MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1fsum Structured version   Visualization version   GIF version

Theorem o1fsum 15453
Description: If 𝐴(𝑘) is O(1), then Σ𝑘𝑥, 𝐴(𝑘) is O(𝑥). (Contributed by Mario Carneiro, 23-May-2016.)
Hypotheses
Ref Expression
o1fsum.1 ((𝜑𝑘 ∈ ℕ) → 𝐴𝑉)
o1fsum.2 (𝜑 → (𝑘 ∈ ℕ ↦ 𝐴) ∈ 𝑂(1))
Assertion
Ref Expression
o1fsum (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑘,𝜑
Allowed substitution hints:   𝐴(𝑘)   𝑉(𝑥,𝑘)

Proof of Theorem o1fsum
Dummy variables 𝑚 𝑐 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1fsum.2 . . 3 (𝜑 → (𝑘 ∈ ℕ ↦ 𝐴) ∈ 𝑂(1))
2 nnssre 11907 . . . . 5 ℕ ⊆ ℝ
32a1i 11 . . . 4 (𝜑 → ℕ ⊆ ℝ)
4 o1fsum.1 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝐴𝑉)
54, 1o1mptrcl 15260 . . . 4 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
6 1red 10907 . . . 4 (𝜑 → 1 ∈ ℝ)
73, 5, 6elo1mpt2 15172 . . 3 (𝜑 → ((𝑘 ∈ ℕ ↦ 𝐴) ∈ 𝑂(1) ↔ ∃𝑐 ∈ (1[,)+∞)∃𝑚 ∈ ℝ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)))
81, 7mpbid 231 . 2 (𝜑 → ∃𝑐 ∈ (1[,)+∞)∃𝑚 ∈ ℝ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚))
9 rpssre 12666 . . . . . 6 + ⊆ ℝ
109a1i 11 . . . . 5 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → ℝ+ ⊆ ℝ)
11 nfcv 2906 . . . . . . . 8 𝑛𝐴
12 nfcsb1v 3853 . . . . . . . 8 𝑘𝑛 / 𝑘𝐴
13 csbeq1a 3842 . . . . . . . 8 (𝑘 = 𝑛𝐴 = 𝑛 / 𝑘𝐴)
1411, 12, 13cbvsumi 15337 . . . . . . 7 Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 = Σ𝑛 ∈ (1...(⌊‘𝑥))𝑛 / 𝑘𝐴
15 fzfid 13621 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
16 o1f 15166 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ↦ 𝐴) ∈ 𝑂(1) → (𝑘 ∈ ℕ ↦ 𝐴):dom (𝑘 ∈ ℕ ↦ 𝐴)⟶ℂ)
171, 16syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ ℕ ↦ 𝐴):dom (𝑘 ∈ ℕ ↦ 𝐴)⟶ℂ)
184ralrimiva 3107 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑘 ∈ ℕ 𝐴𝑉)
19 dmmptg 6134 . . . . . . . . . . . . . 14 (∀𝑘 ∈ ℕ 𝐴𝑉 → dom (𝑘 ∈ ℕ ↦ 𝐴) = ℕ)
2018, 19syl 17 . . . . . . . . . . . . 13 (𝜑 → dom (𝑘 ∈ ℕ ↦ 𝐴) = ℕ)
2120feq2d 6570 . . . . . . . . . . . 12 (𝜑 → ((𝑘 ∈ ℕ ↦ 𝐴):dom (𝑘 ∈ ℕ ↦ 𝐴)⟶ℂ ↔ (𝑘 ∈ ℕ ↦ 𝐴):ℕ⟶ℂ))
2217, 21mpbid 231 . . . . . . . . . . 11 (𝜑 → (𝑘 ∈ ℕ ↦ 𝐴):ℕ⟶ℂ)
23 eqid 2738 . . . . . . . . . . . 12 (𝑘 ∈ ℕ ↦ 𝐴) = (𝑘 ∈ ℕ ↦ 𝐴)
2423fmpt 6966 . . . . . . . . . . 11 (∀𝑘 ∈ ℕ 𝐴 ∈ ℂ ↔ (𝑘 ∈ ℕ ↦ 𝐴):ℕ⟶ℂ)
2522, 24sylibr 233 . . . . . . . . . 10 (𝜑 → ∀𝑘 ∈ ℕ 𝐴 ∈ ℂ)
2625ad3antrrr 726 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) → ∀𝑘 ∈ ℕ 𝐴 ∈ ℂ)
27 elfznn 13214 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
2812nfel1 2922 . . . . . . . . . . 11 𝑘𝑛 / 𝑘𝐴 ∈ ℂ
2913eleq1d 2823 . . . . . . . . . . 11 (𝑘 = 𝑛 → (𝐴 ∈ ℂ ↔ 𝑛 / 𝑘𝐴 ∈ ℂ))
3028, 29rspc 3539 . . . . . . . . . 10 (𝑛 ∈ ℕ → (∀𝑘 ∈ ℕ 𝐴 ∈ ℂ → 𝑛 / 𝑘𝐴 ∈ ℂ))
3130impcom 407 . . . . . . . . 9 ((∀𝑘 ∈ ℕ 𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ) → 𝑛 / 𝑘𝐴 ∈ ℂ)
3226, 27, 31syl2an 595 . . . . . . . 8 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 / 𝑘𝐴 ∈ ℂ)
3315, 32fsumcl 15373 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))𝑛 / 𝑘𝐴 ∈ ℂ)
3414, 33eqeltrid 2843 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 ∈ ℂ)
35 rpcn 12669 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
3635adantl 481 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
37 rpne0 12675 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ≠ 0)
3837adantl 481 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
3934, 36, 38divcld 11681 . . . . 5 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) → (Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥) ∈ ℂ)
40 simplrl 773 . . . . . . 7 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → 𝑐 ∈ (1[,)+∞))
41 1re 10906 . . . . . . . 8 1 ∈ ℝ
42 elicopnf 13106 . . . . . . . 8 (1 ∈ ℝ → (𝑐 ∈ (1[,)+∞) ↔ (𝑐 ∈ ℝ ∧ 1 ≤ 𝑐)))
4341, 42ax-mp 5 . . . . . . 7 (𝑐 ∈ (1[,)+∞) ↔ (𝑐 ∈ ℝ ∧ 1 ≤ 𝑐))
4440, 43sylib 217 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → (𝑐 ∈ ℝ ∧ 1 ≤ 𝑐))
4544simpld 494 . . . . 5 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → 𝑐 ∈ ℝ)
46 fzfid 13621 . . . . . . 7 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → (1...(⌊‘𝑐)) ∈ Fin)
4725ad2antrr 722 . . . . . . . . 9 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → ∀𝑘 ∈ ℕ 𝐴 ∈ ℂ)
48 elfznn 13214 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝑐)) → 𝑛 ∈ ℕ)
4947, 48, 31syl2an 595 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑛 ∈ (1...(⌊‘𝑐))) → 𝑛 / 𝑘𝐴 ∈ ℂ)
5049abscld 15076 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑛 ∈ (1...(⌊‘𝑐))) → (abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
5146, 50fsumrecl 15374 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
52 simplrr 774 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → 𝑚 ∈ ℝ)
5351, 52readdcld 10935 . . . . 5 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚) ∈ ℝ)
5434, 36, 38absdivd 15095 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) = ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) / (abs‘𝑥)))
5554adantrr 713 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) = ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) / (abs‘𝑥)))
56 rprege0 12674 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
5756ad2antrl 724 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
58 absid 14936 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (abs‘𝑥) = 𝑥)
5957, 58syl 17 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (abs‘𝑥) = 𝑥)
6059oveq2d 7271 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) / (abs‘𝑥)) = ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) / 𝑥))
6155, 60eqtrd 2778 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) = ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) / 𝑥))
6234adantrr 713 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 ∈ ℂ)
6362abscld 15076 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) ∈ ℝ)
64 fzfid 13621 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
6547, 27, 31syl2an 595 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 / 𝑘𝐴 ∈ ℂ)
6665adantlr 711 . . . . . . . . . 10 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 / 𝑘𝐴 ∈ ℂ)
6766abscld 15076 . . . . . . . . 9 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
6864, 67fsumrecl 15374 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
6957simpld 494 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 𝑥 ∈ ℝ)
7051adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
7152adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 𝑚 ∈ ℝ)
7270, 71readdcld 10935 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚) ∈ ℝ)
7369, 72remulcld 10936 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (𝑥 · (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚)) ∈ ℝ)
7414fveq2i 6759 . . . . . . . . 9 (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) = (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))𝑛 / 𝑘𝐴)
7564, 66fsumabs 15441 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))𝑛 / 𝑘𝐴) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴))
7674, 75eqbrtrid 5105 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴))
77 fzfid 13621 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (((⌊‘𝑐) + 1)...(⌊‘𝑥)) ∈ Fin)
78 ssun2 4103 . . . . . . . . . . . . . 14 (((⌊‘𝑐) + 1)...(⌊‘𝑥)) ⊆ ((1...(⌊‘𝑐)) ∪ (((⌊‘𝑐) + 1)...(⌊‘𝑥)))
79 flge1nn 13469 . . . . . . . . . . . . . . . . . 18 ((𝑐 ∈ ℝ ∧ 1 ≤ 𝑐) → (⌊‘𝑐) ∈ ℕ)
8044, 79syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → (⌊‘𝑐) ∈ ℕ)
8180adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (⌊‘𝑐) ∈ ℕ)
8281nnred 11918 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (⌊‘𝑐) ∈ ℝ)
8345adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 𝑐 ∈ ℝ)
84 flle 13447 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ → (⌊‘𝑐) ≤ 𝑐)
8583, 84syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (⌊‘𝑐) ≤ 𝑐)
86 simprr 769 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 𝑐𝑥)
8782, 83, 69, 85, 86letrd 11062 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (⌊‘𝑐) ≤ 𝑥)
88 fznnfl 13510 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → ((⌊‘𝑐) ∈ (1...(⌊‘𝑥)) ↔ ((⌊‘𝑐) ∈ ℕ ∧ (⌊‘𝑐) ≤ 𝑥)))
8969, 88syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((⌊‘𝑐) ∈ (1...(⌊‘𝑥)) ↔ ((⌊‘𝑐) ∈ ℕ ∧ (⌊‘𝑐) ≤ 𝑥)))
9081, 87, 89mpbir2and 709 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (⌊‘𝑐) ∈ (1...(⌊‘𝑥)))
91 fzsplit 13211 . . . . . . . . . . . . . . 15 ((⌊‘𝑐) ∈ (1...(⌊‘𝑥)) → (1...(⌊‘𝑥)) = ((1...(⌊‘𝑐)) ∪ (((⌊‘𝑐) + 1)...(⌊‘𝑥))))
9290, 91syl 17 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (1...(⌊‘𝑥)) = ((1...(⌊‘𝑐)) ∪ (((⌊‘𝑐) + 1)...(⌊‘𝑥))))
9378, 92sseqtrrid 3970 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (((⌊‘𝑐) + 1)...(⌊‘𝑥)) ⊆ (1...(⌊‘𝑥)))
9493sselda 3917 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))) → 𝑛 ∈ (1...(⌊‘𝑥)))
9565abscld 15076 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
9695adantlr 711 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
9794, 96syldan 590 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))) → (abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
9877, 97fsumrecl 15374 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
9969, 70remulcld 10936 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)) ∈ ℝ)
10069, 71remulcld 10936 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (𝑥 · 𝑚) ∈ ℝ)
10170recnd 10934 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) ∈ ℂ)
102101mulid2d 10924 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (1 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)) = Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴))
103 1red 10907 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 1 ∈ ℝ)
10449absge0d 15084 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑛 ∈ (1...(⌊‘𝑐))) → 0 ≤ (abs‘𝑛 / 𝑘𝐴))
10546, 50, 104fsumge0 15435 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴))
10651, 105jca 511 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) ∈ ℝ ∧ 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)))
107106adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) ∈ ℝ ∧ 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)))
10844simprd 495 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → 1 ≤ 𝑐)
109108adantr 480 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 1 ≤ 𝑐)
110103, 83, 69, 109, 86letrd 11062 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 1 ≤ 𝑥)
111 lemul1a 11759 . . . . . . . . . . . 12 (((1 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) ∈ ℝ ∧ 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴))) ∧ 1 ≤ 𝑥) → (1 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)) ≤ (𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)))
112103, 69, 107, 110, 111syl31anc 1371 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (1 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)) ≤ (𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)))
113102, 112eqbrtrrd 5094 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) ≤ (𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)))
114 hashcl 13999 . . . . . . . . . . . . 13 ((((⌊‘𝑐) + 1)...(⌊‘𝑥)) ∈ Fin → (♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) ∈ ℕ0)
115 nn0re 12172 . . . . . . . . . . . . 13 ((♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) ∈ ℕ0 → (♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) ∈ ℝ)
11677, 114, 1153syl 18 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) ∈ ℝ)
117116, 71remulcld 10936 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) · 𝑚) ∈ ℝ)
11871adantr 480 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))) → 𝑚 ∈ ℝ)
119 elfzuz 13181 . . . . . . . . . . . . . 14 (𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥)) → 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1)))
12081peano2nnd 11920 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((⌊‘𝑐) + 1) ∈ ℕ)
121 eluznn 12587 . . . . . . . . . . . . . . . 16 ((((⌊‘𝑐) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 𝑛 ∈ ℕ)
122120, 121sylan 579 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 𝑛 ∈ ℕ)
123 simpllr 772 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚))
12483adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 𝑐 ∈ ℝ)
125 reflcl 13444 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ → (⌊‘𝑐) ∈ ℝ)
126 peano2re 11078 . . . . . . . . . . . . . . . . 17 ((⌊‘𝑐) ∈ ℝ → ((⌊‘𝑐) + 1) ∈ ℝ)
127124, 125, 1263syl 18 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → ((⌊‘𝑐) + 1) ∈ ℝ)
128122nnred 11918 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 𝑛 ∈ ℝ)
129 fllep1 13449 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ → 𝑐 ≤ ((⌊‘𝑐) + 1))
130124, 129syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 𝑐 ≤ ((⌊‘𝑐) + 1))
131 eluzle 12524 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1)) → ((⌊‘𝑐) + 1) ≤ 𝑛)
132131adantl 481 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → ((⌊‘𝑐) + 1) ≤ 𝑛)
133124, 127, 128, 130, 132letrd 11062 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 𝑐𝑛)
134 nfv 1918 . . . . . . . . . . . . . . . . 17 𝑘 𝑐𝑛
135 nfcv 2906 . . . . . . . . . . . . . . . . . . 19 𝑘abs
136135, 12nffv 6766 . . . . . . . . . . . . . . . . . 18 𝑘(abs‘𝑛 / 𝑘𝐴)
137 nfcv 2906 . . . . . . . . . . . . . . . . . 18 𝑘
138 nfcv 2906 . . . . . . . . . . . . . . . . . 18 𝑘𝑚
139136, 137, 138nfbr 5117 . . . . . . . . . . . . . . . . 17 𝑘(abs‘𝑛 / 𝑘𝐴) ≤ 𝑚
140134, 139nfim 1900 . . . . . . . . . . . . . . . 16 𝑘(𝑐𝑛 → (abs‘𝑛 / 𝑘𝐴) ≤ 𝑚)
141 breq2 5074 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (𝑐𝑘𝑐𝑛))
14213fveq2d 6760 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → (abs‘𝐴) = (abs‘𝑛 / 𝑘𝐴))
143142breq1d 5080 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → ((abs‘𝐴) ≤ 𝑚 ↔ (abs‘𝑛 / 𝑘𝐴) ≤ 𝑚))
144141, 143imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → ((𝑐𝑘 → (abs‘𝐴) ≤ 𝑚) ↔ (𝑐𝑛 → (abs‘𝑛 / 𝑘𝐴) ≤ 𝑚)))
145140, 144rspc 3539 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚) → (𝑐𝑛 → (abs‘𝑛 / 𝑘𝐴) ≤ 𝑚)))
146122, 123, 133, 145syl3c 66 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → (abs‘𝑛 / 𝑘𝐴) ≤ 𝑚)
147119, 146sylan2 592 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))) → (abs‘𝑛 / 𝑘𝐴) ≤ 𝑚)
14877, 97, 118, 147fsumle 15439 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴) ≤ Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))𝑚)
14971recnd 10934 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 𝑚 ∈ ℂ)
150 fsumconst 15430 . . . . . . . . . . . . 13 (((((⌊‘𝑐) + 1)...(⌊‘𝑥)) ∈ Fin ∧ 𝑚 ∈ ℂ) → Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))𝑚 = ((♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) · 𝑚))
15177, 149, 150syl2anc 583 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))𝑚 = ((♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) · 𝑚))
152148, 151breqtrd 5096 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴) ≤ ((♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) · 𝑚))
153 biidd 261 . . . . . . . . . . . . 13 (𝑛 = ((⌊‘𝑐) + 1) → (0 ≤ 𝑚 ↔ 0 ≤ 𝑚))
154 0red 10909 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 0 ∈ ℝ)
15547, 30mpan9 506 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑛 ∈ ℕ) → 𝑛 / 𝑘𝐴 ∈ ℂ)
156155adantlr 711 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ ℕ) → 𝑛 / 𝑘𝐴 ∈ ℂ)
157122, 156syldan 590 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 𝑛 / 𝑘𝐴 ∈ ℂ)
158157abscld 15076 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → (abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
15971adantr 480 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 𝑚 ∈ ℝ)
160157absge0d 15084 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 0 ≤ (abs‘𝑛 / 𝑘𝐴))
161154, 158, 159, 160, 146letrd 11062 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 0 ≤ 𝑚)
162161ralrimiva 3107 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ∀𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))0 ≤ 𝑚)
163120nnzd 12354 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((⌊‘𝑐) + 1) ∈ ℤ)
164 uzid 12526 . . . . . . . . . . . . . 14 (((⌊‘𝑐) + 1) ∈ ℤ → ((⌊‘𝑐) + 1) ∈ (ℤ‘((⌊‘𝑐) + 1)))
165163, 164syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((⌊‘𝑐) + 1) ∈ (ℤ‘((⌊‘𝑐) + 1)))
166153, 162, 165rspcdva 3554 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 0 ≤ 𝑚)
167 reflcl 13444 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
16869, 167syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (⌊‘𝑥) ∈ ℝ)
169 ssdomg 8741 . . . . . . . . . . . . . . . 16 ((1...(⌊‘𝑥)) ∈ Fin → ((((⌊‘𝑐) + 1)...(⌊‘𝑥)) ⊆ (1...(⌊‘𝑥)) → (((⌊‘𝑐) + 1)...(⌊‘𝑥)) ≼ (1...(⌊‘𝑥))))
17064, 93, 169sylc 65 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (((⌊‘𝑐) + 1)...(⌊‘𝑥)) ≼ (1...(⌊‘𝑥)))
171 hashdomi 14023 . . . . . . . . . . . . . . 15 ((((⌊‘𝑐) + 1)...(⌊‘𝑥)) ≼ (1...(⌊‘𝑥)) → (♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) ≤ (♯‘(1...(⌊‘𝑥))))
172170, 171syl 17 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) ≤ (♯‘(1...(⌊‘𝑥))))
173 flge0nn0 13468 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
174 hashfz1 13988 . . . . . . . . . . . . . . 15 ((⌊‘𝑥) ∈ ℕ0 → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
17557, 173, 1743syl 18 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
176172, 175breqtrd 5096 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) ≤ (⌊‘𝑥))
177 flle 13447 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (⌊‘𝑥) ≤ 𝑥)
17869, 177syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (⌊‘𝑥) ≤ 𝑥)
179116, 168, 69, 176, 178letrd 11062 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) ≤ 𝑥)
180116, 69, 71, 166, 179lemul1ad 11844 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) · 𝑚) ≤ (𝑥 · 𝑚))
18198, 117, 100, 152, 180letrd 11062 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴) ≤ (𝑥 · 𝑚))
18270, 98, 99, 100, 113, 181le2addd 11524 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴)) ≤ ((𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)) + (𝑥 · 𝑚)))
183 ltp1 11745 . . . . . . . . . . 11 ((⌊‘𝑐) ∈ ℝ → (⌊‘𝑐) < ((⌊‘𝑐) + 1))
184 fzdisj 13212 . . . . . . . . . . 11 ((⌊‘𝑐) < ((⌊‘𝑐) + 1) → ((1...(⌊‘𝑐)) ∩ (((⌊‘𝑐) + 1)...(⌊‘𝑥))) = ∅)
18582, 183, 1843syl 18 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((1...(⌊‘𝑐)) ∩ (((⌊‘𝑐) + 1)...(⌊‘𝑥))) = ∅)
18696recnd 10934 . . . . . . . . . 10 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘𝑛 / 𝑘𝐴) ∈ ℂ)
187185, 92, 64, 186fsumsplit 15381 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴) = (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴)))
18836adantrr 713 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 𝑥 ∈ ℂ)
189188, 101, 149adddid 10930 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (𝑥 · (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚)) = ((𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)) + (𝑥 · 𝑚)))
190182, 187, 1893brtr4d 5102 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴) ≤ (𝑥 · (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚)))
19163, 68, 73, 76, 190letrd 11062 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) ≤ (𝑥 · (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚)))
192 rpregt0 12673 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
193192ad2antrl 724 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
194 ledivmul 11781 . . . . . . . 8 (((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) ∈ ℝ ∧ (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) / 𝑥) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚) ↔ (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) ≤ (𝑥 · (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚))))
19563, 72, 193, 194syl3anc 1369 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) / 𝑥) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚) ↔ (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) ≤ (𝑥 · (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚))))
196191, 195mpbird 256 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) / 𝑥) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚))
19761, 196eqbrtrd 5092 . . . . 5 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚))
19810, 39, 45, 53, 197elo1d 15173 . . . 4 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) ∈ 𝑂(1))
199198ex 412 . . 3 ((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) → (∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚) → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) ∈ 𝑂(1)))
200199rexlimdvva 3222 . 2 (𝜑 → (∃𝑐 ∈ (1[,)+∞)∃𝑚 ∈ ℝ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚) → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) ∈ 𝑂(1)))
2018, 200mpd 15 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  csb 3828  cun 3881  cin 3882  wss 3883  c0 4253   class class class wbr 5070  cmpt 5153  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  cdom 8689  Fincfn 8691  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  +∞cpnf 10937   < clt 10940  cle 10941   / cdiv 11562  cn 11903  0cn0 12163  cz 12249  cuz 12511  +crp 12659  [,)cico 13010  ...cfz 13168  cfl 13438  chash 13972  abscabs 14873  𝑂(1)co1 15123  Σcsu 15325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-o1 15127  df-lo1 15128  df-sum 15326
This theorem is referenced by:  selberg2lem  26603
  Copyright terms: Public domain W3C validator