MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1fsum Structured version   Visualization version   GIF version

Theorem o1fsum 15861
Description: If 𝐴(𝑘) is O(1), then Σ𝑘𝑥, 𝐴(𝑘) is O(𝑥). (Contributed by Mario Carneiro, 23-May-2016.)
Hypotheses
Ref Expression
o1fsum.1 ((𝜑𝑘 ∈ ℕ) → 𝐴𝑉)
o1fsum.2 (𝜑 → (𝑘 ∈ ℕ ↦ 𝐴) ∈ 𝑂(1))
Assertion
Ref Expression
o1fsum (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑘,𝜑
Allowed substitution hints:   𝐴(𝑘)   𝑉(𝑥,𝑘)

Proof of Theorem o1fsum
Dummy variables 𝑚 𝑐 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1fsum.2 . . 3 (𝜑 → (𝑘 ∈ ℕ ↦ 𝐴) ∈ 𝑂(1))
2 nnssre 12297 . . . . 5 ℕ ⊆ ℝ
32a1i 11 . . . 4 (𝜑 → ℕ ⊆ ℝ)
4 o1fsum.1 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝐴𝑉)
54, 1o1mptrcl 15669 . . . 4 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
6 1red 11291 . . . 4 (𝜑 → 1 ∈ ℝ)
73, 5, 6elo1mpt2 15581 . . 3 (𝜑 → ((𝑘 ∈ ℕ ↦ 𝐴) ∈ 𝑂(1) ↔ ∃𝑐 ∈ (1[,)+∞)∃𝑚 ∈ ℝ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)))
81, 7mpbid 232 . 2 (𝜑 → ∃𝑐 ∈ (1[,)+∞)∃𝑚 ∈ ℝ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚))
9 rpssre 13064 . . . . . 6 + ⊆ ℝ
109a1i 11 . . . . 5 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → ℝ+ ⊆ ℝ)
11 csbeq1a 3935 . . . . . . . 8 (𝑘 = 𝑛𝐴 = 𝑛 / 𝑘𝐴)
12 nfcv 2908 . . . . . . . 8 𝑛𝐴
13 nfcsb1v 3946 . . . . . . . 8 𝑘𝑛 / 𝑘𝐴
1411, 12, 13cbvsum 15743 . . . . . . 7 Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 = Σ𝑛 ∈ (1...(⌊‘𝑥))𝑛 / 𝑘𝐴
15 fzfid 14024 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
16 o1f 15575 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ↦ 𝐴) ∈ 𝑂(1) → (𝑘 ∈ ℕ ↦ 𝐴):dom (𝑘 ∈ ℕ ↦ 𝐴)⟶ℂ)
171, 16syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ ℕ ↦ 𝐴):dom (𝑘 ∈ ℕ ↦ 𝐴)⟶ℂ)
184ralrimiva 3152 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑘 ∈ ℕ 𝐴𝑉)
19 dmmptg 6273 . . . . . . . . . . . . . 14 (∀𝑘 ∈ ℕ 𝐴𝑉 → dom (𝑘 ∈ ℕ ↦ 𝐴) = ℕ)
2018, 19syl 17 . . . . . . . . . . . . 13 (𝜑 → dom (𝑘 ∈ ℕ ↦ 𝐴) = ℕ)
2120feq2d 6733 . . . . . . . . . . . 12 (𝜑 → ((𝑘 ∈ ℕ ↦ 𝐴):dom (𝑘 ∈ ℕ ↦ 𝐴)⟶ℂ ↔ (𝑘 ∈ ℕ ↦ 𝐴):ℕ⟶ℂ))
2217, 21mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝑘 ∈ ℕ ↦ 𝐴):ℕ⟶ℂ)
23 eqid 2740 . . . . . . . . . . . 12 (𝑘 ∈ ℕ ↦ 𝐴) = (𝑘 ∈ ℕ ↦ 𝐴)
2423fmpt 7144 . . . . . . . . . . 11 (∀𝑘 ∈ ℕ 𝐴 ∈ ℂ ↔ (𝑘 ∈ ℕ ↦ 𝐴):ℕ⟶ℂ)
2522, 24sylibr 234 . . . . . . . . . 10 (𝜑 → ∀𝑘 ∈ ℕ 𝐴 ∈ ℂ)
2625ad3antrrr 729 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) → ∀𝑘 ∈ ℕ 𝐴 ∈ ℂ)
27 elfznn 13613 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
2813nfel1 2925 . . . . . . . . . . 11 𝑘𝑛 / 𝑘𝐴 ∈ ℂ
2911eleq1d 2829 . . . . . . . . . . 11 (𝑘 = 𝑛 → (𝐴 ∈ ℂ ↔ 𝑛 / 𝑘𝐴 ∈ ℂ))
3028, 29rspc 3623 . . . . . . . . . 10 (𝑛 ∈ ℕ → (∀𝑘 ∈ ℕ 𝐴 ∈ ℂ → 𝑛 / 𝑘𝐴 ∈ ℂ))
3130impcom 407 . . . . . . . . 9 ((∀𝑘 ∈ ℕ 𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ) → 𝑛 / 𝑘𝐴 ∈ ℂ)
3226, 27, 31syl2an 595 . . . . . . . 8 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 / 𝑘𝐴 ∈ ℂ)
3315, 32fsumcl 15781 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))𝑛 / 𝑘𝐴 ∈ ℂ)
3414, 33eqeltrid 2848 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 ∈ ℂ)
35 rpcn 13067 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
3635adantl 481 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
37 rpne0 13073 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ≠ 0)
3837adantl 481 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
3934, 36, 38divcld 12070 . . . . 5 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) → (Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥) ∈ ℂ)
40 simplrl 776 . . . . . . 7 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → 𝑐 ∈ (1[,)+∞))
41 1re 11290 . . . . . . . 8 1 ∈ ℝ
42 elicopnf 13505 . . . . . . . 8 (1 ∈ ℝ → (𝑐 ∈ (1[,)+∞) ↔ (𝑐 ∈ ℝ ∧ 1 ≤ 𝑐)))
4341, 42ax-mp 5 . . . . . . 7 (𝑐 ∈ (1[,)+∞) ↔ (𝑐 ∈ ℝ ∧ 1 ≤ 𝑐))
4440, 43sylib 218 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → (𝑐 ∈ ℝ ∧ 1 ≤ 𝑐))
4544simpld 494 . . . . 5 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → 𝑐 ∈ ℝ)
46 fzfid 14024 . . . . . . 7 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → (1...(⌊‘𝑐)) ∈ Fin)
4725ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → ∀𝑘 ∈ ℕ 𝐴 ∈ ℂ)
48 elfznn 13613 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝑐)) → 𝑛 ∈ ℕ)
4947, 48, 31syl2an 595 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑛 ∈ (1...(⌊‘𝑐))) → 𝑛 / 𝑘𝐴 ∈ ℂ)
5049abscld 15485 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑛 ∈ (1...(⌊‘𝑐))) → (abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
5146, 50fsumrecl 15782 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
52 simplrr 777 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → 𝑚 ∈ ℝ)
5351, 52readdcld 11319 . . . . 5 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚) ∈ ℝ)
5434, 36, 38absdivd 15504 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) = ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) / (abs‘𝑥)))
5554adantrr 716 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) = ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) / (abs‘𝑥)))
56 rprege0 13072 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
5756ad2antrl 727 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
58 absid 15345 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (abs‘𝑥) = 𝑥)
5957, 58syl 17 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (abs‘𝑥) = 𝑥)
6059oveq2d 7464 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) / (abs‘𝑥)) = ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) / 𝑥))
6155, 60eqtrd 2780 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) = ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) / 𝑥))
6234adantrr 716 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 ∈ ℂ)
6362abscld 15485 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) ∈ ℝ)
64 fzfid 14024 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
6547, 27, 31syl2an 595 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 / 𝑘𝐴 ∈ ℂ)
6665adantlr 714 . . . . . . . . . 10 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 / 𝑘𝐴 ∈ ℂ)
6766abscld 15485 . . . . . . . . 9 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
6864, 67fsumrecl 15782 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
6957simpld 494 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 𝑥 ∈ ℝ)
7051adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
7152adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 𝑚 ∈ ℝ)
7270, 71readdcld 11319 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚) ∈ ℝ)
7369, 72remulcld 11320 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (𝑥 · (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚)) ∈ ℝ)
7414fveq2i 6923 . . . . . . . . 9 (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) = (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))𝑛 / 𝑘𝐴)
7564, 66fsumabs 15849 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))𝑛 / 𝑘𝐴) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴))
7674, 75eqbrtrid 5201 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴))
77 fzfid 14024 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (((⌊‘𝑐) + 1)...(⌊‘𝑥)) ∈ Fin)
78 ssun2 4202 . . . . . . . . . . . . . 14 (((⌊‘𝑐) + 1)...(⌊‘𝑥)) ⊆ ((1...(⌊‘𝑐)) ∪ (((⌊‘𝑐) + 1)...(⌊‘𝑥)))
79 flge1nn 13872 . . . . . . . . . . . . . . . . . 18 ((𝑐 ∈ ℝ ∧ 1 ≤ 𝑐) → (⌊‘𝑐) ∈ ℕ)
8044, 79syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → (⌊‘𝑐) ∈ ℕ)
8180adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (⌊‘𝑐) ∈ ℕ)
8281nnred 12308 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (⌊‘𝑐) ∈ ℝ)
8345adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 𝑐 ∈ ℝ)
84 flle 13850 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ → (⌊‘𝑐) ≤ 𝑐)
8583, 84syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (⌊‘𝑐) ≤ 𝑐)
86 simprr 772 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 𝑐𝑥)
8782, 83, 69, 85, 86letrd 11447 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (⌊‘𝑐) ≤ 𝑥)
88 fznnfl 13913 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → ((⌊‘𝑐) ∈ (1...(⌊‘𝑥)) ↔ ((⌊‘𝑐) ∈ ℕ ∧ (⌊‘𝑐) ≤ 𝑥)))
8969, 88syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((⌊‘𝑐) ∈ (1...(⌊‘𝑥)) ↔ ((⌊‘𝑐) ∈ ℕ ∧ (⌊‘𝑐) ≤ 𝑥)))
9081, 87, 89mpbir2and 712 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (⌊‘𝑐) ∈ (1...(⌊‘𝑥)))
91 fzsplit 13610 . . . . . . . . . . . . . . 15 ((⌊‘𝑐) ∈ (1...(⌊‘𝑥)) → (1...(⌊‘𝑥)) = ((1...(⌊‘𝑐)) ∪ (((⌊‘𝑐) + 1)...(⌊‘𝑥))))
9290, 91syl 17 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (1...(⌊‘𝑥)) = ((1...(⌊‘𝑐)) ∪ (((⌊‘𝑐) + 1)...(⌊‘𝑥))))
9378, 92sseqtrrid 4062 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (((⌊‘𝑐) + 1)...(⌊‘𝑥)) ⊆ (1...(⌊‘𝑥)))
9493sselda 4008 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))) → 𝑛 ∈ (1...(⌊‘𝑥)))
9565abscld 15485 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
9695adantlr 714 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
9794, 96syldan 590 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))) → (abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
9877, 97fsumrecl 15782 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
9969, 70remulcld 11320 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)) ∈ ℝ)
10069, 71remulcld 11320 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (𝑥 · 𝑚) ∈ ℝ)
10170recnd 11318 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) ∈ ℂ)
102101mullidd 11308 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (1 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)) = Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴))
103 1red 11291 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 1 ∈ ℝ)
10449absge0d 15493 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑛 ∈ (1...(⌊‘𝑐))) → 0 ≤ (abs‘𝑛 / 𝑘𝐴))
10546, 50, 104fsumge0 15843 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴))
10651, 105jca 511 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) ∈ ℝ ∧ 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)))
107106adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) ∈ ℝ ∧ 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)))
10844simprd 495 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → 1 ≤ 𝑐)
109108adantr 480 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 1 ≤ 𝑐)
110103, 83, 69, 109, 86letrd 11447 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 1 ≤ 𝑥)
111 lemul1a 12148 . . . . . . . . . . . 12 (((1 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) ∈ ℝ ∧ 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴))) ∧ 1 ≤ 𝑥) → (1 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)) ≤ (𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)))
112103, 69, 107, 110, 111syl31anc 1373 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (1 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)) ≤ (𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)))
113102, 112eqbrtrrd 5190 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) ≤ (𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)))
114 hashcl 14405 . . . . . . . . . . . . 13 ((((⌊‘𝑐) + 1)...(⌊‘𝑥)) ∈ Fin → (♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) ∈ ℕ0)
115 nn0re 12562 . . . . . . . . . . . . 13 ((♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) ∈ ℕ0 → (♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) ∈ ℝ)
11677, 114, 1153syl 18 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) ∈ ℝ)
117116, 71remulcld 11320 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) · 𝑚) ∈ ℝ)
11871adantr 480 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))) → 𝑚 ∈ ℝ)
119 elfzuz 13580 . . . . . . . . . . . . . 14 (𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥)) → 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1)))
12081peano2nnd 12310 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((⌊‘𝑐) + 1) ∈ ℕ)
121 eluznn 12983 . . . . . . . . . . . . . . . 16 ((((⌊‘𝑐) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 𝑛 ∈ ℕ)
122120, 121sylan 579 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 𝑛 ∈ ℕ)
123 simpllr 775 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚))
12483adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 𝑐 ∈ ℝ)
125 reflcl 13847 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ → (⌊‘𝑐) ∈ ℝ)
126 peano2re 11463 . . . . . . . . . . . . . . . . 17 ((⌊‘𝑐) ∈ ℝ → ((⌊‘𝑐) + 1) ∈ ℝ)
127124, 125, 1263syl 18 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → ((⌊‘𝑐) + 1) ∈ ℝ)
128122nnred 12308 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 𝑛 ∈ ℝ)
129 fllep1 13852 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ → 𝑐 ≤ ((⌊‘𝑐) + 1))
130124, 129syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 𝑐 ≤ ((⌊‘𝑐) + 1))
131 eluzle 12916 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1)) → ((⌊‘𝑐) + 1) ≤ 𝑛)
132131adantl 481 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → ((⌊‘𝑐) + 1) ≤ 𝑛)
133124, 127, 128, 130, 132letrd 11447 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 𝑐𝑛)
134 nfv 1913 . . . . . . . . . . . . . . . . 17 𝑘 𝑐𝑛
135 nfcv 2908 . . . . . . . . . . . . . . . . . . 19 𝑘abs
136135, 13nffv 6930 . . . . . . . . . . . . . . . . . 18 𝑘(abs‘𝑛 / 𝑘𝐴)
137 nfcv 2908 . . . . . . . . . . . . . . . . . 18 𝑘
138 nfcv 2908 . . . . . . . . . . . . . . . . . 18 𝑘𝑚
139136, 137, 138nfbr 5213 . . . . . . . . . . . . . . . . 17 𝑘(abs‘𝑛 / 𝑘𝐴) ≤ 𝑚
140134, 139nfim 1895 . . . . . . . . . . . . . . . 16 𝑘(𝑐𝑛 → (abs‘𝑛 / 𝑘𝐴) ≤ 𝑚)
141 breq2 5170 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (𝑐𝑘𝑐𝑛))
14211fveq2d 6924 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → (abs‘𝐴) = (abs‘𝑛 / 𝑘𝐴))
143142breq1d 5176 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → ((abs‘𝐴) ≤ 𝑚 ↔ (abs‘𝑛 / 𝑘𝐴) ≤ 𝑚))
144141, 143imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → ((𝑐𝑘 → (abs‘𝐴) ≤ 𝑚) ↔ (𝑐𝑛 → (abs‘𝑛 / 𝑘𝐴) ≤ 𝑚)))
145140, 144rspc 3623 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚) → (𝑐𝑛 → (abs‘𝑛 / 𝑘𝐴) ≤ 𝑚)))
146122, 123, 133, 145syl3c 66 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → (abs‘𝑛 / 𝑘𝐴) ≤ 𝑚)
147119, 146sylan2 592 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))) → (abs‘𝑛 / 𝑘𝐴) ≤ 𝑚)
14877, 97, 118, 147fsumle 15847 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴) ≤ Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))𝑚)
14971recnd 11318 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 𝑚 ∈ ℂ)
150 fsumconst 15838 . . . . . . . . . . . . 13 (((((⌊‘𝑐) + 1)...(⌊‘𝑥)) ∈ Fin ∧ 𝑚 ∈ ℂ) → Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))𝑚 = ((♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) · 𝑚))
15177, 149, 150syl2anc 583 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))𝑚 = ((♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) · 𝑚))
152148, 151breqtrd 5192 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴) ≤ ((♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) · 𝑚))
153 biidd 262 . . . . . . . . . . . . 13 (𝑛 = ((⌊‘𝑐) + 1) → (0 ≤ 𝑚 ↔ 0 ≤ 𝑚))
154 0red 11293 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 0 ∈ ℝ)
15547, 30mpan9 506 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑛 ∈ ℕ) → 𝑛 / 𝑘𝐴 ∈ ℂ)
156155adantlr 714 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ ℕ) → 𝑛 / 𝑘𝐴 ∈ ℂ)
157122, 156syldan 590 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 𝑛 / 𝑘𝐴 ∈ ℂ)
158157abscld 15485 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → (abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
15971adantr 480 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 𝑚 ∈ ℝ)
160157absge0d 15493 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 0 ≤ (abs‘𝑛 / 𝑘𝐴))
161154, 158, 159, 160, 146letrd 11447 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 0 ≤ 𝑚)
162161ralrimiva 3152 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ∀𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))0 ≤ 𝑚)
163120nnzd 12666 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((⌊‘𝑐) + 1) ∈ ℤ)
164 uzid 12918 . . . . . . . . . . . . . 14 (((⌊‘𝑐) + 1) ∈ ℤ → ((⌊‘𝑐) + 1) ∈ (ℤ‘((⌊‘𝑐) + 1)))
165163, 164syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((⌊‘𝑐) + 1) ∈ (ℤ‘((⌊‘𝑐) + 1)))
166153, 162, 165rspcdva 3636 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 0 ≤ 𝑚)
167 reflcl 13847 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
16869, 167syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (⌊‘𝑥) ∈ ℝ)
169 ssdomg 9060 . . . . . . . . . . . . . . . 16 ((1...(⌊‘𝑥)) ∈ Fin → ((((⌊‘𝑐) + 1)...(⌊‘𝑥)) ⊆ (1...(⌊‘𝑥)) → (((⌊‘𝑐) + 1)...(⌊‘𝑥)) ≼ (1...(⌊‘𝑥))))
17064, 93, 169sylc 65 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (((⌊‘𝑐) + 1)...(⌊‘𝑥)) ≼ (1...(⌊‘𝑥)))
171 hashdomi 14429 . . . . . . . . . . . . . . 15 ((((⌊‘𝑐) + 1)...(⌊‘𝑥)) ≼ (1...(⌊‘𝑥)) → (♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) ≤ (♯‘(1...(⌊‘𝑥))))
172170, 171syl 17 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) ≤ (♯‘(1...(⌊‘𝑥))))
173 flge0nn0 13871 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
174 hashfz1 14395 . . . . . . . . . . . . . . 15 ((⌊‘𝑥) ∈ ℕ0 → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
17557, 173, 1743syl 18 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
176172, 175breqtrd 5192 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) ≤ (⌊‘𝑥))
177 flle 13850 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (⌊‘𝑥) ≤ 𝑥)
17869, 177syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (⌊‘𝑥) ≤ 𝑥)
179116, 168, 69, 176, 178letrd 11447 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) ≤ 𝑥)
180116, 69, 71, 166, 179lemul1ad 12234 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) · 𝑚) ≤ (𝑥 · 𝑚))
18198, 117, 100, 152, 180letrd 11447 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴) ≤ (𝑥 · 𝑚))
18270, 98, 99, 100, 113, 181le2addd 11909 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴)) ≤ ((𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)) + (𝑥 · 𝑚)))
183 ltp1 12134 . . . . . . . . . . 11 ((⌊‘𝑐) ∈ ℝ → (⌊‘𝑐) < ((⌊‘𝑐) + 1))
184 fzdisj 13611 . . . . . . . . . . 11 ((⌊‘𝑐) < ((⌊‘𝑐) + 1) → ((1...(⌊‘𝑐)) ∩ (((⌊‘𝑐) + 1)...(⌊‘𝑥))) = ∅)
18582, 183, 1843syl 18 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((1...(⌊‘𝑐)) ∩ (((⌊‘𝑐) + 1)...(⌊‘𝑥))) = ∅)
18696recnd 11318 . . . . . . . . . 10 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘𝑛 / 𝑘𝐴) ∈ ℂ)
187185, 92, 64, 186fsumsplit 15789 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴) = (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴)))
18836adantrr 716 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 𝑥 ∈ ℂ)
189188, 101, 149adddid 11314 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (𝑥 · (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚)) = ((𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)) + (𝑥 · 𝑚)))
190182, 187, 1893brtr4d 5198 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴) ≤ (𝑥 · (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚)))
19163, 68, 73, 76, 190letrd 11447 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) ≤ (𝑥 · (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚)))
192 rpregt0 13071 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
193192ad2antrl 727 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
194 ledivmul 12171 . . . . . . . 8 (((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) ∈ ℝ ∧ (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) / 𝑥) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚) ↔ (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) ≤ (𝑥 · (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚))))
19563, 72, 193, 194syl3anc 1371 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) / 𝑥) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚) ↔ (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) ≤ (𝑥 · (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚))))
196191, 195mpbird 257 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) / 𝑥) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚))
19761, 196eqbrtrd 5188 . . . . 5 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚))
19810, 39, 45, 53, 197elo1d 15582 . . . 4 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) ∈ 𝑂(1))
199198ex 412 . . 3 ((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) → (∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚) → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) ∈ 𝑂(1)))
200199rexlimdvva 3219 . 2 (𝜑 → (∃𝑐 ∈ (1[,)+∞)∃𝑚 ∈ ℝ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚) → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) ∈ 𝑂(1)))
2018, 200mpd 15 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  csb 3921  cun 3974  cin 3975  wss 3976  c0 4352   class class class wbr 5166  cmpt 5249  dom cdm 5700  wf 6569  cfv 6573  (class class class)co 7448  cdom 9001  Fincfn 9003  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  +∞cpnf 11321   < clt 11324  cle 11325   / cdiv 11947  cn 12293  0cn0 12553  cz 12639  cuz 12903  +crp 13057  [,)cico 13409  ...cfz 13567  cfl 13841  chash 14379  abscabs 15283  𝑂(1)co1 15532  Σcsu 15734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-o1 15536  df-lo1 15537  df-sum 15735
This theorem is referenced by:  selberg2lem  27612
  Copyright terms: Public domain W3C validator