| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | rpvmasum.z | . . 3
⊢ 𝑍 =
(ℤ/nℤ‘𝑁) | 
| 2 |  | rpvmasum.l | . . 3
⊢ 𝐿 = (ℤRHom‘𝑍) | 
| 3 |  | rpvmasum.a | . . 3
⊢ (𝜑 → 𝑁 ∈ ℕ) | 
| 4 |  | rpvmasum.g | . . 3
⊢ 𝐺 = (DChr‘𝑁) | 
| 5 |  | rpvmasum.d | . . 3
⊢ 𝐷 = (Base‘𝐺) | 
| 6 |  | rpvmasum.1 | . . 3
⊢  1 =
(0g‘𝐺) | 
| 7 |  | dchrisum.b | . . 3
⊢ (𝜑 → 𝑋 ∈ 𝐷) | 
| 8 |  | dchrisum.n1 | . . 3
⊢ (𝜑 → 𝑋 ≠ 1 ) | 
| 9 |  | oveq2 7439 | . . 3
⊢ (𝑛 = 𝑥 → (1 / 𝑛) = (1 / 𝑥)) | 
| 10 |  | 1nn 12277 | . . . 4
⊢ 1 ∈
ℕ | 
| 11 | 10 | a1i 11 | . . 3
⊢ (𝜑 → 1 ∈
ℕ) | 
| 12 |  | rpreccl 13061 | . . . . 5
⊢ (𝑛 ∈ ℝ+
→ (1 / 𝑛) ∈
ℝ+) | 
| 13 | 12 | adantl 481 | . . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℝ+) → (1 /
𝑛) ∈
ℝ+) | 
| 14 | 13 | rpred 13077 | . . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℝ+) → (1 /
𝑛) ∈
ℝ) | 
| 15 |  | simp3r 1203 | . . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+)
∧ (1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑛 ≤ 𝑥) | 
| 16 |  | rpregt0 13049 | . . . . . 6
⊢ (𝑛 ∈ ℝ+
→ (𝑛 ∈ ℝ
∧ 0 < 𝑛)) | 
| 17 |  | rpregt0 13049 | . . . . . 6
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ∈ ℝ
∧ 0 < 𝑥)) | 
| 18 |  | lerec 12151 | . . . . . 6
⊢ (((𝑛 ∈ ℝ ∧ 0 <
𝑛) ∧ (𝑥 ∈ ℝ ∧ 0 <
𝑥)) → (𝑛 ≤ 𝑥 ↔ (1 / 𝑥) ≤ (1 / 𝑛))) | 
| 19 | 16, 17, 18 | syl2an 596 | . . . . 5
⊢ ((𝑛 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) → (𝑛 ≤ 𝑥 ↔ (1 / 𝑥) ≤ (1 / 𝑛))) | 
| 20 | 19 | 3ad2ant2 1135 | . . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+)
∧ (1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (𝑛 ≤ 𝑥 ↔ (1 / 𝑥) ≤ (1 / 𝑛))) | 
| 21 | 15, 20 | mpbid 232 | . . 3
⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+)
∧ (1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (1 / 𝑥) ≤ (1 / 𝑛)) | 
| 22 |  | ax-1cn 11213 | . . . 4
⊢ 1 ∈
ℂ | 
| 23 |  | divrcnv 15888 | . . . 4
⊢ (1 ∈
ℂ → (𝑛 ∈
ℝ+ ↦ (1 / 𝑛)) ⇝𝑟
0) | 
| 24 | 22, 23 | mp1i 13 | . . 3
⊢ (𝜑 → (𝑛 ∈ ℝ+ ↦ (1 /
𝑛))
⇝𝑟 0) | 
| 25 |  | 2fveq3 6911 | . . . . 5
⊢ (𝑎 = 𝑛 → (𝑋‘(𝐿‘𝑎)) = (𝑋‘(𝐿‘𝑛))) | 
| 26 |  | oveq2 7439 | . . . . 5
⊢ (𝑎 = 𝑛 → (1 / 𝑎) = (1 / 𝑛)) | 
| 27 | 25, 26 | oveq12d 7449 | . . . 4
⊢ (𝑎 = 𝑛 → ((𝑋‘(𝐿‘𝑎)) · (1 / 𝑎)) = ((𝑋‘(𝐿‘𝑛)) · (1 / 𝑛))) | 
| 28 | 27 | cbvmptv 5255 | . . 3
⊢ (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / 𝑎))) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) · (1 / 𝑛))) | 
| 29 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 11,
14, 21, 24, 28 | dchrisum 27536 | . 2
⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / 𝑎)))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / 𝑥)))) | 
| 30 | 7 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑋 ∈ 𝐷) | 
| 31 |  | nnz 12634 | . . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℤ) | 
| 32 | 31 | adantl 481 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ) | 
| 33 | 4, 1, 5, 2, 30, 32 | dchrzrhcl 27289 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑋‘(𝐿‘𝑛)) ∈ ℂ) | 
| 34 |  | nncn 12274 | . . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℂ) | 
| 35 | 34 | adantl 481 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ) | 
| 36 |  | nnne0 12300 | . . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → 𝑛 ≠ 0) | 
| 37 | 36 | adantl 481 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ≠ 0) | 
| 38 | 33, 35, 37 | divrecd 12046 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑋‘(𝐿‘𝑛)) / 𝑛) = ((𝑋‘(𝐿‘𝑛)) · (1 / 𝑛))) | 
| 39 | 38 | mpteq2dva 5242 | . . . . . . . . 9
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) / 𝑛)) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) · (1 / 𝑛)))) | 
| 40 |  | dchrisumn0.f | . . . . . . . . . 10
⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) | 
| 41 |  | id 22 | . . . . . . . . . . . 12
⊢ (𝑎 = 𝑛 → 𝑎 = 𝑛) | 
| 42 | 25, 41 | oveq12d 7449 | . . . . . . . . . . 11
⊢ (𝑎 = 𝑛 → ((𝑋‘(𝐿‘𝑎)) / 𝑎) = ((𝑋‘(𝐿‘𝑛)) / 𝑛)) | 
| 43 | 42 | cbvmptv 5255 | . . . . . . . . . 10
⊢ (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) / 𝑛)) | 
| 44 | 40, 43 | eqtri 2765 | . . . . . . . . 9
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) / 𝑛)) | 
| 45 | 39, 44, 28 | 3eqtr4g 2802 | . . . . . . . 8
⊢ (𝜑 → 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / 𝑎)))) | 
| 46 | 45 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) → 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / 𝑎)))) | 
| 47 | 46 | seqeq3d 14050 | . . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) → seq1( + ,
𝐹) = seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / 𝑎))))) | 
| 48 | 47 | breq1d 5153 | . . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) → (seq1( + ,
𝐹) ⇝ 𝑡 ↔ seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / 𝑎)))) ⇝ 𝑡)) | 
| 49 |  | 2fveq3 6911 | . . . . . . . . 9
⊢ (𝑦 = 𝑥 → (seq1( + , 𝐹)‘(⌊‘𝑦)) = (seq1( + , 𝐹)‘(⌊‘𝑥))) | 
| 50 | 49 | fvoveq1d 7453 | . . . . . . . 8
⊢ (𝑦 = 𝑥 → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡))) | 
| 51 |  | oveq2 7439 | . . . . . . . 8
⊢ (𝑦 = 𝑥 → (𝑐 / 𝑦) = (𝑐 / 𝑥)) | 
| 52 | 50, 51 | breq12d 5156 | . . . . . . 7
⊢ (𝑦 = 𝑥 → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / 𝑥))) | 
| 53 | 52 | cbvralvw 3237 | . . . . . 6
⊢
(∀𝑦 ∈
(1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦) ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + ,
𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / 𝑥)) | 
| 54 | 45 | seqeq3d 14050 | . . . . . . . . . . 11
⊢ (𝜑 → seq1( + , 𝐹) = seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / 𝑎))))) | 
| 55 | 54 | fveq1d 6908 | . . . . . . . . . 10
⊢ (𝜑 → (seq1( + , 𝐹)‘(⌊‘𝑥)) = (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥))) | 
| 56 | 55 | fvoveq1d 7453 | . . . . . . . . 9
⊢ (𝜑 → (abs‘((seq1( + ,
𝐹)‘(⌊‘𝑥)) − 𝑡)) = (abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡))) | 
| 57 | 56 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) →
(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) = (abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡))) | 
| 58 |  | elrege0 13494 | . . . . . . . . . . . 12
⊢ (𝑐 ∈ (0[,)+∞) ↔
(𝑐 ∈ ℝ ∧ 0
≤ 𝑐)) | 
| 59 | 58 | simplbi 497 | . . . . . . . . . . 11
⊢ (𝑐 ∈ (0[,)+∞) →
𝑐 ∈
ℝ) | 
| 60 | 59 | recnd 11289 | . . . . . . . . . 10
⊢ (𝑐 ∈ (0[,)+∞) →
𝑐 ∈
ℂ) | 
| 61 | 60 | ad2antlr 727 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) →
𝑐 ∈
ℂ) | 
| 62 |  | 1re 11261 | . . . . . . . . . . . . 13
⊢ 1 ∈
ℝ | 
| 63 |  | elicopnf 13485 | . . . . . . . . . . . . 13
⊢ (1 ∈
ℝ → (𝑥 ∈
(1[,)+∞) ↔ (𝑥
∈ ℝ ∧ 1 ≤ 𝑥))) | 
| 64 | 62, 63 | ax-mp 5 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ (1[,)+∞) ↔
(𝑥 ∈ ℝ ∧ 1
≤ 𝑥)) | 
| 65 | 64 | simplbi 497 | . . . . . . . . . . 11
⊢ (𝑥 ∈ (1[,)+∞) →
𝑥 ∈
ℝ) | 
| 66 | 65 | adantl 481 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) →
𝑥 ∈
ℝ) | 
| 67 | 66 | recnd 11289 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) →
𝑥 ∈
ℂ) | 
| 68 |  | 0red 11264 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 0
∈ ℝ) | 
| 69 |  | 1red 11262 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 1
∈ ℝ) | 
| 70 |  | 0lt1 11785 | . . . . . . . . . . . 12
⊢ 0 <
1 | 
| 71 | 70 | a1i 11 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 0
< 1) | 
| 72 | 64 | simprbi 496 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ (1[,)+∞) → 1
≤ 𝑥) | 
| 73 | 72 | adantl 481 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 1
≤ 𝑥) | 
| 74 | 68, 69, 66, 71, 73 | ltletrd 11421 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 0
< 𝑥) | 
| 75 | 74 | gt0ne0d 11827 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) →
𝑥 ≠ 0) | 
| 76 | 61, 67, 75 | divrecd 12046 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) →
(𝑐 / 𝑥) = (𝑐 · (1 / 𝑥))) | 
| 77 | 57, 76 | breq12d 5156 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) →
((abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / 𝑥) ↔ (abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / 𝑥)))) | 
| 78 | 77 | ralbidva 3176 | . . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) → (∀𝑥 ∈
(1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / 𝑥) ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / 𝑥)))) | 
| 79 | 53, 78 | bitrid 283 | . . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) → (∀𝑦 ∈
(1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦) ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / 𝑥)))) | 
| 80 | 48, 79 | anbi12d 632 | . . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ (0[,)+∞)) → ((seq1( + ,
𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈
(1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) ↔ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / 𝑎)))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / 𝑥))))) | 
| 81 | 80 | rexbidva 3177 | . . 3
⊢ (𝜑 → (∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) ↔ ∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / 𝑎)))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / 𝑥))))) | 
| 82 | 81 | exbidv 1921 | . 2
⊢ (𝜑 → (∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) ↔ ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · (1 / 𝑎)))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + ,
(𝑎 ∈ ℕ ↦
((𝑋‘(𝐿‘𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / 𝑥))))) | 
| 83 | 29, 82 | mpbird 257 | 1
⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦))) |