MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrmusumlema Structured version   Visualization version   GIF version

Theorem dchrmusumlema 27537
Description: Lemma for dchrmusum 27568 and dchrisumn0 27565. Apply dchrisum 27536 for the function 1 / 𝑦. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrisumn0.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
Assertion
Ref Expression
dchrmusumlema (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))
Distinct variable groups:   𝑡,𝑐,𝑦, 1   𝐹,𝑐,𝑡,𝑦   𝑎,𝑐,𝑡,𝑦   𝑁,𝑐,𝑡,𝑦   𝜑,𝑐,𝑡   𝑦,𝑍   𝐷,𝑐,𝑡,𝑦   𝐿,𝑎,𝑐,𝑡,𝑦   𝑋,𝑎,𝑐,𝑡,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐷(𝑎)   1 (𝑎)   𝐹(𝑎)   𝐺(𝑦,𝑡,𝑎,𝑐)   𝑁(𝑎)   𝑍(𝑡,𝑎,𝑐)

Proof of Theorem dchrmusumlema
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
2 rpvmasum.l . . 3 𝐿 = (ℤRHom‘𝑍)
3 rpvmasum.a . . 3 (𝜑𝑁 ∈ ℕ)
4 rpvmasum.g . . 3 𝐺 = (DChr‘𝑁)
5 rpvmasum.d . . 3 𝐷 = (Base‘𝐺)
6 rpvmasum.1 . . 3 1 = (0g𝐺)
7 dchrisum.b . . 3 (𝜑𝑋𝐷)
8 dchrisum.n1 . . 3 (𝜑𝑋1 )
9 oveq2 7439 . . 3 (𝑛 = 𝑥 → (1 / 𝑛) = (1 / 𝑥))
10 1nn 12277 . . . 4 1 ∈ ℕ
1110a1i 11 . . 3 (𝜑 → 1 ∈ ℕ)
12 rpreccl 13061 . . . . 5 (𝑛 ∈ ℝ+ → (1 / 𝑛) ∈ ℝ+)
1312adantl 481 . . . 4 ((𝜑𝑛 ∈ ℝ+) → (1 / 𝑛) ∈ ℝ+)
1413rpred 13077 . . 3 ((𝜑𝑛 ∈ ℝ+) → (1 / 𝑛) ∈ ℝ)
15 simp3r 1203 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → 𝑛𝑥)
16 rpregt0 13049 . . . . . 6 (𝑛 ∈ ℝ+ → (𝑛 ∈ ℝ ∧ 0 < 𝑛))
17 rpregt0 13049 . . . . . 6 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
18 lerec 12151 . . . . . 6 (((𝑛 ∈ ℝ ∧ 0 < 𝑛) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (𝑛𝑥 ↔ (1 / 𝑥) ≤ (1 / 𝑛)))
1916, 17, 18syl2an 596 . . . . 5 ((𝑛 ∈ ℝ+𝑥 ∈ ℝ+) → (𝑛𝑥 ↔ (1 / 𝑥) ≤ (1 / 𝑛)))
20193ad2ant2 1135 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (𝑛𝑥 ↔ (1 / 𝑥) ≤ (1 / 𝑛)))
2115, 20mpbid 232 . . 3 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (1 / 𝑥) ≤ (1 / 𝑛))
22 ax-1cn 11213 . . . 4 1 ∈ ℂ
23 divrcnv 15888 . . . 4 (1 ∈ ℂ → (𝑛 ∈ ℝ+ ↦ (1 / 𝑛)) ⇝𝑟 0)
2422, 23mp1i 13 . . 3 (𝜑 → (𝑛 ∈ ℝ+ ↦ (1 / 𝑛)) ⇝𝑟 0)
25 2fveq3 6911 . . . . 5 (𝑎 = 𝑛 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑛)))
26 oveq2 7439 . . . . 5 (𝑎 = 𝑛 → (1 / 𝑎) = (1 / 𝑛))
2725, 26oveq12d 7449 . . . 4 (𝑎 = 𝑛 → ((𝑋‘(𝐿𝑎)) · (1 / 𝑎)) = ((𝑋‘(𝐿𝑛)) · (1 / 𝑛)))
2827cbvmptv 5255 . . 3 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · (1 / 𝑛)))
291, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 21, 24, 28dchrisum 27536 . 2 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎)))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / 𝑥))))
307adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑋𝐷)
31 nnz 12634 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
3231adantl 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
334, 1, 5, 2, 30, 32dchrzrhcl 27289 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
34 nncn 12274 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
3534adantl 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
36 nnne0 12300 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
3736adantl 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑛 ≠ 0)
3833, 35, 37divrecd 12046 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((𝑋‘(𝐿𝑛)) / 𝑛) = ((𝑋‘(𝐿𝑛)) · (1 / 𝑛)))
3938mpteq2dva 5242 . . . . . . . . 9 (𝜑 → (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) / 𝑛)) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · (1 / 𝑛))))
40 dchrisumn0.f . . . . . . . . . 10 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
41 id 22 . . . . . . . . . . . 12 (𝑎 = 𝑛𝑎 = 𝑛)
4225, 41oveq12d 7449 . . . . . . . . . . 11 (𝑎 = 𝑛 → ((𝑋‘(𝐿𝑎)) / 𝑎) = ((𝑋‘(𝐿𝑛)) / 𝑛))
4342cbvmptv 5255 . . . . . . . . . 10 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) / 𝑛))
4440, 43eqtri 2765 . . . . . . . . 9 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) / 𝑛))
4539, 44, 283eqtr4g 2802 . . . . . . . 8 (𝜑𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))
4645adantr 480 . . . . . . 7 ((𝜑𝑐 ∈ (0[,)+∞)) → 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))
4746seqeq3d 14050 . . . . . 6 ((𝜑𝑐 ∈ (0[,)+∞)) → seq1( + , 𝐹) = seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎)))))
4847breq1d 5153 . . . . 5 ((𝜑𝑐 ∈ (0[,)+∞)) → (seq1( + , 𝐹) ⇝ 𝑡 ↔ seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎)))) ⇝ 𝑡))
49 2fveq3 6911 . . . . . . . . 9 (𝑦 = 𝑥 → (seq1( + , 𝐹)‘(⌊‘𝑦)) = (seq1( + , 𝐹)‘(⌊‘𝑥)))
5049fvoveq1d 7453 . . . . . . . 8 (𝑦 = 𝑥 → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)))
51 oveq2 7439 . . . . . . . 8 (𝑦 = 𝑥 → (𝑐 / 𝑦) = (𝑐 / 𝑥))
5250, 51breq12d 5156 . . . . . . 7 (𝑦 = 𝑥 → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / 𝑥)))
5352cbvralvw 3237 . . . . . 6 (∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦) ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / 𝑥))
5445seqeq3d 14050 . . . . . . . . . . 11 (𝜑 → seq1( + , 𝐹) = seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎)))))
5554fveq1d 6908 . . . . . . . . . 10 (𝜑 → (seq1( + , 𝐹)‘(⌊‘𝑥)) = (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)))
5655fvoveq1d 7453 . . . . . . . . 9 (𝜑 → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) = (abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)))
5756ad2antrr 726 . . . . . . . 8 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) = (abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)))
58 elrege0 13494 . . . . . . . . . . . 12 (𝑐 ∈ (0[,)+∞) ↔ (𝑐 ∈ ℝ ∧ 0 ≤ 𝑐))
5958simplbi 497 . . . . . . . . . . 11 (𝑐 ∈ (0[,)+∞) → 𝑐 ∈ ℝ)
6059recnd 11289 . . . . . . . . . 10 (𝑐 ∈ (0[,)+∞) → 𝑐 ∈ ℂ)
6160ad2antlr 727 . . . . . . . . 9 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝑐 ∈ ℂ)
62 1re 11261 . . . . . . . . . . . . 13 1 ∈ ℝ
63 elicopnf 13485 . . . . . . . . . . . . 13 (1 ∈ ℝ → (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)))
6462, 63ax-mp 5 . . . . . . . . . . . 12 (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥))
6564simplbi 497 . . . . . . . . . . 11 (𝑥 ∈ (1[,)+∞) → 𝑥 ∈ ℝ)
6665adantl 481 . . . . . . . . . 10 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝑥 ∈ ℝ)
6766recnd 11289 . . . . . . . . 9 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝑥 ∈ ℂ)
68 0red 11264 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 0 ∈ ℝ)
69 1red 11262 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 1 ∈ ℝ)
70 0lt1 11785 . . . . . . . . . . . 12 0 < 1
7170a1i 11 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 0 < 1)
7264simprbi 496 . . . . . . . . . . . 12 (𝑥 ∈ (1[,)+∞) → 1 ≤ 𝑥)
7372adantl 481 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 1 ≤ 𝑥)
7468, 69, 66, 71, 73ltletrd 11421 . . . . . . . . . 10 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 0 < 𝑥)
7574gt0ne0d 11827 . . . . . . . . 9 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝑥 ≠ 0)
7661, 67, 75divrecd 12046 . . . . . . . 8 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (𝑐 / 𝑥) = (𝑐 · (1 / 𝑥)))
7757, 76breq12d 5156 . . . . . . 7 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / 𝑥) ↔ (abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / 𝑥))))
7877ralbidva 3176 . . . . . 6 ((𝜑𝑐 ∈ (0[,)+∞)) → (∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / 𝑥) ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / 𝑥))))
7953, 78bitrid 283 . . . . 5 ((𝜑𝑐 ∈ (0[,)+∞)) → (∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦) ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / 𝑥))))
8048, 79anbi12d 632 . . . 4 ((𝜑𝑐 ∈ (0[,)+∞)) → ((seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) ↔ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎)))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / 𝑥)))))
8180rexbidva 3177 . . 3 (𝜑 → (∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) ↔ ∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎)))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / 𝑥)))))
8281exbidv 1921 . 2 (𝜑 → (∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) ↔ ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎)))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / 𝑥)))))
8329, 82mpbird 257 1 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wex 1779  wcel 2108  wne 2940  wral 3061  wrex 3070   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  +∞cpnf 11292   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  cn 12266  cz 12613  +crp 13034  [,)cico 13389  cfl 13830  seqcseq 14042  abscabs 15273  cli 15520  𝑟 crli 15521  Basecbs 17247  0gc0g 17484  ℤRHomczrh 21510  ℤ/nczn 21513  DChrcdchr 27276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-ec 8747  df-qs 8751  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-ico 13393  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-dvds 16291  df-gcd 16532  df-phi 16803  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-0g 17486  df-imas 17553  df-qus 17554  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-nsg 19142  df-eqg 19143  df-ghm 19231  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-lmod 20860  df-lss 20930  df-lsp 20970  df-sra 21172  df-rgmod 21173  df-lidl 21218  df-rsp 21219  df-2idl 21260  df-cnfld 21365  df-zring 21458  df-zrh 21514  df-zn 21517  df-dchr 27277
This theorem is referenced by:  rpvmasum2  27556  dchrisum0re  27557  dchrisum0lem3  27563  dchrmusum  27568  dchrvmasum  27569
  Copyright terms: Public domain W3C validator