MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrmusumlema Structured version   Visualization version   GIF version

Theorem dchrmusumlema 26857
Description: Lemma for dchrmusum 26888 and dchrisumn0 26885. Apply dchrisum 26856 for the function 1 / 𝑦. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (β„€/nβ„€β€˜π‘)
rpvmasum.l 𝐿 = (β„€RHomβ€˜π‘)
rpvmasum.a (πœ‘ β†’ 𝑁 ∈ β„•)
rpvmasum.g 𝐺 = (DChrβ€˜π‘)
rpvmasum.d 𝐷 = (Baseβ€˜πΊ)
rpvmasum.1 1 = (0gβ€˜πΊ)
dchrisum.b (πœ‘ β†’ 𝑋 ∈ 𝐷)
dchrisum.n1 (πœ‘ β†’ 𝑋 β‰  1 )
dchrisumn0.f 𝐹 = (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž))
Assertion
Ref Expression
dchrmusumlema (πœ‘ β†’ βˆƒπ‘‘βˆƒπ‘ ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑑 ∧ βˆ€π‘¦ ∈ (1[,)+∞)(absβ€˜((seq1( + , 𝐹)β€˜(βŒŠβ€˜π‘¦)) βˆ’ 𝑑)) ≀ (𝑐 / 𝑦)))
Distinct variable groups:   𝑑,𝑐,𝑦, 1   𝐹,𝑐,𝑑,𝑦   π‘Ž,𝑐,𝑑,𝑦   𝑁,𝑐,𝑑,𝑦   πœ‘,𝑐,𝑑   𝑦,𝑍   𝐷,𝑐,𝑑,𝑦   𝐿,π‘Ž,𝑐,𝑑,𝑦   𝑋,π‘Ž,𝑐,𝑑,𝑦
Allowed substitution hints:   πœ‘(𝑦,π‘Ž)   𝐷(π‘Ž)   1 (π‘Ž)   𝐹(π‘Ž)   𝐺(𝑦,𝑑,π‘Ž,𝑐)   𝑁(π‘Ž)   𝑍(𝑑,π‘Ž,𝑐)

Proof of Theorem dchrmusumlema
Dummy variables 𝑛 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . . 3 𝑍 = (β„€/nβ„€β€˜π‘)
2 rpvmasum.l . . 3 𝐿 = (β„€RHomβ€˜π‘)
3 rpvmasum.a . . 3 (πœ‘ β†’ 𝑁 ∈ β„•)
4 rpvmasum.g . . 3 𝐺 = (DChrβ€˜π‘)
5 rpvmasum.d . . 3 𝐷 = (Baseβ€˜πΊ)
6 rpvmasum.1 . . 3 1 = (0gβ€˜πΊ)
7 dchrisum.b . . 3 (πœ‘ β†’ 𝑋 ∈ 𝐷)
8 dchrisum.n1 . . 3 (πœ‘ β†’ 𝑋 β‰  1 )
9 oveq2 7370 . . 3 (𝑛 = π‘₯ β†’ (1 / 𝑛) = (1 / π‘₯))
10 1nn 12171 . . . 4 1 ∈ β„•
1110a1i 11 . . 3 (πœ‘ β†’ 1 ∈ β„•)
12 rpreccl 12948 . . . . 5 (𝑛 ∈ ℝ+ β†’ (1 / 𝑛) ∈ ℝ+)
1312adantl 483 . . . 4 ((πœ‘ ∧ 𝑛 ∈ ℝ+) β†’ (1 / 𝑛) ∈ ℝ+)
1413rpred 12964 . . 3 ((πœ‘ ∧ 𝑛 ∈ ℝ+) β†’ (1 / 𝑛) ∈ ℝ)
15 simp3r 1203 . . . 4 ((πœ‘ ∧ (𝑛 ∈ ℝ+ ∧ π‘₯ ∈ ℝ+) ∧ (1 ≀ 𝑛 ∧ 𝑛 ≀ π‘₯)) β†’ 𝑛 ≀ π‘₯)
16 rpregt0 12936 . . . . . 6 (𝑛 ∈ ℝ+ β†’ (𝑛 ∈ ℝ ∧ 0 < 𝑛))
17 rpregt0 12936 . . . . . 6 (π‘₯ ∈ ℝ+ β†’ (π‘₯ ∈ ℝ ∧ 0 < π‘₯))
18 lerec 12045 . . . . . 6 (((𝑛 ∈ ℝ ∧ 0 < 𝑛) ∧ (π‘₯ ∈ ℝ ∧ 0 < π‘₯)) β†’ (𝑛 ≀ π‘₯ ↔ (1 / π‘₯) ≀ (1 / 𝑛)))
1916, 17, 18syl2an 597 . . . . 5 ((𝑛 ∈ ℝ+ ∧ π‘₯ ∈ ℝ+) β†’ (𝑛 ≀ π‘₯ ↔ (1 / π‘₯) ≀ (1 / 𝑛)))
20193ad2ant2 1135 . . . 4 ((πœ‘ ∧ (𝑛 ∈ ℝ+ ∧ π‘₯ ∈ ℝ+) ∧ (1 ≀ 𝑛 ∧ 𝑛 ≀ π‘₯)) β†’ (𝑛 ≀ π‘₯ ↔ (1 / π‘₯) ≀ (1 / 𝑛)))
2115, 20mpbid 231 . . 3 ((πœ‘ ∧ (𝑛 ∈ ℝ+ ∧ π‘₯ ∈ ℝ+) ∧ (1 ≀ 𝑛 ∧ 𝑛 ≀ π‘₯)) β†’ (1 / π‘₯) ≀ (1 / 𝑛))
22 ax-1cn 11116 . . . 4 1 ∈ β„‚
23 divrcnv 15744 . . . 4 (1 ∈ β„‚ β†’ (𝑛 ∈ ℝ+ ↦ (1 / 𝑛)) β‡π‘Ÿ 0)
2422, 23mp1i 13 . . 3 (πœ‘ β†’ (𝑛 ∈ ℝ+ ↦ (1 / 𝑛)) β‡π‘Ÿ 0)
25 2fveq3 6852 . . . . 5 (π‘Ž = 𝑛 β†’ (π‘‹β€˜(πΏβ€˜π‘Ž)) = (π‘‹β€˜(πΏβ€˜π‘›)))
26 oveq2 7370 . . . . 5 (π‘Ž = 𝑛 β†’ (1 / π‘Ž) = (1 / 𝑛))
2725, 26oveq12d 7380 . . . 4 (π‘Ž = 𝑛 β†’ ((π‘‹β€˜(πΏβ€˜π‘Ž)) Β· (1 / π‘Ž)) = ((π‘‹β€˜(πΏβ€˜π‘›)) Β· (1 / 𝑛)))
2827cbvmptv 5223 . . 3 (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) Β· (1 / π‘Ž))) = (𝑛 ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘›)) Β· (1 / 𝑛)))
291, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 21, 24, 28dchrisum 26856 . 2 (πœ‘ β†’ βˆƒπ‘‘βˆƒπ‘ ∈ (0[,)+∞)(seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) Β· (1 / π‘Ž)))) ⇝ 𝑑 ∧ βˆ€π‘₯ ∈ (1[,)+∞)(absβ€˜((seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) Β· (1 / π‘Ž))))β€˜(βŒŠβ€˜π‘₯)) βˆ’ 𝑑)) ≀ (𝑐 Β· (1 / π‘₯))))
307adantr 482 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ 𝑋 ∈ 𝐷)
31 nnz 12527 . . . . . . . . . . . . 13 (𝑛 ∈ β„• β†’ 𝑛 ∈ β„€)
3231adantl 483 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ 𝑛 ∈ β„€)
334, 1, 5, 2, 30, 32dchrzrhcl 26609 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (π‘‹β€˜(πΏβ€˜π‘›)) ∈ β„‚)
34 nncn 12168 . . . . . . . . . . . 12 (𝑛 ∈ β„• β†’ 𝑛 ∈ β„‚)
3534adantl 483 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ 𝑛 ∈ β„‚)
36 nnne0 12194 . . . . . . . . . . . 12 (𝑛 ∈ β„• β†’ 𝑛 β‰  0)
3736adantl 483 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ 𝑛 β‰  0)
3833, 35, 37divrecd 11941 . . . . . . . . . 10 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ ((π‘‹β€˜(πΏβ€˜π‘›)) / 𝑛) = ((π‘‹β€˜(πΏβ€˜π‘›)) Β· (1 / 𝑛)))
3938mpteq2dva 5210 . . . . . . . . 9 (πœ‘ β†’ (𝑛 ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘›)) / 𝑛)) = (𝑛 ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘›)) Β· (1 / 𝑛))))
40 dchrisumn0.f . . . . . . . . . 10 𝐹 = (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž))
41 id 22 . . . . . . . . . . . 12 (π‘Ž = 𝑛 β†’ π‘Ž = 𝑛)
4225, 41oveq12d 7380 . . . . . . . . . . 11 (π‘Ž = 𝑛 β†’ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž) = ((π‘‹β€˜(πΏβ€˜π‘›)) / 𝑛))
4342cbvmptv 5223 . . . . . . . . . 10 (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž)) = (𝑛 ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘›)) / 𝑛))
4440, 43eqtri 2765 . . . . . . . . 9 𝐹 = (𝑛 ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘›)) / 𝑛))
4539, 44, 283eqtr4g 2802 . . . . . . . 8 (πœ‘ β†’ 𝐹 = (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) Β· (1 / π‘Ž))))
4645adantr 482 . . . . . . 7 ((πœ‘ ∧ 𝑐 ∈ (0[,)+∞)) β†’ 𝐹 = (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) Β· (1 / π‘Ž))))
4746seqeq3d 13921 . . . . . 6 ((πœ‘ ∧ 𝑐 ∈ (0[,)+∞)) β†’ seq1( + , 𝐹) = seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) Β· (1 / π‘Ž)))))
4847breq1d 5120 . . . . 5 ((πœ‘ ∧ 𝑐 ∈ (0[,)+∞)) β†’ (seq1( + , 𝐹) ⇝ 𝑑 ↔ seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) Β· (1 / π‘Ž)))) ⇝ 𝑑))
49 2fveq3 6852 . . . . . . . . 9 (𝑦 = π‘₯ β†’ (seq1( + , 𝐹)β€˜(βŒŠβ€˜π‘¦)) = (seq1( + , 𝐹)β€˜(βŒŠβ€˜π‘₯)))
5049fvoveq1d 7384 . . . . . . . 8 (𝑦 = π‘₯ β†’ (absβ€˜((seq1( + , 𝐹)β€˜(βŒŠβ€˜π‘¦)) βˆ’ 𝑑)) = (absβ€˜((seq1( + , 𝐹)β€˜(βŒŠβ€˜π‘₯)) βˆ’ 𝑑)))
51 oveq2 7370 . . . . . . . 8 (𝑦 = π‘₯ β†’ (𝑐 / 𝑦) = (𝑐 / π‘₯))
5250, 51breq12d 5123 . . . . . . 7 (𝑦 = π‘₯ β†’ ((absβ€˜((seq1( + , 𝐹)β€˜(βŒŠβ€˜π‘¦)) βˆ’ 𝑑)) ≀ (𝑐 / 𝑦) ↔ (absβ€˜((seq1( + , 𝐹)β€˜(βŒŠβ€˜π‘₯)) βˆ’ 𝑑)) ≀ (𝑐 / π‘₯)))
5352cbvralvw 3228 . . . . . 6 (βˆ€π‘¦ ∈ (1[,)+∞)(absβ€˜((seq1( + , 𝐹)β€˜(βŒŠβ€˜π‘¦)) βˆ’ 𝑑)) ≀ (𝑐 / 𝑦) ↔ βˆ€π‘₯ ∈ (1[,)+∞)(absβ€˜((seq1( + , 𝐹)β€˜(βŒŠβ€˜π‘₯)) βˆ’ 𝑑)) ≀ (𝑐 / π‘₯))
5445seqeq3d 13921 . . . . . . . . . . 11 (πœ‘ β†’ seq1( + , 𝐹) = seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) Β· (1 / π‘Ž)))))
5554fveq1d 6849 . . . . . . . . . 10 (πœ‘ β†’ (seq1( + , 𝐹)β€˜(βŒŠβ€˜π‘₯)) = (seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) Β· (1 / π‘Ž))))β€˜(βŒŠβ€˜π‘₯)))
5655fvoveq1d 7384 . . . . . . . . 9 (πœ‘ β†’ (absβ€˜((seq1( + , 𝐹)β€˜(βŒŠβ€˜π‘₯)) βˆ’ 𝑑)) = (absβ€˜((seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) Β· (1 / π‘Ž))))β€˜(βŒŠβ€˜π‘₯)) βˆ’ 𝑑)))
5756ad2antrr 725 . . . . . . . 8 (((πœ‘ ∧ 𝑐 ∈ (0[,)+∞)) ∧ π‘₯ ∈ (1[,)+∞)) β†’ (absβ€˜((seq1( + , 𝐹)β€˜(βŒŠβ€˜π‘₯)) βˆ’ 𝑑)) = (absβ€˜((seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) Β· (1 / π‘Ž))))β€˜(βŒŠβ€˜π‘₯)) βˆ’ 𝑑)))
58 elrege0 13378 . . . . . . . . . . . 12 (𝑐 ∈ (0[,)+∞) ↔ (𝑐 ∈ ℝ ∧ 0 ≀ 𝑐))
5958simplbi 499 . . . . . . . . . . 11 (𝑐 ∈ (0[,)+∞) β†’ 𝑐 ∈ ℝ)
6059recnd 11190 . . . . . . . . . 10 (𝑐 ∈ (0[,)+∞) β†’ 𝑐 ∈ β„‚)
6160ad2antlr 726 . . . . . . . . 9 (((πœ‘ ∧ 𝑐 ∈ (0[,)+∞)) ∧ π‘₯ ∈ (1[,)+∞)) β†’ 𝑐 ∈ β„‚)
62 1re 11162 . . . . . . . . . . . . 13 1 ∈ ℝ
63 elicopnf 13369 . . . . . . . . . . . . 13 (1 ∈ ℝ β†’ (π‘₯ ∈ (1[,)+∞) ↔ (π‘₯ ∈ ℝ ∧ 1 ≀ π‘₯)))
6462, 63ax-mp 5 . . . . . . . . . . . 12 (π‘₯ ∈ (1[,)+∞) ↔ (π‘₯ ∈ ℝ ∧ 1 ≀ π‘₯))
6564simplbi 499 . . . . . . . . . . 11 (π‘₯ ∈ (1[,)+∞) β†’ π‘₯ ∈ ℝ)
6665adantl 483 . . . . . . . . . 10 (((πœ‘ ∧ 𝑐 ∈ (0[,)+∞)) ∧ π‘₯ ∈ (1[,)+∞)) β†’ π‘₯ ∈ ℝ)
6766recnd 11190 . . . . . . . . 9 (((πœ‘ ∧ 𝑐 ∈ (0[,)+∞)) ∧ π‘₯ ∈ (1[,)+∞)) β†’ π‘₯ ∈ β„‚)
68 0red 11165 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑐 ∈ (0[,)+∞)) ∧ π‘₯ ∈ (1[,)+∞)) β†’ 0 ∈ ℝ)
69 1red 11163 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑐 ∈ (0[,)+∞)) ∧ π‘₯ ∈ (1[,)+∞)) β†’ 1 ∈ ℝ)
70 0lt1 11684 . . . . . . . . . . . 12 0 < 1
7170a1i 11 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑐 ∈ (0[,)+∞)) ∧ π‘₯ ∈ (1[,)+∞)) β†’ 0 < 1)
7264simprbi 498 . . . . . . . . . . . 12 (π‘₯ ∈ (1[,)+∞) β†’ 1 ≀ π‘₯)
7372adantl 483 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑐 ∈ (0[,)+∞)) ∧ π‘₯ ∈ (1[,)+∞)) β†’ 1 ≀ π‘₯)
7468, 69, 66, 71, 73ltletrd 11322 . . . . . . . . . 10 (((πœ‘ ∧ 𝑐 ∈ (0[,)+∞)) ∧ π‘₯ ∈ (1[,)+∞)) β†’ 0 < π‘₯)
7574gt0ne0d 11726 . . . . . . . . 9 (((πœ‘ ∧ 𝑐 ∈ (0[,)+∞)) ∧ π‘₯ ∈ (1[,)+∞)) β†’ π‘₯ β‰  0)
7661, 67, 75divrecd 11941 . . . . . . . 8 (((πœ‘ ∧ 𝑐 ∈ (0[,)+∞)) ∧ π‘₯ ∈ (1[,)+∞)) β†’ (𝑐 / π‘₯) = (𝑐 Β· (1 / π‘₯)))
7757, 76breq12d 5123 . . . . . . 7 (((πœ‘ ∧ 𝑐 ∈ (0[,)+∞)) ∧ π‘₯ ∈ (1[,)+∞)) β†’ ((absβ€˜((seq1( + , 𝐹)β€˜(βŒŠβ€˜π‘₯)) βˆ’ 𝑑)) ≀ (𝑐 / π‘₯) ↔ (absβ€˜((seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) Β· (1 / π‘Ž))))β€˜(βŒŠβ€˜π‘₯)) βˆ’ 𝑑)) ≀ (𝑐 Β· (1 / π‘₯))))
7877ralbidva 3173 . . . . . 6 ((πœ‘ ∧ 𝑐 ∈ (0[,)+∞)) β†’ (βˆ€π‘₯ ∈ (1[,)+∞)(absβ€˜((seq1( + , 𝐹)β€˜(βŒŠβ€˜π‘₯)) βˆ’ 𝑑)) ≀ (𝑐 / π‘₯) ↔ βˆ€π‘₯ ∈ (1[,)+∞)(absβ€˜((seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) Β· (1 / π‘Ž))))β€˜(βŒŠβ€˜π‘₯)) βˆ’ 𝑑)) ≀ (𝑐 Β· (1 / π‘₯))))
7953, 78bitrid 283 . . . . 5 ((πœ‘ ∧ 𝑐 ∈ (0[,)+∞)) β†’ (βˆ€π‘¦ ∈ (1[,)+∞)(absβ€˜((seq1( + , 𝐹)β€˜(βŒŠβ€˜π‘¦)) βˆ’ 𝑑)) ≀ (𝑐 / 𝑦) ↔ βˆ€π‘₯ ∈ (1[,)+∞)(absβ€˜((seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) Β· (1 / π‘Ž))))β€˜(βŒŠβ€˜π‘₯)) βˆ’ 𝑑)) ≀ (𝑐 Β· (1 / π‘₯))))
8048, 79anbi12d 632 . . . 4 ((πœ‘ ∧ 𝑐 ∈ (0[,)+∞)) β†’ ((seq1( + , 𝐹) ⇝ 𝑑 ∧ βˆ€π‘¦ ∈ (1[,)+∞)(absβ€˜((seq1( + , 𝐹)β€˜(βŒŠβ€˜π‘¦)) βˆ’ 𝑑)) ≀ (𝑐 / 𝑦)) ↔ (seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) Β· (1 / π‘Ž)))) ⇝ 𝑑 ∧ βˆ€π‘₯ ∈ (1[,)+∞)(absβ€˜((seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) Β· (1 / π‘Ž))))β€˜(βŒŠβ€˜π‘₯)) βˆ’ 𝑑)) ≀ (𝑐 Β· (1 / π‘₯)))))
8180rexbidva 3174 . . 3 (πœ‘ β†’ (βˆƒπ‘ ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑑 ∧ βˆ€π‘¦ ∈ (1[,)+∞)(absβ€˜((seq1( + , 𝐹)β€˜(βŒŠβ€˜π‘¦)) βˆ’ 𝑑)) ≀ (𝑐 / 𝑦)) ↔ βˆƒπ‘ ∈ (0[,)+∞)(seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) Β· (1 / π‘Ž)))) ⇝ 𝑑 ∧ βˆ€π‘₯ ∈ (1[,)+∞)(absβ€˜((seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) Β· (1 / π‘Ž))))β€˜(βŒŠβ€˜π‘₯)) βˆ’ 𝑑)) ≀ (𝑐 Β· (1 / π‘₯)))))
8281exbidv 1925 . 2 (πœ‘ β†’ (βˆƒπ‘‘βˆƒπ‘ ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑑 ∧ βˆ€π‘¦ ∈ (1[,)+∞)(absβ€˜((seq1( + , 𝐹)β€˜(βŒŠβ€˜π‘¦)) βˆ’ 𝑑)) ≀ (𝑐 / 𝑦)) ↔ βˆƒπ‘‘βˆƒπ‘ ∈ (0[,)+∞)(seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) Β· (1 / π‘Ž)))) ⇝ 𝑑 ∧ βˆ€π‘₯ ∈ (1[,)+∞)(absβ€˜((seq1( + , (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) Β· (1 / π‘Ž))))β€˜(βŒŠβ€˜π‘₯)) βˆ’ 𝑑)) ≀ (𝑐 Β· (1 / π‘₯)))))
8329, 82mpbird 257 1 (πœ‘ β†’ βˆƒπ‘‘βˆƒπ‘ ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑑 ∧ βˆ€π‘¦ ∈ (1[,)+∞)(absβ€˜((seq1( + , 𝐹)β€˜(βŒŠβ€˜π‘¦)) βˆ’ 𝑑)) ≀ (𝑐 / 𝑦)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542  βˆƒwex 1782   ∈ wcel 2107   β‰  wne 2944  βˆ€wral 3065  βˆƒwrex 3074   class class class wbr 5110   ↦ cmpt 5193  β€˜cfv 6501  (class class class)co 7362  β„‚cc 11056  β„cr 11057  0cc0 11058  1c1 11059   + caddc 11061   Β· cmul 11063  +∞cpnf 11193   < clt 11196   ≀ cle 11197   βˆ’ cmin 11392   / cdiv 11819  β„•cn 12160  β„€cz 12506  β„+crp 12922  [,)cico 13273  βŒŠcfl 13702  seqcseq 13913  abscabs 15126   ⇝ cli 15373   β‡π‘Ÿ crli 15374  Basecbs 17090  0gc0g 17328  β„€RHomczrh 20916  β„€/nβ„€czn 20919  DChrcdchr 26596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136  ax-addf 11137  ax-mulf 11138
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-oadd 8421  df-er 8655  df-ec 8657  df-qs 8661  df-map 8774  df-pm 8775  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9385  df-inf 9386  df-oi 9453  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-4 12225  df-5 12226  df-6 12227  df-7 12228  df-8 12229  df-9 12230  df-n0 12421  df-xnn0 12493  df-z 12507  df-dec 12626  df-uz 12771  df-rp 12923  df-ico 13277  df-fz 13432  df-fzo 13575  df-fl 13704  df-mod 13782  df-seq 13914  df-exp 13975  df-hash 14238  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-limsup 15360  df-clim 15377  df-rlim 15378  df-sum 15578  df-dvds 16144  df-gcd 16382  df-phi 16645  df-struct 17026  df-sets 17043  df-slot 17061  df-ndx 17073  df-base 17091  df-ress 17120  df-plusg 17153  df-mulr 17154  df-starv 17155  df-sca 17156  df-vsca 17157  df-ip 17158  df-tset 17159  df-ple 17160  df-ds 17162  df-unif 17163  df-0g 17330  df-imas 17397  df-qus 17398  df-mgm 18504  df-sgrp 18553  df-mnd 18564  df-mhm 18608  df-grp 18758  df-minusg 18759  df-sbg 18760  df-mulg 18880  df-subg 18932  df-nsg 18933  df-eqg 18934  df-ghm 19013  df-cmn 19571  df-abl 19572  df-mgp 19904  df-ur 19921  df-ring 19973  df-cring 19974  df-oppr 20056  df-dvdsr 20077  df-unit 20078  df-invr 20108  df-rnghom 20155  df-subrg 20236  df-lmod 20340  df-lss 20409  df-lsp 20449  df-sra 20649  df-rgmod 20650  df-lidl 20651  df-rsp 20652  df-2idl 20718  df-cnfld 20813  df-zring 20886  df-zrh 20920  df-zn 20923  df-dchr 26597
This theorem is referenced by:  rpvmasum2  26876  dchrisum0re  26877  dchrisum0lem3  26883  dchrmusum  26888  dchrvmasum  26889
  Copyright terms: Public domain W3C validator