is asymptotic to log𝑥 + 𝑂(1). Equation 9.2.13 of [Shapiro], p. 331. (Contributed by Mario Carneiro, 16-Apr-2016.)
Assertion
Ref Expression
vmadivsum (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1)
Distinct variable group:   𝑥,𝑛

Proof of Theorem vmadivsum
StepHypRef Expression
1 reex 10621 . . . . . . 7 ℝ ∈ V
2 rpssre 12388 . . . . . . 7 + ⊆ ℝ
31, 2ssexi 5193 . . . . . 6 + ∈ V
43a1i 11 . . . . 5 (⊤ → ℝ+ ∈ V)
5 ovexd 7174 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) ∈ V)
6 ovexd 7174 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) ∈ V)
7 eqidd 2802 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))))
8 eqidd 2802 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))))
94, 5, 6, 7, 8offval2 7410 . . . 4 (⊤ → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∘f − (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))))
109mptru 1545 . . 3 ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∘f − (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))))
11 fzfid 13340 . . . . . . 7 (𝑥 ∈ ℝ+ → (1...(⌊‘𝑥)) ∈ Fin)
12 elfznn 12935 . . . . . . . . . 10 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
1312adantl 485 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
14 vmacl 25707 . . . . . . . . 9 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
1513, 14syl 17 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
1615, 13nndivred 11683 . . . . . . 7 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
1711, 16fsumrecl 15087 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℝ)
1817recnd 10662 . . . . 5 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℂ)
19 relogcl 25171 . . . . . 6 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
2019recnd 10662 . . . . 5 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℂ)
21 rprege0 12396 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
22 flge0nn0 13189 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
23 faccl 13643 . . . . . . . . . 10 ((⌊‘𝑥) ∈ ℕ0 → (!‘(⌊‘𝑥)) ∈ ℕ)
2421, 22, 233syl 18 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (!‘(⌊‘𝑥)) ∈ ℕ)
2524nnrpd 12421 . . . . . . . 8 (𝑥 ∈ ℝ+ → (!‘(⌊‘𝑥)) ∈ ℝ+)
2625relogcld 25218 . . . . . . 7 (𝑥 ∈ ℝ+ → (log‘(!‘(⌊‘𝑥))) ∈ ℝ)
27 rerpdivcl 12411 . . . . . . 7 (((log‘(!‘(⌊‘𝑥))) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((log‘(!‘(⌊‘𝑥))) / 𝑥) ∈ ℝ)
2826, 27mpancom 687 . . . . . 6 (𝑥 ∈ ℝ+ → ((log‘(!‘(⌊‘𝑥))) / 𝑥) ∈ ℝ)
2928recnd 10662 . . . . 5 (𝑥 ∈ ℝ+ → ((log‘(!‘(⌊‘𝑥))) / 𝑥) ∈ ℂ)
3018, 20, 29nnncan2d 11025 . . . 4 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)))
3130mpteq2ia 5124 . . 3 (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) − ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)))
3210, 31eqtri 2824 . 2 ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∘f − (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)))
33 1red 10635 . . . . 5 (⊤ → 1 ∈ ℝ)
34 chpo1ub 26068 . . . . . 6 (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1)
3534a1i 11 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1))
36 rpre 12389 . . . . . . . . 9 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
37 chpcl 25713 . . . . . . . . 9 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
3836, 37syl 17 . . . . . . . 8 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℝ)
39 rerpdivcl 12411 . . . . . . . 8 (((ψ‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
4038, 39mpancom 687 . . . . . . 7 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
4140recnd 10662 . . . . . 6 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) / 𝑥) ∈ ℂ)
4241adantl 485 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℂ)
4318, 29subcld 10990 . . . . . 6 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) ∈ ℂ)
4443adantl 485 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) ∈ ℂ)
4536adantr 484 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
4616, 45remulcld 10664 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · 𝑥) ∈ ℝ)
47 nndivre 11670 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑥 / 𝑛) ∈ ℝ)
4836, 12, 47syl2an 598 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
49 reflcl 13165 . . . . . . . . . . . . 13 ((𝑥 / 𝑛) ∈ ℝ → (⌊‘(𝑥 / 𝑛)) ∈ ℝ)
5048, 49syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑛)) ∈ ℝ)
5115, 50remulcld 10664 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛))) ∈ ℝ)
5246, 51resubcld 11061 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))) ∈ ℝ)
5348, 50resubcld 11061 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ∈ ℝ)
54 1red 10635 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
55 vmage0 25710 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 0 ≤ (Λ‘𝑛))
5613, 55syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (Λ‘𝑛))
57 fracle1 13172 . . . . . . . . . . . . 13 ((𝑥 / 𝑛) ∈ ℝ → ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ≤ 1)
5848, 57syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ≤ 1)
5953, 54, 15, 56, 58lemul2ad 11573 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) ≤ ((Λ‘𝑛) · 1))
6015recnd 10662 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℂ)
6148recnd 10662 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℂ)
6250recnd 10662 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑛)) ∈ ℂ)
6360, 61, 62subdid 11089 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) = (((Λ‘𝑛) · (𝑥 / 𝑛)) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))))
64 rpcn 12391 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
6564adantr 484 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℂ)
6613nnrpd 12421 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
67 rpcnne0 12399 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℝ+ → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
6866, 67syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
69 div23 11310 . . . . . . . . . . . . . . 15 (((Λ‘𝑛) ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((Λ‘𝑛) · 𝑥) / 𝑛) = (((Λ‘𝑛) / 𝑛) · 𝑥))
70 divass 11309 . . . . . . . . . . . . . . 15 (((Λ‘𝑛) ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((Λ‘𝑛) · 𝑥) / 𝑛) = ((Λ‘𝑛) · (𝑥 / 𝑛)))
7169, 70eqtr3d 2838 . . . . . . . . . . . . . 14 (((Λ‘𝑛) ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((Λ‘𝑛) / 𝑛) · 𝑥) = ((Λ‘𝑛) · (𝑥 / 𝑛)))
7260, 65, 68, 71syl3anc 1368 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · 𝑥) = ((Λ‘𝑛) · (𝑥 / 𝑛)))
7372oveq1d 7154 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))) = (((Λ‘𝑛) · (𝑥 / 𝑛)) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))))
7463, 73eqtr4d 2839 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) = ((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))))
7560mulid1d 10651 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · 1) = (Λ‘𝑛))
7659, 74, 753brtr3d 5064 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))) ≤ (Λ‘𝑛))
7711, 52, 15, 76fsumle 15150 . . . . . . . . 9 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛))
7816recnd 10662 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
7911, 64, 78fsummulc1 15136 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · 𝑥))
80 logfac2 25805 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (log‘(!‘(⌊‘𝑥))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛))))
8121, 80syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (log‘(!‘(⌊‘𝑥))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛))))
8279, 81oveq12d 7157 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · 𝑥) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))))
8346recnd 10662 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · 𝑥) ∈ ℂ)
8451recnd 10662 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛))) ∈ ℂ)
8511, 83, 84fsumsub 15139 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · 𝑥) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))))
8682, 85eqtr4d 2839 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))))
87 chpval 25711 . . . . . . . . . 10 (𝑥 ∈ ℝ → (ψ‘𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛))
8836, 87syl 17 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (ψ‘𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛))
8977, 86, 883brtr4d 5065 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) ≤ (ψ‘𝑥))
9017, 36remulcld 10664 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) ∈ ℝ)
9190, 26resubcld 11061 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) ∈ ℝ)
92 rpregt0 12395 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
93 lediv1 11498 . . . . . . . . 9 ((((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) ∈ ℝ ∧ (ψ‘𝑥) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) ≤ (ψ‘𝑥) ↔ (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) ≤ ((ψ‘𝑥) / 𝑥)))
9491, 38, 92, 93syl3anc 1368 . . . . . . . 8 (𝑥 ∈ ℝ+ → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) ≤ (ψ‘𝑥) ↔ (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) ≤ ((ψ‘𝑥) / 𝑥)))
9589, 94mpbid 235 . . . . . . 7 (𝑥 ∈ ℝ+ → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) ≤ ((ψ‘𝑥) / 𝑥))
9690recnd 10662 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) ∈ ℂ)
9726recnd 10662 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (log‘(!‘(⌊‘𝑥))) ∈ ℂ)
98 rpcnne0 12399 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
99 divsubdir 11327 . . . . . . . . . . 11 (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) ∈ ℂ ∧ (log‘(!‘(⌊‘𝑥))) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) = (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) / 𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))
10096, 97, 98, 99syl3anc 1368 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) = (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) / 𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))
101 rpne0 12397 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ≠ 0)
10218, 64, 101divcan4d 11415 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) / 𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛))
103102oveq1d 7154 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) / 𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))
104100, 103eqtr2d 2837 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)) = (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥))
105104fveq2d 6653 . . . . . . . 8 (𝑥 ∈ ℝ+ → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) = (abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥)))
106 rerpdivcl 12411 . . . . . . . . . 10 ((((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) ∈ ℝ)
10791, 106mpancom 687 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥) ∈ ℝ)
108 flle 13168 . . . . . . . . . . . . . . . 16 ((𝑥 / 𝑛) ∈ ℝ → (⌊‘(𝑥 / 𝑛)) ≤ (𝑥 / 𝑛))
10948, 108syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑛)) ≤ (𝑥 / 𝑛))
11048, 50subge0d 11223 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (0 ≤ ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ↔ (⌊‘(𝑥 / 𝑛)) ≤ (𝑥 / 𝑛)))
111109, 110mpbird 260 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))))
11215, 53, 56, 111mulge0d 11210 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((Λ‘𝑛) · ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))))
113112, 74breqtrd 5059 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))))
11411, 52, 113fsumge0 15146 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))))
115114, 86breqtrrd 5061 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → 0 ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))))
116 divge0 11502 . . . . . . . . . 10 (((((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) ∈ ℝ ∧ 0 ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥))))) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → 0 ≤ (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥))
11791, 115, 92, 116syl21anc 836 . . . . . . . . 9 (𝑥 ∈ ℝ+ → 0 ≤ (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥))
118107, 117absidd 14778 . . . . . . . 8 (𝑥 ∈ ℝ+ → (abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥)) = (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥))
119105, 118eqtrd 2836 . . . . . . 7 (𝑥 ∈ ℝ+ → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) = (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) − (log‘(!‘(⌊‘𝑥)))) / 𝑥))
120 chpge0 25715 . . . . . . . . . 10 (𝑥 ∈ ℝ → 0 ≤ (ψ‘𝑥))
12136, 120syl 17 . . . . . . . . 9 (𝑥 ∈ ℝ+ → 0 ≤ (ψ‘𝑥))
122 divge0 11502 . . . . . . . . 9 ((((ψ‘𝑥) ∈ ℝ ∧ 0 ≤ (ψ‘𝑥)) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → 0 ≤ ((ψ‘𝑥) / 𝑥))
12338, 121, 92, 122syl21anc 836 . . . . . . . 8 (𝑥 ∈ ℝ+ → 0 ≤ ((ψ‘𝑥) / 𝑥))
12440, 123absidd 14778 . . . . . . 7 (𝑥 ∈ ℝ+ → (abs‘((ψ‘𝑥) / 𝑥)) = ((ψ‘𝑥) / 𝑥))
12595, 119, 1243brtr4d 5065 . . . . . 6 (𝑥 ∈ ℝ+ → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ≤ (abs‘((ψ‘𝑥) / 𝑥)))
126125ad2antrl 727 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ≤ (abs‘((ψ‘𝑥) / 𝑥)))
12733, 35, 42, 44, 126o1le 15005 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∈ 𝑂(1))
128127mptru 1545 . . 3 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∈ 𝑂(1)
129 logfacrlim 25812 . . . 4 (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ⇝𝑟 1
130 rlimo1 14969 . . . 4 ((𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ⇝𝑟 1 → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∈ 𝑂(1))
131129, 130ax-mp 5 . . 3 (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∈ 𝑂(1)
132 o1sub 14968 . . 3 (((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∈ 𝑂(1) ∧ (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∈ 𝑂(1)) → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∘f − (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))) ∈ 𝑂(1))
133128, 131, 132mp2an 691 . 2 ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∘f − (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − ((log‘(!‘(⌊‘𝑥))) / 𝑥)))) ∈ 𝑂(1)
13432, 133eqeltrri 2890 1 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1084   = wceq 1538  wtru 1539  wcel 2112  wne 2990  Vcvv 3444   class class class wbr 5033  cmpt 5113  cfv 6328  (class class class)co 7139  f cof 7391  cc 10528  cr 10529  0cc0 10530  1c1 10531   · cmul 10535   < clt 10668  cle 10669  cmin 10863   / cdiv 11290  cn 11629  0cn0 11889  +crp 12381  ...cfz 12889  cfl 13159  !cfa 13633  abscabs 14589  𝑟 crli 14838  𝑂(1)co1 14839  Σcsu 15038  logclog 25150  Λcvma 25681  ψcchp 25682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-xnn0 11960  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-fac 13634  df-bc 13663  df-hash 13691  df-shft 14422  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-limsup 14824  df-clim 14841  df-rlim 14842  df-o1 14843  df-lo1 14844  df-sum 15039  df-ef 15417  df-e 15418  df-sin 15419  df-cos 15420  df-pi 15422  df-dvds 15604  df-gcd 15838  df-prm 16010  df-pc 16168  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-starv 16576  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-hom 16585  df-cco 16586  df-rest 16692  df-topn 16693  df-0g 16711  df-gsum 16712  df-topgen 16713  df-pt 16714  df-prds 16717  df-xrs 16771  df-qtop 16776  df-imas 16777  df-xps 16779  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-submnd 17953  df-mulg 18221  df-cntz 18443  df-cmn 18904  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-fbas 20092  df-fg 20093  df-cnfld 20096  df-top 21503  df-topon 21520  df-topsp 21542  df-bases 21555  df-cld 21628  df-ntr 21629  df-cls 21630  df-nei 21707  df-lp 21745  df-perf 21746  df-cn 21836  df-cnp 21837  df-haus 21924  df-cmp 21996  df-tx 22171  df-hmeo 22364  df-fil 22455  df-fm 22547  df-flim 22548  df-flf 22549  df-xms 22931  df-ms 22932  df-tms 22933  df-cncf 23487  df-limc 24473  df-dv 24474  df-log 25152  df-cxp 25153  df-cht 25686  df-vma 25687  df-chp 25688  df-ppi 25689
This theorem is referenced by:  vmadivsumb  26071  rpvmasumlem  26075  vmalogdivsum2  26126  vmalogdivsum  26127  2vmadivsumlem  26128  selberg3lem1  26145  selberg4lem1  26148  pntrsumo1  26153  selbergr  26156
  Copyright terms: Public domain W3C validator