Proof of Theorem vmadivsum
Step | Hyp | Ref
| Expression |
1 | | reex 10963 |
. . . . . . 7
⊢ ℝ
∈ V |
2 | | rpssre 12736 |
. . . . . . 7
⊢
ℝ+ ⊆ ℝ |
3 | 1, 2 | ssexi 5250 |
. . . . . 6
⊢
ℝ+ ∈ V |
4 | 3 | a1i 11 |
. . . . 5
⊢ (⊤
→ ℝ+ ∈ V) |
5 | | ovexd 7306 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) −
((log‘(!‘(⌊‘𝑥))) / 𝑥)) ∈ V) |
6 | | ovexd 7306 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → ((log‘𝑥) −
((log‘(!‘(⌊‘𝑥))) / 𝑥)) ∈ V) |
7 | | eqidd 2741 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) −
((log‘(!‘(⌊‘𝑥))) / 𝑥))) = (𝑥 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) −
((log‘(!‘(⌊‘𝑥))) / 𝑥)))) |
8 | | eqidd 2741 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ ((log‘𝑥) −
((log‘(!‘(⌊‘𝑥))) / 𝑥))) = (𝑥 ∈ ℝ+ ↦
((log‘𝑥) −
((log‘(!‘(⌊‘𝑥))) / 𝑥)))) |
9 | 4, 5, 6, 7, 8 | offval2 7547 |
. . . 4
⊢ (⊤
→ ((𝑥 ∈
ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) −
((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∘f − (𝑥 ∈ ℝ+
↦ ((log‘𝑥)
− ((log‘(!‘(⌊‘𝑥))) / 𝑥)))) = (𝑥 ∈ ℝ+ ↦
((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) −
((log‘(!‘(⌊‘𝑥))) / 𝑥)) − ((log‘𝑥) −
((log‘(!‘(⌊‘𝑥))) / 𝑥))))) |
10 | 9 | mptru 1549 |
. . 3
⊢ ((𝑥 ∈ ℝ+
↦ (Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) −
((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∘f − (𝑥 ∈ ℝ+
↦ ((log‘𝑥)
− ((log‘(!‘(⌊‘𝑥))) / 𝑥)))) = (𝑥 ∈ ℝ+ ↦
((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) −
((log‘(!‘(⌊‘𝑥))) / 𝑥)) − ((log‘𝑥) −
((log‘(!‘(⌊‘𝑥))) / 𝑥)))) |
11 | | fzfid 13691 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ (1...(⌊‘𝑥)) ∈ Fin) |
12 | | elfznn 13284 |
. . . . . . . . . 10
⊢ (𝑛 ∈
(1...(⌊‘𝑥))
→ 𝑛 ∈
ℕ) |
13 | 12 | adantl 482 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℕ) |
14 | | vmacl 26265 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ →
(Λ‘𝑛) ∈
ℝ) |
15 | 13, 14 | syl 17 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (Λ‘𝑛)
∈ ℝ) |
16 | 15, 13 | nndivred 12027 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑛)
/ 𝑛) ∈
ℝ) |
17 | 11, 16 | fsumrecl 15444 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℝ) |
18 | 17 | recnd 11004 |
. . . . 5
⊢ (𝑥 ∈ ℝ+
→ Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℂ) |
19 | | relogcl 25729 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ (log‘𝑥) ∈
ℝ) |
20 | 19 | recnd 11004 |
. . . . 5
⊢ (𝑥 ∈ ℝ+
→ (log‘𝑥) ∈
ℂ) |
21 | | rprege0 12744 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ∈ ℝ
∧ 0 ≤ 𝑥)) |
22 | | flge0nn0 13538 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 0 ≤
𝑥) →
(⌊‘𝑥) ∈
ℕ0) |
23 | | faccl 13995 |
. . . . . . . . . 10
⊢
((⌊‘𝑥)
∈ ℕ0 → (!‘(⌊‘𝑥)) ∈ ℕ) |
24 | 21, 22, 23 | 3syl 18 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (!‘(⌊‘𝑥)) ∈ ℕ) |
25 | 24 | nnrpd 12769 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ (!‘(⌊‘𝑥)) ∈
ℝ+) |
26 | 25 | relogcld 25776 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ (log‘(!‘(⌊‘𝑥))) ∈ ℝ) |
27 | | rerpdivcl 12759 |
. . . . . . 7
⊢
(((log‘(!‘(⌊‘𝑥))) ∈ ℝ ∧ 𝑥 ∈ ℝ+) →
((log‘(!‘(⌊‘𝑥))) / 𝑥) ∈ ℝ) |
28 | 26, 27 | mpancom 685 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ ((log‘(!‘(⌊‘𝑥))) / 𝑥) ∈ ℝ) |
29 | 28 | recnd 11004 |
. . . . 5
⊢ (𝑥 ∈ ℝ+
→ ((log‘(!‘(⌊‘𝑥))) / 𝑥) ∈ ℂ) |
30 | 18, 20, 29 | nnncan2d 11367 |
. . . 4
⊢ (𝑥 ∈ ℝ+
→ ((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) −
((log‘(!‘(⌊‘𝑥))) / 𝑥)) − ((log‘𝑥) −
((log‘(!‘(⌊‘𝑥))) / 𝑥))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) |
31 | 30 | mpteq2ia 5182 |
. . 3
⊢ (𝑥 ∈ ℝ+
↦ ((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) −
((log‘(!‘(⌊‘𝑥))) / 𝑥)) − ((log‘𝑥) −
((log‘(!‘(⌊‘𝑥))) / 𝑥)))) = (𝑥 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) |
32 | 10, 31 | eqtri 2768 |
. 2
⊢ ((𝑥 ∈ ℝ+
↦ (Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) −
((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∘f − (𝑥 ∈ ℝ+
↦ ((log‘𝑥)
− ((log‘(!‘(⌊‘𝑥))) / 𝑥)))) = (𝑥 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) |
33 | | 1red 10977 |
. . . . 5
⊢ (⊤
→ 1 ∈ ℝ) |
34 | | chpo1ub 26626 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
↦ ((ψ‘𝑥) /
𝑥)) ∈
𝑂(1) |
35 | 34 | a1i 11 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1)) |
36 | | rpre 12737 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
37 | | chpcl 26271 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ →
(ψ‘𝑥) ∈
ℝ) |
38 | 36, 37 | syl 17 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ (ψ‘𝑥)
∈ ℝ) |
39 | | rerpdivcl 12759 |
. . . . . . . 8
⊢
(((ψ‘𝑥)
∈ ℝ ∧ 𝑥
∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℝ) |
40 | 38, 39 | mpancom 685 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ ((ψ‘𝑥) /
𝑥) ∈
ℝ) |
41 | 40 | recnd 11004 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ ((ψ‘𝑥) /
𝑥) ∈
ℂ) |
42 | 41 | adantl 482 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℂ) |
43 | 18, 29 | subcld 11332 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ (Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) −
((log‘(!‘(⌊‘𝑥))) / 𝑥)) ∈ ℂ) |
44 | 43 | adantl 482 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) −
((log‘(!‘(⌊‘𝑥))) / 𝑥)) ∈ ℂ) |
45 | 36 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑥 ∈
ℝ) |
46 | 16, 45 | remulcld 11006 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((Λ‘𝑛)
/ 𝑛) · 𝑥) ∈
ℝ) |
47 | | nndivre 12014 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑥 / 𝑛) ∈ ℝ) |
48 | 36, 12, 47 | syl2an 596 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑛) ∈
ℝ) |
49 | | reflcl 13514 |
. . . . . . . . . . . . 13
⊢ ((𝑥 / 𝑛) ∈ ℝ → (⌊‘(𝑥 / 𝑛)) ∈ ℝ) |
50 | 48, 49 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (⌊‘(𝑥 /
𝑛)) ∈
ℝ) |
51 | 15, 50 | remulcld 11006 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑛)
· (⌊‘(𝑥
/ 𝑛))) ∈
ℝ) |
52 | 46, 51 | resubcld 11403 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))) ∈ ℝ) |
53 | 48, 50 | resubcld 11403 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ∈ ℝ) |
54 | | 1red 10977 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 1 ∈ ℝ) |
55 | | vmage0 26268 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → 0 ≤
(Λ‘𝑛)) |
56 | 13, 55 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ (Λ‘𝑛)) |
57 | | fracle1 13521 |
. . . . . . . . . . . . 13
⊢ ((𝑥 / 𝑛) ∈ ℝ → ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ≤ 1) |
58 | 48, 57 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ≤ 1) |
59 | 53, 54, 15, 56, 58 | lemul2ad 11915 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑛)
· ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) ≤ ((Λ‘𝑛) · 1)) |
60 | 15 | recnd 11004 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (Λ‘𝑛)
∈ ℂ) |
61 | 48 | recnd 11004 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑛) ∈
ℂ) |
62 | 50 | recnd 11004 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (⌊‘(𝑥 /
𝑛)) ∈
ℂ) |
63 | 60, 61, 62 | subdid 11431 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑛)
· ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) = (((Λ‘𝑛) · (𝑥 / 𝑛)) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛))))) |
64 | | rpcn 12739 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℂ) |
65 | 64 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑥 ∈
ℂ) |
66 | 13 | nnrpd 12769 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℝ+) |
67 | | rpcnne0 12747 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℝ+
→ (𝑛 ∈ ℂ
∧ 𝑛 ≠
0)) |
68 | 66, 67 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑛 ∈ ℂ
∧ 𝑛 ≠
0)) |
69 | | div23 11652 |
. . . . . . . . . . . . . . 15
⊢
(((Λ‘𝑛)
∈ ℂ ∧ 𝑥
∈ ℂ ∧ (𝑛
∈ ℂ ∧ 𝑛 ≠
0)) → (((Λ‘𝑛) · 𝑥) / 𝑛) = (((Λ‘𝑛) / 𝑛) · 𝑥)) |
70 | | divass 11651 |
. . . . . . . . . . . . . . 15
⊢
(((Λ‘𝑛)
∈ ℂ ∧ 𝑥
∈ ℂ ∧ (𝑛
∈ ℂ ∧ 𝑛 ≠
0)) → (((Λ‘𝑛) · 𝑥) / 𝑛) = ((Λ‘𝑛) · (𝑥 / 𝑛))) |
71 | 69, 70 | eqtr3d 2782 |
. . . . . . . . . . . . . 14
⊢
(((Λ‘𝑛)
∈ ℂ ∧ 𝑥
∈ ℂ ∧ (𝑛
∈ ℂ ∧ 𝑛 ≠
0)) → (((Λ‘𝑛) / 𝑛) · 𝑥) = ((Λ‘𝑛) · (𝑥 / 𝑛))) |
72 | 60, 65, 68, 71 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((Λ‘𝑛)
/ 𝑛) · 𝑥) = ((Λ‘𝑛) · (𝑥 / 𝑛))) |
73 | 72 | oveq1d 7286 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))) = (((Λ‘𝑛) · (𝑥 / 𝑛)) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛))))) |
74 | 63, 73 | eqtr4d 2783 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑛)
· ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) = ((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛))))) |
75 | 60 | mulid1d 10993 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑛)
· 1) = (Λ‘𝑛)) |
76 | 59, 74, 75 | 3brtr3d 5110 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))) ≤ (Λ‘𝑛)) |
77 | 11, 52, 15, 76 | fsumle 15509 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ Σ𝑛 ∈
(1...(⌊‘𝑥))((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛)) |
78 | 16 | recnd 11004 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑛)
/ 𝑛) ∈
ℂ) |
79 | 11, 64, 78 | fsummulc1 15495 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ (Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · 𝑥)) |
80 | | logfac2 26363 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 0 ≤
𝑥) →
(log‘(!‘(⌊‘𝑥))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))) |
81 | 21, 80 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ (log‘(!‘(⌊‘𝑥))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))) |
82 | 79, 81 | oveq12d 7289 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ ((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) −
(log‘(!‘(⌊‘𝑥)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · 𝑥) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛))))) |
83 | 46 | recnd 11004 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((Λ‘𝑛)
/ 𝑛) · 𝑥) ∈
ℂ) |
84 | 51 | recnd 11004 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑛)
· (⌊‘(𝑥
/ 𝑛))) ∈
ℂ) |
85 | 11, 83, 84 | fsumsub 15498 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ Σ𝑛 ∈
(1...(⌊‘𝑥))((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · 𝑥) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛))))) |
86 | 82, 85 | eqtr4d 2783 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ ((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) −
(log‘(!‘(⌊‘𝑥)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛))))) |
87 | | chpval 26269 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ →
(ψ‘𝑥) =
Σ𝑛 ∈
(1...(⌊‘𝑥))(Λ‘𝑛)) |
88 | 36, 87 | syl 17 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (ψ‘𝑥) =
Σ𝑛 ∈
(1...(⌊‘𝑥))(Λ‘𝑛)) |
89 | 77, 86, 88 | 3brtr4d 5111 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ ((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) −
(log‘(!‘(⌊‘𝑥)))) ≤ (ψ‘𝑥)) |
90 | 17, 36 | remulcld 11006 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ (Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) ∈ ℝ) |
91 | 90, 26 | resubcld 11403 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ ((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) −
(log‘(!‘(⌊‘𝑥)))) ∈ ℝ) |
92 | | rpregt0 12743 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ∈ ℝ
∧ 0 < 𝑥)) |
93 | | lediv1 11840 |
. . . . . . . . 9
⊢
((((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) −
(log‘(!‘(⌊‘𝑥)))) ∈ ℝ ∧ (ψ‘𝑥) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 <
𝑥)) → (((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) −
(log‘(!‘(⌊‘𝑥)))) ≤ (ψ‘𝑥) ↔ (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) −
(log‘(!‘(⌊‘𝑥)))) / 𝑥) ≤ ((ψ‘𝑥) / 𝑥))) |
94 | 91, 38, 92, 93 | syl3anc 1370 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ (((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) −
(log‘(!‘(⌊‘𝑥)))) ≤ (ψ‘𝑥) ↔ (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) −
(log‘(!‘(⌊‘𝑥)))) / 𝑥) ≤ ((ψ‘𝑥) / 𝑥))) |
95 | 89, 94 | mpbid 231 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ (((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) −
(log‘(!‘(⌊‘𝑥)))) / 𝑥) ≤ ((ψ‘𝑥) / 𝑥)) |
96 | 90 | recnd 11004 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ (Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) ∈ ℂ) |
97 | 26 | recnd 11004 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ (log‘(!‘(⌊‘𝑥))) ∈ ℂ) |
98 | | rpcnne0 12747 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ∈ ℂ
∧ 𝑥 ≠
0)) |
99 | | divsubdir 11669 |
. . . . . . . . . . 11
⊢
(((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) ∈ ℂ ∧
(log‘(!‘(⌊‘𝑥))) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) −
(log‘(!‘(⌊‘𝑥)))) / 𝑥) = (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) / 𝑥) −
((log‘(!‘(⌊‘𝑥))) / 𝑥))) |
100 | 96, 97, 98, 99 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ (((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) −
(log‘(!‘(⌊‘𝑥)))) / 𝑥) = (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) / 𝑥) −
((log‘(!‘(⌊‘𝑥))) / 𝑥))) |
101 | | rpne0 12745 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ≠
0) |
102 | 18, 64, 101 | divcan4d 11757 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ ((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) / 𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛)) |
103 | 102 | oveq1d 7286 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ (((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) / 𝑥) −
((log‘(!‘(⌊‘𝑥))) / 𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) −
((log‘(!‘(⌊‘𝑥))) / 𝑥))) |
104 | 100, 103 | eqtr2d 2781 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) −
((log‘(!‘(⌊‘𝑥))) / 𝑥)) = (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) −
(log‘(!‘(⌊‘𝑥)))) / 𝑥)) |
105 | 104 | fveq2d 6775 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ (abs‘(Σ𝑛
∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) −
((log‘(!‘(⌊‘𝑥))) / 𝑥))) = (abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) −
(log‘(!‘(⌊‘𝑥)))) / 𝑥))) |
106 | | rerpdivcl 12759 |
. . . . . . . . . 10
⊢
((((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) −
(log‘(!‘(⌊‘𝑥)))) ∈ ℝ ∧ 𝑥 ∈ ℝ+) →
(((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) −
(log‘(!‘(⌊‘𝑥)))) / 𝑥) ∈ ℝ) |
107 | 91, 106 | mpancom 685 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) −
(log‘(!‘(⌊‘𝑥)))) / 𝑥) ∈ ℝ) |
108 | | flle 13517 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 / 𝑛) ∈ ℝ → (⌊‘(𝑥 / 𝑛)) ≤ (𝑥 / 𝑛)) |
109 | 48, 108 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (⌊‘(𝑥 /
𝑛)) ≤ (𝑥 / 𝑛)) |
110 | 48, 50 | subge0d 11565 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (0 ≤ ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))) ↔ (⌊‘(𝑥 / 𝑛)) ≤ (𝑥 / 𝑛))) |
111 | 109, 110 | mpbird 256 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛)))) |
112 | 15, 53, 56, 111 | mulge0d 11552 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ ((Λ‘𝑛) · ((𝑥 / 𝑛) − (⌊‘(𝑥 / 𝑛))))) |
113 | 112, 74 | breqtrd 5105 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ ((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛))))) |
114 | 11, 52, 113 | fsumge0 15505 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ 0 ≤ Σ𝑛
∈ (1...(⌊‘𝑥))((((Λ‘𝑛) / 𝑛) · 𝑥) − ((Λ‘𝑛) · (⌊‘(𝑥 / 𝑛))))) |
115 | 114, 86 | breqtrrd 5107 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ 0 ≤ ((Σ𝑛
∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) −
(log‘(!‘(⌊‘𝑥))))) |
116 | | divge0 11844 |
. . . . . . . . . 10
⊢
(((((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) −
(log‘(!‘(⌊‘𝑥)))) ∈ ℝ ∧ 0 ≤
((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) −
(log‘(!‘(⌊‘𝑥))))) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → 0 ≤ (((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) −
(log‘(!‘(⌊‘𝑥)))) / 𝑥)) |
117 | 91, 115, 92, 116 | syl21anc 835 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ 0 ≤ (((Σ𝑛
∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) −
(log‘(!‘(⌊‘𝑥)))) / 𝑥)) |
118 | 107, 117 | absidd 15132 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ (abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) −
(log‘(!‘(⌊‘𝑥)))) / 𝑥)) = (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) −
(log‘(!‘(⌊‘𝑥)))) / 𝑥)) |
119 | 105, 118 | eqtrd 2780 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ (abs‘(Σ𝑛
∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) −
((log‘(!‘(⌊‘𝑥))) / 𝑥))) = (((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝑥) −
(log‘(!‘(⌊‘𝑥)))) / 𝑥)) |
120 | | chpge0 26273 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ → 0 ≤
(ψ‘𝑥)) |
121 | 36, 120 | syl 17 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ 0 ≤ (ψ‘𝑥)) |
122 | | divge0 11844 |
. . . . . . . . 9
⊢
((((ψ‘𝑥)
∈ ℝ ∧ 0 ≤ (ψ‘𝑥)) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → 0 ≤
((ψ‘𝑥) / 𝑥)) |
123 | 38, 121, 92, 122 | syl21anc 835 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ 0 ≤ ((ψ‘𝑥) / 𝑥)) |
124 | 40, 123 | absidd 15132 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ (abs‘((ψ‘𝑥) / 𝑥)) = ((ψ‘𝑥) / 𝑥)) |
125 | 95, 119, 124 | 3brtr4d 5111 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ (abs‘(Σ𝑛
∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) −
((log‘(!‘(⌊‘𝑥))) / 𝑥))) ≤ (abs‘((ψ‘𝑥) / 𝑥))) |
126 | 125 | ad2antrl 725 |
. . . . 5
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) −
((log‘(!‘(⌊‘𝑥))) / 𝑥))) ≤ (abs‘((ψ‘𝑥) / 𝑥))) |
127 | 33, 35, 42, 44, 126 | o1le 15362 |
. . . 4
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) −
((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∈ 𝑂(1)) |
128 | 127 | mptru 1549 |
. . 3
⊢ (𝑥 ∈ ℝ+
↦ (Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) −
((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∈ 𝑂(1) |
129 | | logfacrlim 26370 |
. . . 4
⊢ (𝑥 ∈ ℝ+
↦ ((log‘𝑥)
− ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ⇝𝑟
1 |
130 | | rlimo1 15324 |
. . . 4
⊢ ((𝑥 ∈ ℝ+
↦ ((log‘𝑥)
− ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ⇝𝑟 1 →
(𝑥 ∈
ℝ+ ↦ ((log‘𝑥) −
((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∈ 𝑂(1)) |
131 | 129, 130 | ax-mp 5 |
. . 3
⊢ (𝑥 ∈ ℝ+
↦ ((log‘𝑥)
− ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∈ 𝑂(1) |
132 | | o1sub 15323 |
. . 3
⊢ (((𝑥 ∈ ℝ+
↦ (Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) −
((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∈ 𝑂(1) ∧ (𝑥 ∈ ℝ+
↦ ((log‘𝑥)
− ((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∈ 𝑂(1)) → ((𝑥 ∈ ℝ+
↦ (Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) −
((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∘f − (𝑥 ∈ ℝ+
↦ ((log‘𝑥)
− ((log‘(!‘(⌊‘𝑥))) / 𝑥)))) ∈ 𝑂(1)) |
133 | 128, 131,
132 | mp2an 689 |
. 2
⊢ ((𝑥 ∈ ℝ+
↦ (Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) −
((log‘(!‘(⌊‘𝑥))) / 𝑥))) ∘f − (𝑥 ∈ ℝ+
↦ ((log‘𝑥)
− ((log‘(!‘(⌊‘𝑥))) / 𝑥)))) ∈ 𝑂(1) |
134 | 32, 133 | eqeltrri 2838 |
1
⊢ (𝑥 ∈ ℝ+
↦ (Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1) |