MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrmusumlema Structured version   Visualization version   GIF version

Theorem dchrmusumlema 27404
Description: Lemma for dchrmusum 27435 and dchrisumn0 27432. Apply dchrisum 27403 for the function 1 / 𝑦. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrisumn0.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
Assertion
Ref Expression
dchrmusumlema (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))
Distinct variable groups:   𝑡,𝑐,𝑦, 1   𝐹,𝑐,𝑡,𝑦   𝑎,𝑐,𝑡,𝑦   𝑁,𝑐,𝑡,𝑦   𝜑,𝑐,𝑡   𝑦,𝑍   𝐷,𝑐,𝑡,𝑦   𝐿,𝑎,𝑐,𝑡,𝑦   𝑋,𝑎,𝑐,𝑡,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐷(𝑎)   1 (𝑎)   𝐹(𝑎)   𝐺(𝑦,𝑡,𝑎,𝑐)   𝑁(𝑎)   𝑍(𝑡,𝑎,𝑐)

Proof of Theorem dchrmusumlema
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
2 rpvmasum.l . . 3 𝐿 = (ℤRHom‘𝑍)
3 rpvmasum.a . . 3 (𝜑𝑁 ∈ ℕ)
4 rpvmasum.g . . 3 𝐺 = (DChr‘𝑁)
5 rpvmasum.d . . 3 𝐷 = (Base‘𝐺)
6 rpvmasum.1 . . 3 1 = (0g𝐺)
7 dchrisum.b . . 3 (𝜑𝑋𝐷)
8 dchrisum.n1 . . 3 (𝜑𝑋1 )
9 oveq2 7395 . . 3 (𝑛 = 𝑥 → (1 / 𝑛) = (1 / 𝑥))
10 1nn 12197 . . . 4 1 ∈ ℕ
1110a1i 11 . . 3 (𝜑 → 1 ∈ ℕ)
12 rpreccl 12979 . . . . 5 (𝑛 ∈ ℝ+ → (1 / 𝑛) ∈ ℝ+)
1312adantl 481 . . . 4 ((𝜑𝑛 ∈ ℝ+) → (1 / 𝑛) ∈ ℝ+)
1413rpred 12995 . . 3 ((𝜑𝑛 ∈ ℝ+) → (1 / 𝑛) ∈ ℝ)
15 simp3r 1203 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → 𝑛𝑥)
16 rpregt0 12966 . . . . . 6 (𝑛 ∈ ℝ+ → (𝑛 ∈ ℝ ∧ 0 < 𝑛))
17 rpregt0 12966 . . . . . 6 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
18 lerec 12066 . . . . . 6 (((𝑛 ∈ ℝ ∧ 0 < 𝑛) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (𝑛𝑥 ↔ (1 / 𝑥) ≤ (1 / 𝑛)))
1916, 17, 18syl2an 596 . . . . 5 ((𝑛 ∈ ℝ+𝑥 ∈ ℝ+) → (𝑛𝑥 ↔ (1 / 𝑥) ≤ (1 / 𝑛)))
20193ad2ant2 1134 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (𝑛𝑥 ↔ (1 / 𝑥) ≤ (1 / 𝑛)))
2115, 20mpbid 232 . . 3 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (1 / 𝑥) ≤ (1 / 𝑛))
22 ax-1cn 11126 . . . 4 1 ∈ ℂ
23 divrcnv 15818 . . . 4 (1 ∈ ℂ → (𝑛 ∈ ℝ+ ↦ (1 / 𝑛)) ⇝𝑟 0)
2422, 23mp1i 13 . . 3 (𝜑 → (𝑛 ∈ ℝ+ ↦ (1 / 𝑛)) ⇝𝑟 0)
25 2fveq3 6863 . . . . 5 (𝑎 = 𝑛 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑛)))
26 oveq2 7395 . . . . 5 (𝑎 = 𝑛 → (1 / 𝑎) = (1 / 𝑛))
2725, 26oveq12d 7405 . . . 4 (𝑎 = 𝑛 → ((𝑋‘(𝐿𝑎)) · (1 / 𝑎)) = ((𝑋‘(𝐿𝑛)) · (1 / 𝑛)))
2827cbvmptv 5211 . . 3 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · (1 / 𝑛)))
291, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 21, 24, 28dchrisum 27403 . 2 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎)))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / 𝑥))))
307adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑋𝐷)
31 nnz 12550 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
3231adantl 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
334, 1, 5, 2, 30, 32dchrzrhcl 27156 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
34 nncn 12194 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
3534adantl 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
36 nnne0 12220 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
3736adantl 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑛 ≠ 0)
3833, 35, 37divrecd 11961 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((𝑋‘(𝐿𝑛)) / 𝑛) = ((𝑋‘(𝐿𝑛)) · (1 / 𝑛)))
3938mpteq2dva 5200 . . . . . . . . 9 (𝜑 → (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) / 𝑛)) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · (1 / 𝑛))))
40 dchrisumn0.f . . . . . . . . . 10 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
41 id 22 . . . . . . . . . . . 12 (𝑎 = 𝑛𝑎 = 𝑛)
4225, 41oveq12d 7405 . . . . . . . . . . 11 (𝑎 = 𝑛 → ((𝑋‘(𝐿𝑎)) / 𝑎) = ((𝑋‘(𝐿𝑛)) / 𝑛))
4342cbvmptv 5211 . . . . . . . . . 10 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) / 𝑛))
4440, 43eqtri 2752 . . . . . . . . 9 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) / 𝑛))
4539, 44, 283eqtr4g 2789 . . . . . . . 8 (𝜑𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))
4645adantr 480 . . . . . . 7 ((𝜑𝑐 ∈ (0[,)+∞)) → 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))
4746seqeq3d 13974 . . . . . 6 ((𝜑𝑐 ∈ (0[,)+∞)) → seq1( + , 𝐹) = seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎)))))
4847breq1d 5117 . . . . 5 ((𝜑𝑐 ∈ (0[,)+∞)) → (seq1( + , 𝐹) ⇝ 𝑡 ↔ seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎)))) ⇝ 𝑡))
49 2fveq3 6863 . . . . . . . . 9 (𝑦 = 𝑥 → (seq1( + , 𝐹)‘(⌊‘𝑦)) = (seq1( + , 𝐹)‘(⌊‘𝑥)))
5049fvoveq1d 7409 . . . . . . . 8 (𝑦 = 𝑥 → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)))
51 oveq2 7395 . . . . . . . 8 (𝑦 = 𝑥 → (𝑐 / 𝑦) = (𝑐 / 𝑥))
5250, 51breq12d 5120 . . . . . . 7 (𝑦 = 𝑥 → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / 𝑥)))
5352cbvralvw 3215 . . . . . 6 (∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦) ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / 𝑥))
5445seqeq3d 13974 . . . . . . . . . . 11 (𝜑 → seq1( + , 𝐹) = seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎)))))
5554fveq1d 6860 . . . . . . . . . 10 (𝜑 → (seq1( + , 𝐹)‘(⌊‘𝑥)) = (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)))
5655fvoveq1d 7409 . . . . . . . . 9 (𝜑 → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) = (abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)))
5756ad2antrr 726 . . . . . . . 8 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) = (abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)))
58 elrege0 13415 . . . . . . . . . . . 12 (𝑐 ∈ (0[,)+∞) ↔ (𝑐 ∈ ℝ ∧ 0 ≤ 𝑐))
5958simplbi 497 . . . . . . . . . . 11 (𝑐 ∈ (0[,)+∞) → 𝑐 ∈ ℝ)
6059recnd 11202 . . . . . . . . . 10 (𝑐 ∈ (0[,)+∞) → 𝑐 ∈ ℂ)
6160ad2antlr 727 . . . . . . . . 9 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝑐 ∈ ℂ)
62 1re 11174 . . . . . . . . . . . . 13 1 ∈ ℝ
63 elicopnf 13406 . . . . . . . . . . . . 13 (1 ∈ ℝ → (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)))
6462, 63ax-mp 5 . . . . . . . . . . . 12 (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥))
6564simplbi 497 . . . . . . . . . . 11 (𝑥 ∈ (1[,)+∞) → 𝑥 ∈ ℝ)
6665adantl 481 . . . . . . . . . 10 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝑥 ∈ ℝ)
6766recnd 11202 . . . . . . . . 9 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝑥 ∈ ℂ)
68 0red 11177 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 0 ∈ ℝ)
69 1red 11175 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 1 ∈ ℝ)
70 0lt1 11700 . . . . . . . . . . . 12 0 < 1
7170a1i 11 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 0 < 1)
7264simprbi 496 . . . . . . . . . . . 12 (𝑥 ∈ (1[,)+∞) → 1 ≤ 𝑥)
7372adantl 481 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 1 ≤ 𝑥)
7468, 69, 66, 71, 73ltletrd 11334 . . . . . . . . . 10 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 0 < 𝑥)
7574gt0ne0d 11742 . . . . . . . . 9 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝑥 ≠ 0)
7661, 67, 75divrecd 11961 . . . . . . . 8 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (𝑐 / 𝑥) = (𝑐 · (1 / 𝑥)))
7757, 76breq12d 5120 . . . . . . 7 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / 𝑥) ↔ (abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / 𝑥))))
7877ralbidva 3154 . . . . . 6 ((𝜑𝑐 ∈ (0[,)+∞)) → (∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / 𝑥) ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / 𝑥))))
7953, 78bitrid 283 . . . . 5 ((𝜑𝑐 ∈ (0[,)+∞)) → (∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦) ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / 𝑥))))
8048, 79anbi12d 632 . . . 4 ((𝜑𝑐 ∈ (0[,)+∞)) → ((seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) ↔ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎)))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / 𝑥)))))
8180rexbidva 3155 . . 3 (𝜑 → (∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) ↔ ∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎)))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / 𝑥)))))
8281exbidv 1921 . 2 (𝜑 → (∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) ↔ ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎)))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / 𝑥)))))
8329, 82mpbird 257 1 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  +∞cpnf 11205   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  cz 12529  +crp 12951  [,)cico 13308  cfl 13752  seqcseq 13966  abscabs 15200  cli 15450  𝑟 crli 15451  Basecbs 17179  0gc0g 17402  ℤRHomczrh 21409  ℤ/nczn 21412  DChrcdchr 27143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-ico 13312  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-dvds 16223  df-gcd 16465  df-phi 16736  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-0g 17404  df-imas 17471  df-qus 17472  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-nsg 19056  df-eqg 19057  df-ghm 19145  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-rsp 21119  df-2idl 21160  df-cnfld 21265  df-zring 21357  df-zrh 21413  df-zn 21416  df-dchr 27144
This theorem is referenced by:  rpvmasum2  27423  dchrisum0re  27424  dchrisum0lem3  27430  dchrmusum  27435  dchrvmasum  27436
  Copyright terms: Public domain W3C validator