MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1fsum Structured version   Visualization version   GIF version

Theorem o1fsum 15786
Description: If 𝐴(𝑘) is O(1), then Σ𝑘𝑥, 𝐴(𝑘) is O(𝑥). (Contributed by Mario Carneiro, 23-May-2016.)
Hypotheses
Ref Expression
o1fsum.1 ((𝜑𝑘 ∈ ℕ) → 𝐴𝑉)
o1fsum.2 (𝜑 → (𝑘 ∈ ℕ ↦ 𝐴) ∈ 𝑂(1))
Assertion
Ref Expression
o1fsum (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑘,𝜑
Allowed substitution hints:   𝐴(𝑘)   𝑉(𝑥,𝑘)

Proof of Theorem o1fsum
Dummy variables 𝑚 𝑐 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1fsum.2 . . 3 (𝜑 → (𝑘 ∈ ℕ ↦ 𝐴) ∈ 𝑂(1))
2 nnssre 12197 . . . . 5 ℕ ⊆ ℝ
32a1i 11 . . . 4 (𝜑 → ℕ ⊆ ℝ)
4 o1fsum.1 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝐴𝑉)
54, 1o1mptrcl 15596 . . . 4 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
6 1red 11182 . . . 4 (𝜑 → 1 ∈ ℝ)
73, 5, 6elo1mpt2 15508 . . 3 (𝜑 → ((𝑘 ∈ ℕ ↦ 𝐴) ∈ 𝑂(1) ↔ ∃𝑐 ∈ (1[,)+∞)∃𝑚 ∈ ℝ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)))
81, 7mpbid 232 . 2 (𝜑 → ∃𝑐 ∈ (1[,)+∞)∃𝑚 ∈ ℝ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚))
9 rpssre 12966 . . . . . 6 + ⊆ ℝ
109a1i 11 . . . . 5 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → ℝ+ ⊆ ℝ)
11 csbeq1a 3879 . . . . . . . 8 (𝑘 = 𝑛𝐴 = 𝑛 / 𝑘𝐴)
12 nfcv 2892 . . . . . . . 8 𝑛𝐴
13 nfcsb1v 3889 . . . . . . . 8 𝑘𝑛 / 𝑘𝐴
1411, 12, 13cbvsum 15668 . . . . . . 7 Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 = Σ𝑛 ∈ (1...(⌊‘𝑥))𝑛 / 𝑘𝐴
15 fzfid 13945 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
16 o1f 15502 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ↦ 𝐴) ∈ 𝑂(1) → (𝑘 ∈ ℕ ↦ 𝐴):dom (𝑘 ∈ ℕ ↦ 𝐴)⟶ℂ)
171, 16syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ ℕ ↦ 𝐴):dom (𝑘 ∈ ℕ ↦ 𝐴)⟶ℂ)
184ralrimiva 3126 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑘 ∈ ℕ 𝐴𝑉)
19 dmmptg 6218 . . . . . . . . . . . . . 14 (∀𝑘 ∈ ℕ 𝐴𝑉 → dom (𝑘 ∈ ℕ ↦ 𝐴) = ℕ)
2018, 19syl 17 . . . . . . . . . . . . 13 (𝜑 → dom (𝑘 ∈ ℕ ↦ 𝐴) = ℕ)
2120feq2d 6675 . . . . . . . . . . . 12 (𝜑 → ((𝑘 ∈ ℕ ↦ 𝐴):dom (𝑘 ∈ ℕ ↦ 𝐴)⟶ℂ ↔ (𝑘 ∈ ℕ ↦ 𝐴):ℕ⟶ℂ))
2217, 21mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝑘 ∈ ℕ ↦ 𝐴):ℕ⟶ℂ)
23 eqid 2730 . . . . . . . . . . . 12 (𝑘 ∈ ℕ ↦ 𝐴) = (𝑘 ∈ ℕ ↦ 𝐴)
2423fmpt 7085 . . . . . . . . . . 11 (∀𝑘 ∈ ℕ 𝐴 ∈ ℂ ↔ (𝑘 ∈ ℕ ↦ 𝐴):ℕ⟶ℂ)
2522, 24sylibr 234 . . . . . . . . . 10 (𝜑 → ∀𝑘 ∈ ℕ 𝐴 ∈ ℂ)
2625ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) → ∀𝑘 ∈ ℕ 𝐴 ∈ ℂ)
27 elfznn 13521 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
2813nfel1 2909 . . . . . . . . . . 11 𝑘𝑛 / 𝑘𝐴 ∈ ℂ
2911eleq1d 2814 . . . . . . . . . . 11 (𝑘 = 𝑛 → (𝐴 ∈ ℂ ↔ 𝑛 / 𝑘𝐴 ∈ ℂ))
3028, 29rspc 3579 . . . . . . . . . 10 (𝑛 ∈ ℕ → (∀𝑘 ∈ ℕ 𝐴 ∈ ℂ → 𝑛 / 𝑘𝐴 ∈ ℂ))
3130impcom 407 . . . . . . . . 9 ((∀𝑘 ∈ ℕ 𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ) → 𝑛 / 𝑘𝐴 ∈ ℂ)
3226, 27, 31syl2an 596 . . . . . . . 8 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 / 𝑘𝐴 ∈ ℂ)
3315, 32fsumcl 15706 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))𝑛 / 𝑘𝐴 ∈ ℂ)
3414, 33eqeltrid 2833 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 ∈ ℂ)
35 rpcn 12969 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
3635adantl 481 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
37 rpne0 12975 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ≠ 0)
3837adantl 481 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
3934, 36, 38divcld 11965 . . . . 5 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) → (Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥) ∈ ℂ)
40 simplrl 776 . . . . . . 7 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → 𝑐 ∈ (1[,)+∞))
41 1re 11181 . . . . . . . 8 1 ∈ ℝ
42 elicopnf 13413 . . . . . . . 8 (1 ∈ ℝ → (𝑐 ∈ (1[,)+∞) ↔ (𝑐 ∈ ℝ ∧ 1 ≤ 𝑐)))
4341, 42ax-mp 5 . . . . . . 7 (𝑐 ∈ (1[,)+∞) ↔ (𝑐 ∈ ℝ ∧ 1 ≤ 𝑐))
4440, 43sylib 218 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → (𝑐 ∈ ℝ ∧ 1 ≤ 𝑐))
4544simpld 494 . . . . 5 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → 𝑐 ∈ ℝ)
46 fzfid 13945 . . . . . . 7 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → (1...(⌊‘𝑐)) ∈ Fin)
4725ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → ∀𝑘 ∈ ℕ 𝐴 ∈ ℂ)
48 elfznn 13521 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝑐)) → 𝑛 ∈ ℕ)
4947, 48, 31syl2an 596 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑛 ∈ (1...(⌊‘𝑐))) → 𝑛 / 𝑘𝐴 ∈ ℂ)
5049abscld 15412 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑛 ∈ (1...(⌊‘𝑐))) → (abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
5146, 50fsumrecl 15707 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
52 simplrr 777 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → 𝑚 ∈ ℝ)
5351, 52readdcld 11210 . . . . 5 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚) ∈ ℝ)
5434, 36, 38absdivd 15431 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) = ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) / (abs‘𝑥)))
5554adantrr 717 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) = ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) / (abs‘𝑥)))
56 rprege0 12974 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
5756ad2antrl 728 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
58 absid 15269 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (abs‘𝑥) = 𝑥)
5957, 58syl 17 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (abs‘𝑥) = 𝑥)
6059oveq2d 7406 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) / (abs‘𝑥)) = ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) / 𝑥))
6155, 60eqtrd 2765 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) = ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) / 𝑥))
6234adantrr 717 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 ∈ ℂ)
6362abscld 15412 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) ∈ ℝ)
64 fzfid 13945 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
6547, 27, 31syl2an 596 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 / 𝑘𝐴 ∈ ℂ)
6665adantlr 715 . . . . . . . . . 10 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 / 𝑘𝐴 ∈ ℂ)
6766abscld 15412 . . . . . . . . 9 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
6864, 67fsumrecl 15707 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
6957simpld 494 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 𝑥 ∈ ℝ)
7051adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
7152adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 𝑚 ∈ ℝ)
7270, 71readdcld 11210 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚) ∈ ℝ)
7369, 72remulcld 11211 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (𝑥 · (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚)) ∈ ℝ)
7414fveq2i 6864 . . . . . . . . 9 (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) = (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))𝑛 / 𝑘𝐴)
7564, 66fsumabs 15774 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))𝑛 / 𝑘𝐴) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴))
7674, 75eqbrtrid 5145 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴))
77 fzfid 13945 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (((⌊‘𝑐) + 1)...(⌊‘𝑥)) ∈ Fin)
78 ssun2 4145 . . . . . . . . . . . . . 14 (((⌊‘𝑐) + 1)...(⌊‘𝑥)) ⊆ ((1...(⌊‘𝑐)) ∪ (((⌊‘𝑐) + 1)...(⌊‘𝑥)))
79 flge1nn 13790 . . . . . . . . . . . . . . . . . 18 ((𝑐 ∈ ℝ ∧ 1 ≤ 𝑐) → (⌊‘𝑐) ∈ ℕ)
8044, 79syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → (⌊‘𝑐) ∈ ℕ)
8180adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (⌊‘𝑐) ∈ ℕ)
8281nnred 12208 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (⌊‘𝑐) ∈ ℝ)
8345adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 𝑐 ∈ ℝ)
84 flle 13768 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ → (⌊‘𝑐) ≤ 𝑐)
8583, 84syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (⌊‘𝑐) ≤ 𝑐)
86 simprr 772 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 𝑐𝑥)
8782, 83, 69, 85, 86letrd 11338 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (⌊‘𝑐) ≤ 𝑥)
88 fznnfl 13831 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → ((⌊‘𝑐) ∈ (1...(⌊‘𝑥)) ↔ ((⌊‘𝑐) ∈ ℕ ∧ (⌊‘𝑐) ≤ 𝑥)))
8969, 88syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((⌊‘𝑐) ∈ (1...(⌊‘𝑥)) ↔ ((⌊‘𝑐) ∈ ℕ ∧ (⌊‘𝑐) ≤ 𝑥)))
9081, 87, 89mpbir2and 713 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (⌊‘𝑐) ∈ (1...(⌊‘𝑥)))
91 fzsplit 13518 . . . . . . . . . . . . . . 15 ((⌊‘𝑐) ∈ (1...(⌊‘𝑥)) → (1...(⌊‘𝑥)) = ((1...(⌊‘𝑐)) ∪ (((⌊‘𝑐) + 1)...(⌊‘𝑥))))
9290, 91syl 17 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (1...(⌊‘𝑥)) = ((1...(⌊‘𝑐)) ∪ (((⌊‘𝑐) + 1)...(⌊‘𝑥))))
9378, 92sseqtrrid 3993 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (((⌊‘𝑐) + 1)...(⌊‘𝑥)) ⊆ (1...(⌊‘𝑥)))
9493sselda 3949 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))) → 𝑛 ∈ (1...(⌊‘𝑥)))
9565abscld 15412 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
9695adantlr 715 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
9794, 96syldan 591 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))) → (abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
9877, 97fsumrecl 15707 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
9969, 70remulcld 11211 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)) ∈ ℝ)
10069, 71remulcld 11211 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (𝑥 · 𝑚) ∈ ℝ)
10170recnd 11209 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) ∈ ℂ)
102101mullidd 11199 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (1 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)) = Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴))
103 1red 11182 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 1 ∈ ℝ)
10449absge0d 15420 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑛 ∈ (1...(⌊‘𝑐))) → 0 ≤ (abs‘𝑛 / 𝑘𝐴))
10546, 50, 104fsumge0 15768 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴))
10651, 105jca 511 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) ∈ ℝ ∧ 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)))
107106adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) ∈ ℝ ∧ 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)))
10844simprd 495 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → 1 ≤ 𝑐)
109108adantr 480 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 1 ≤ 𝑐)
110103, 83, 69, 109, 86letrd 11338 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 1 ≤ 𝑥)
111 lemul1a 12043 . . . . . . . . . . . 12 (((1 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) ∈ ℝ ∧ 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴))) ∧ 1 ≤ 𝑥) → (1 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)) ≤ (𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)))
112103, 69, 107, 110, 111syl31anc 1375 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (1 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)) ≤ (𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)))
113102, 112eqbrtrrd 5134 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) ≤ (𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)))
114 hashcl 14328 . . . . . . . . . . . . 13 ((((⌊‘𝑐) + 1)...(⌊‘𝑥)) ∈ Fin → (♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) ∈ ℕ0)
115 nn0re 12458 . . . . . . . . . . . . 13 ((♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) ∈ ℕ0 → (♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) ∈ ℝ)
11677, 114, 1153syl 18 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) ∈ ℝ)
117116, 71remulcld 11211 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) · 𝑚) ∈ ℝ)
11871adantr 480 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))) → 𝑚 ∈ ℝ)
119 elfzuz 13488 . . . . . . . . . . . . . 14 (𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥)) → 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1)))
12081peano2nnd 12210 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((⌊‘𝑐) + 1) ∈ ℕ)
121 eluznn 12884 . . . . . . . . . . . . . . . 16 ((((⌊‘𝑐) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 𝑛 ∈ ℕ)
122120, 121sylan 580 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 𝑛 ∈ ℕ)
123 simpllr 775 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚))
12483adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 𝑐 ∈ ℝ)
125 reflcl 13765 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ → (⌊‘𝑐) ∈ ℝ)
126 peano2re 11354 . . . . . . . . . . . . . . . . 17 ((⌊‘𝑐) ∈ ℝ → ((⌊‘𝑐) + 1) ∈ ℝ)
127124, 125, 1263syl 18 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → ((⌊‘𝑐) + 1) ∈ ℝ)
128122nnred 12208 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 𝑛 ∈ ℝ)
129 fllep1 13770 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ → 𝑐 ≤ ((⌊‘𝑐) + 1))
130124, 129syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 𝑐 ≤ ((⌊‘𝑐) + 1))
131 eluzle 12813 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1)) → ((⌊‘𝑐) + 1) ≤ 𝑛)
132131adantl 481 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → ((⌊‘𝑐) + 1) ≤ 𝑛)
133124, 127, 128, 130, 132letrd 11338 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 𝑐𝑛)
134 nfv 1914 . . . . . . . . . . . . . . . . 17 𝑘 𝑐𝑛
135 nfcv 2892 . . . . . . . . . . . . . . . . . . 19 𝑘abs
136135, 13nffv 6871 . . . . . . . . . . . . . . . . . 18 𝑘(abs‘𝑛 / 𝑘𝐴)
137 nfcv 2892 . . . . . . . . . . . . . . . . . 18 𝑘
138 nfcv 2892 . . . . . . . . . . . . . . . . . 18 𝑘𝑚
139136, 137, 138nfbr 5157 . . . . . . . . . . . . . . . . 17 𝑘(abs‘𝑛 / 𝑘𝐴) ≤ 𝑚
140134, 139nfim 1896 . . . . . . . . . . . . . . . 16 𝑘(𝑐𝑛 → (abs‘𝑛 / 𝑘𝐴) ≤ 𝑚)
141 breq2 5114 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (𝑐𝑘𝑐𝑛))
14211fveq2d 6865 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → (abs‘𝐴) = (abs‘𝑛 / 𝑘𝐴))
143142breq1d 5120 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → ((abs‘𝐴) ≤ 𝑚 ↔ (abs‘𝑛 / 𝑘𝐴) ≤ 𝑚))
144141, 143imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → ((𝑐𝑘 → (abs‘𝐴) ≤ 𝑚) ↔ (𝑐𝑛 → (abs‘𝑛 / 𝑘𝐴) ≤ 𝑚)))
145140, 144rspc 3579 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚) → (𝑐𝑛 → (abs‘𝑛 / 𝑘𝐴) ≤ 𝑚)))
146122, 123, 133, 145syl3c 66 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → (abs‘𝑛 / 𝑘𝐴) ≤ 𝑚)
147119, 146sylan2 593 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))) → (abs‘𝑛 / 𝑘𝐴) ≤ 𝑚)
14877, 97, 118, 147fsumle 15772 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴) ≤ Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))𝑚)
14971recnd 11209 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 𝑚 ∈ ℂ)
150 fsumconst 15763 . . . . . . . . . . . . 13 (((((⌊‘𝑐) + 1)...(⌊‘𝑥)) ∈ Fin ∧ 𝑚 ∈ ℂ) → Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))𝑚 = ((♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) · 𝑚))
15177, 149, 150syl2anc 584 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))𝑚 = ((♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) · 𝑚))
152148, 151breqtrd 5136 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴) ≤ ((♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) · 𝑚))
153 biidd 262 . . . . . . . . . . . . 13 (𝑛 = ((⌊‘𝑐) + 1) → (0 ≤ 𝑚 ↔ 0 ≤ 𝑚))
154 0red 11184 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 0 ∈ ℝ)
15547, 30mpan9 506 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑛 ∈ ℕ) → 𝑛 / 𝑘𝐴 ∈ ℂ)
156155adantlr 715 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ ℕ) → 𝑛 / 𝑘𝐴 ∈ ℂ)
157122, 156syldan 591 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 𝑛 / 𝑘𝐴 ∈ ℂ)
158157abscld 15412 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → (abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
15971adantr 480 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 𝑚 ∈ ℝ)
160157absge0d 15420 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 0 ≤ (abs‘𝑛 / 𝑘𝐴))
161154, 158, 159, 160, 146letrd 11338 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 0 ≤ 𝑚)
162161ralrimiva 3126 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ∀𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))0 ≤ 𝑚)
163120nnzd 12563 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((⌊‘𝑐) + 1) ∈ ℤ)
164 uzid 12815 . . . . . . . . . . . . . 14 (((⌊‘𝑐) + 1) ∈ ℤ → ((⌊‘𝑐) + 1) ∈ (ℤ‘((⌊‘𝑐) + 1)))
165163, 164syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((⌊‘𝑐) + 1) ∈ (ℤ‘((⌊‘𝑐) + 1)))
166153, 162, 165rspcdva 3592 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 0 ≤ 𝑚)
167 reflcl 13765 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
16869, 167syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (⌊‘𝑥) ∈ ℝ)
169 ssdomg 8974 . . . . . . . . . . . . . . . 16 ((1...(⌊‘𝑥)) ∈ Fin → ((((⌊‘𝑐) + 1)...(⌊‘𝑥)) ⊆ (1...(⌊‘𝑥)) → (((⌊‘𝑐) + 1)...(⌊‘𝑥)) ≼ (1...(⌊‘𝑥))))
17064, 93, 169sylc 65 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (((⌊‘𝑐) + 1)...(⌊‘𝑥)) ≼ (1...(⌊‘𝑥)))
171 hashdomi 14352 . . . . . . . . . . . . . . 15 ((((⌊‘𝑐) + 1)...(⌊‘𝑥)) ≼ (1...(⌊‘𝑥)) → (♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) ≤ (♯‘(1...(⌊‘𝑥))))
172170, 171syl 17 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) ≤ (♯‘(1...(⌊‘𝑥))))
173 flge0nn0 13789 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
174 hashfz1 14318 . . . . . . . . . . . . . . 15 ((⌊‘𝑥) ∈ ℕ0 → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
17557, 173, 1743syl 18 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
176172, 175breqtrd 5136 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) ≤ (⌊‘𝑥))
177 flle 13768 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (⌊‘𝑥) ≤ 𝑥)
17869, 177syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (⌊‘𝑥) ≤ 𝑥)
179116, 168, 69, 176, 178letrd 11338 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) ≤ 𝑥)
180116, 69, 71, 166, 179lemul1ad 12129 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) · 𝑚) ≤ (𝑥 · 𝑚))
18198, 117, 100, 152, 180letrd 11338 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴) ≤ (𝑥 · 𝑚))
18270, 98, 99, 100, 113, 181le2addd 11804 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴)) ≤ ((𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)) + (𝑥 · 𝑚)))
183 ltp1 12029 . . . . . . . . . . 11 ((⌊‘𝑐) ∈ ℝ → (⌊‘𝑐) < ((⌊‘𝑐) + 1))
184 fzdisj 13519 . . . . . . . . . . 11 ((⌊‘𝑐) < ((⌊‘𝑐) + 1) → ((1...(⌊‘𝑐)) ∩ (((⌊‘𝑐) + 1)...(⌊‘𝑥))) = ∅)
18582, 183, 1843syl 18 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((1...(⌊‘𝑐)) ∩ (((⌊‘𝑐) + 1)...(⌊‘𝑥))) = ∅)
18696recnd 11209 . . . . . . . . . 10 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘𝑛 / 𝑘𝐴) ∈ ℂ)
187185, 92, 64, 186fsumsplit 15714 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴) = (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴)))
18836adantrr 717 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 𝑥 ∈ ℂ)
189188, 101, 149adddid 11205 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (𝑥 · (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚)) = ((𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)) + (𝑥 · 𝑚)))
190182, 187, 1893brtr4d 5142 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴) ≤ (𝑥 · (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚)))
19163, 68, 73, 76, 190letrd 11338 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) ≤ (𝑥 · (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚)))
192 rpregt0 12973 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
193192ad2antrl 728 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
194 ledivmul 12066 . . . . . . . 8 (((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) ∈ ℝ ∧ (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) / 𝑥) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚) ↔ (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) ≤ (𝑥 · (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚))))
19563, 72, 193, 194syl3anc 1373 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) / 𝑥) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚) ↔ (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) ≤ (𝑥 · (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚))))
196191, 195mpbird 257 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) / 𝑥) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚))
19761, 196eqbrtrd 5132 . . . . 5 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚))
19810, 39, 45, 53, 197elo1d 15509 . . . 4 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) ∈ 𝑂(1))
199198ex 412 . . 3 ((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) → (∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚) → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) ∈ 𝑂(1)))
200199rexlimdvva 3195 . 2 (𝜑 → (∃𝑐 ∈ (1[,)+∞)∃𝑚 ∈ ℝ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚) → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) ∈ 𝑂(1)))
2018, 200mpd 15 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  csb 3865  cun 3915  cin 3916  wss 3917  c0 4299   class class class wbr 5110  cmpt 5191  dom cdm 5641  wf 6510  cfv 6514  (class class class)co 7390  cdom 8919  Fincfn 8921  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  +∞cpnf 11212   < clt 11215  cle 11216   / cdiv 11842  cn 12193  0cn0 12449  cz 12536  cuz 12800  +crp 12958  [,)cico 13315  ...cfz 13475  cfl 13759  chash 14302  abscabs 15207  𝑂(1)co1 15459  Σcsu 15659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-rp 12959  df-ico 13319  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-o1 15463  df-lo1 15464  df-sum 15660
This theorem is referenced by:  selberg2lem  27468
  Copyright terms: Public domain W3C validator