MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1fsum Structured version   Visualization version   GIF version

Theorem o1fsum 15834
Description: If 𝐴(𝑘) is O(1), then Σ𝑘𝑥, 𝐴(𝑘) is O(𝑥). (Contributed by Mario Carneiro, 23-May-2016.)
Hypotheses
Ref Expression
o1fsum.1 ((𝜑𝑘 ∈ ℕ) → 𝐴𝑉)
o1fsum.2 (𝜑 → (𝑘 ∈ ℕ ↦ 𝐴) ∈ 𝑂(1))
Assertion
Ref Expression
o1fsum (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑘,𝜑
Allowed substitution hints:   𝐴(𝑘)   𝑉(𝑥,𝑘)

Proof of Theorem o1fsum
Dummy variables 𝑚 𝑐 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1fsum.2 . . 3 (𝜑 → (𝑘 ∈ ℕ ↦ 𝐴) ∈ 𝑂(1))
2 nnssre 12249 . . . . 5 ℕ ⊆ ℝ
32a1i 11 . . . 4 (𝜑 → ℕ ⊆ ℝ)
4 o1fsum.1 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝐴𝑉)
54, 1o1mptrcl 15644 . . . 4 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
6 1red 11241 . . . 4 (𝜑 → 1 ∈ ℝ)
73, 5, 6elo1mpt2 15556 . . 3 (𝜑 → ((𝑘 ∈ ℕ ↦ 𝐴) ∈ 𝑂(1) ↔ ∃𝑐 ∈ (1[,)+∞)∃𝑚 ∈ ℝ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)))
81, 7mpbid 232 . 2 (𝜑 → ∃𝑐 ∈ (1[,)+∞)∃𝑚 ∈ ℝ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚))
9 rpssre 13021 . . . . . 6 + ⊆ ℝ
109a1i 11 . . . . 5 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → ℝ+ ⊆ ℝ)
11 csbeq1a 3893 . . . . . . . 8 (𝑘 = 𝑛𝐴 = 𝑛 / 𝑘𝐴)
12 nfcv 2899 . . . . . . . 8 𝑛𝐴
13 nfcsb1v 3903 . . . . . . . 8 𝑘𝑛 / 𝑘𝐴
1411, 12, 13cbvsum 15716 . . . . . . 7 Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 = Σ𝑛 ∈ (1...(⌊‘𝑥))𝑛 / 𝑘𝐴
15 fzfid 13996 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
16 o1f 15550 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ↦ 𝐴) ∈ 𝑂(1) → (𝑘 ∈ ℕ ↦ 𝐴):dom (𝑘 ∈ ℕ ↦ 𝐴)⟶ℂ)
171, 16syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ ℕ ↦ 𝐴):dom (𝑘 ∈ ℕ ↦ 𝐴)⟶ℂ)
184ralrimiva 3133 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑘 ∈ ℕ 𝐴𝑉)
19 dmmptg 6236 . . . . . . . . . . . . . 14 (∀𝑘 ∈ ℕ 𝐴𝑉 → dom (𝑘 ∈ ℕ ↦ 𝐴) = ℕ)
2018, 19syl 17 . . . . . . . . . . . . 13 (𝜑 → dom (𝑘 ∈ ℕ ↦ 𝐴) = ℕ)
2120feq2d 6697 . . . . . . . . . . . 12 (𝜑 → ((𝑘 ∈ ℕ ↦ 𝐴):dom (𝑘 ∈ ℕ ↦ 𝐴)⟶ℂ ↔ (𝑘 ∈ ℕ ↦ 𝐴):ℕ⟶ℂ))
2217, 21mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝑘 ∈ ℕ ↦ 𝐴):ℕ⟶ℂ)
23 eqid 2736 . . . . . . . . . . . 12 (𝑘 ∈ ℕ ↦ 𝐴) = (𝑘 ∈ ℕ ↦ 𝐴)
2423fmpt 7105 . . . . . . . . . . 11 (∀𝑘 ∈ ℕ 𝐴 ∈ ℂ ↔ (𝑘 ∈ ℕ ↦ 𝐴):ℕ⟶ℂ)
2522, 24sylibr 234 . . . . . . . . . 10 (𝜑 → ∀𝑘 ∈ ℕ 𝐴 ∈ ℂ)
2625ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) → ∀𝑘 ∈ ℕ 𝐴 ∈ ℂ)
27 elfznn 13575 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
2813nfel1 2916 . . . . . . . . . . 11 𝑘𝑛 / 𝑘𝐴 ∈ ℂ
2911eleq1d 2820 . . . . . . . . . . 11 (𝑘 = 𝑛 → (𝐴 ∈ ℂ ↔ 𝑛 / 𝑘𝐴 ∈ ℂ))
3028, 29rspc 3594 . . . . . . . . . 10 (𝑛 ∈ ℕ → (∀𝑘 ∈ ℕ 𝐴 ∈ ℂ → 𝑛 / 𝑘𝐴 ∈ ℂ))
3130impcom 407 . . . . . . . . 9 ((∀𝑘 ∈ ℕ 𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ) → 𝑛 / 𝑘𝐴 ∈ ℂ)
3226, 27, 31syl2an 596 . . . . . . . 8 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 / 𝑘𝐴 ∈ ℂ)
3315, 32fsumcl 15754 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))𝑛 / 𝑘𝐴 ∈ ℂ)
3414, 33eqeltrid 2839 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 ∈ ℂ)
35 rpcn 13024 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
3635adantl 481 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
37 rpne0 13030 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ≠ 0)
3837adantl 481 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
3934, 36, 38divcld 12022 . . . . 5 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) → (Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥) ∈ ℂ)
40 simplrl 776 . . . . . . 7 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → 𝑐 ∈ (1[,)+∞))
41 1re 11240 . . . . . . . 8 1 ∈ ℝ
42 elicopnf 13467 . . . . . . . 8 (1 ∈ ℝ → (𝑐 ∈ (1[,)+∞) ↔ (𝑐 ∈ ℝ ∧ 1 ≤ 𝑐)))
4341, 42ax-mp 5 . . . . . . 7 (𝑐 ∈ (1[,)+∞) ↔ (𝑐 ∈ ℝ ∧ 1 ≤ 𝑐))
4440, 43sylib 218 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → (𝑐 ∈ ℝ ∧ 1 ≤ 𝑐))
4544simpld 494 . . . . 5 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → 𝑐 ∈ ℝ)
46 fzfid 13996 . . . . . . 7 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → (1...(⌊‘𝑐)) ∈ Fin)
4725ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → ∀𝑘 ∈ ℕ 𝐴 ∈ ℂ)
48 elfznn 13575 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝑐)) → 𝑛 ∈ ℕ)
4947, 48, 31syl2an 596 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑛 ∈ (1...(⌊‘𝑐))) → 𝑛 / 𝑘𝐴 ∈ ℂ)
5049abscld 15460 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑛 ∈ (1...(⌊‘𝑐))) → (abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
5146, 50fsumrecl 15755 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
52 simplrr 777 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → 𝑚 ∈ ℝ)
5351, 52readdcld 11269 . . . . 5 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚) ∈ ℝ)
5434, 36, 38absdivd 15479 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑥 ∈ ℝ+) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) = ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) / (abs‘𝑥)))
5554adantrr 717 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) = ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) / (abs‘𝑥)))
56 rprege0 13029 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
5756ad2antrl 728 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
58 absid 15320 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (abs‘𝑥) = 𝑥)
5957, 58syl 17 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (abs‘𝑥) = 𝑥)
6059oveq2d 7426 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) / (abs‘𝑥)) = ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) / 𝑥))
6155, 60eqtrd 2771 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) = ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) / 𝑥))
6234adantrr 717 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 ∈ ℂ)
6362abscld 15460 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) ∈ ℝ)
64 fzfid 13996 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
6547, 27, 31syl2an 596 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 / 𝑘𝐴 ∈ ℂ)
6665adantlr 715 . . . . . . . . . 10 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 / 𝑘𝐴 ∈ ℂ)
6766abscld 15460 . . . . . . . . 9 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
6864, 67fsumrecl 15755 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
6957simpld 494 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 𝑥 ∈ ℝ)
7051adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
7152adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 𝑚 ∈ ℝ)
7270, 71readdcld 11269 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚) ∈ ℝ)
7369, 72remulcld 11270 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (𝑥 · (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚)) ∈ ℝ)
7414fveq2i 6884 . . . . . . . . 9 (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) = (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))𝑛 / 𝑘𝐴)
7564, 66fsumabs 15822 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))𝑛 / 𝑘𝐴) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴))
7674, 75eqbrtrid 5159 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴))
77 fzfid 13996 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (((⌊‘𝑐) + 1)...(⌊‘𝑥)) ∈ Fin)
78 ssun2 4159 . . . . . . . . . . . . . 14 (((⌊‘𝑐) + 1)...(⌊‘𝑥)) ⊆ ((1...(⌊‘𝑐)) ∪ (((⌊‘𝑐) + 1)...(⌊‘𝑥)))
79 flge1nn 13843 . . . . . . . . . . . . . . . . . 18 ((𝑐 ∈ ℝ ∧ 1 ≤ 𝑐) → (⌊‘𝑐) ∈ ℕ)
8044, 79syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → (⌊‘𝑐) ∈ ℕ)
8180adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (⌊‘𝑐) ∈ ℕ)
8281nnred 12260 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (⌊‘𝑐) ∈ ℝ)
8345adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 𝑐 ∈ ℝ)
84 flle 13821 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ → (⌊‘𝑐) ≤ 𝑐)
8583, 84syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (⌊‘𝑐) ≤ 𝑐)
86 simprr 772 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 𝑐𝑥)
8782, 83, 69, 85, 86letrd 11397 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (⌊‘𝑐) ≤ 𝑥)
88 fznnfl 13884 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → ((⌊‘𝑐) ∈ (1...(⌊‘𝑥)) ↔ ((⌊‘𝑐) ∈ ℕ ∧ (⌊‘𝑐) ≤ 𝑥)))
8969, 88syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((⌊‘𝑐) ∈ (1...(⌊‘𝑥)) ↔ ((⌊‘𝑐) ∈ ℕ ∧ (⌊‘𝑐) ≤ 𝑥)))
9081, 87, 89mpbir2and 713 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (⌊‘𝑐) ∈ (1...(⌊‘𝑥)))
91 fzsplit 13572 . . . . . . . . . . . . . . 15 ((⌊‘𝑐) ∈ (1...(⌊‘𝑥)) → (1...(⌊‘𝑥)) = ((1...(⌊‘𝑐)) ∪ (((⌊‘𝑐) + 1)...(⌊‘𝑥))))
9290, 91syl 17 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (1...(⌊‘𝑥)) = ((1...(⌊‘𝑐)) ∪ (((⌊‘𝑐) + 1)...(⌊‘𝑥))))
9378, 92sseqtrrid 4007 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (((⌊‘𝑐) + 1)...(⌊‘𝑥)) ⊆ (1...(⌊‘𝑥)))
9493sselda 3963 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))) → 𝑛 ∈ (1...(⌊‘𝑥)))
9565abscld 15460 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
9695adantlr 715 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
9794, 96syldan 591 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))) → (abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
9877, 97fsumrecl 15755 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
9969, 70remulcld 11270 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)) ∈ ℝ)
10069, 71remulcld 11270 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (𝑥 · 𝑚) ∈ ℝ)
10170recnd 11268 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) ∈ ℂ)
102101mullidd 11258 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (1 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)) = Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴))
103 1red 11241 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 1 ∈ ℝ)
10449absge0d 15468 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑛 ∈ (1...(⌊‘𝑐))) → 0 ≤ (abs‘𝑛 / 𝑘𝐴))
10546, 50, 104fsumge0 15816 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴))
10651, 105jca 511 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) ∈ ℝ ∧ 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)))
107106adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) ∈ ℝ ∧ 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)))
10844simprd 495 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → 1 ≤ 𝑐)
109108adantr 480 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 1 ≤ 𝑐)
110103, 83, 69, 109, 86letrd 11397 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 1 ≤ 𝑥)
111 lemul1a 12100 . . . . . . . . . . . 12 (((1 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) ∈ ℝ ∧ 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴))) ∧ 1 ≤ 𝑥) → (1 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)) ≤ (𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)))
112103, 69, 107, 110, 111syl31anc 1375 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (1 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)) ≤ (𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)))
113102, 112eqbrtrrd 5148 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) ≤ (𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)))
114 hashcl 14379 . . . . . . . . . . . . 13 ((((⌊‘𝑐) + 1)...(⌊‘𝑥)) ∈ Fin → (♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) ∈ ℕ0)
115 nn0re 12515 . . . . . . . . . . . . 13 ((♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) ∈ ℕ0 → (♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) ∈ ℝ)
11677, 114, 1153syl 18 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) ∈ ℝ)
117116, 71remulcld 11270 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) · 𝑚) ∈ ℝ)
11871adantr 480 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))) → 𝑚 ∈ ℝ)
119 elfzuz 13542 . . . . . . . . . . . . . 14 (𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥)) → 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1)))
12081peano2nnd 12262 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((⌊‘𝑐) + 1) ∈ ℕ)
121 eluznn 12939 . . . . . . . . . . . . . . . 16 ((((⌊‘𝑐) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 𝑛 ∈ ℕ)
122120, 121sylan 580 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 𝑛 ∈ ℕ)
123 simpllr 775 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚))
12483adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 𝑐 ∈ ℝ)
125 reflcl 13818 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ → (⌊‘𝑐) ∈ ℝ)
126 peano2re 11413 . . . . . . . . . . . . . . . . 17 ((⌊‘𝑐) ∈ ℝ → ((⌊‘𝑐) + 1) ∈ ℝ)
127124, 125, 1263syl 18 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → ((⌊‘𝑐) + 1) ∈ ℝ)
128122nnred 12260 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 𝑛 ∈ ℝ)
129 fllep1 13823 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ → 𝑐 ≤ ((⌊‘𝑐) + 1))
130124, 129syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 𝑐 ≤ ((⌊‘𝑐) + 1))
131 eluzle 12870 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1)) → ((⌊‘𝑐) + 1) ≤ 𝑛)
132131adantl 481 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → ((⌊‘𝑐) + 1) ≤ 𝑛)
133124, 127, 128, 130, 132letrd 11397 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 𝑐𝑛)
134 nfv 1914 . . . . . . . . . . . . . . . . 17 𝑘 𝑐𝑛
135 nfcv 2899 . . . . . . . . . . . . . . . . . . 19 𝑘abs
136135, 13nffv 6891 . . . . . . . . . . . . . . . . . 18 𝑘(abs‘𝑛 / 𝑘𝐴)
137 nfcv 2899 . . . . . . . . . . . . . . . . . 18 𝑘
138 nfcv 2899 . . . . . . . . . . . . . . . . . 18 𝑘𝑚
139136, 137, 138nfbr 5171 . . . . . . . . . . . . . . . . 17 𝑘(abs‘𝑛 / 𝑘𝐴) ≤ 𝑚
140134, 139nfim 1896 . . . . . . . . . . . . . . . 16 𝑘(𝑐𝑛 → (abs‘𝑛 / 𝑘𝐴) ≤ 𝑚)
141 breq2 5128 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (𝑐𝑘𝑐𝑛))
14211fveq2d 6885 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → (abs‘𝐴) = (abs‘𝑛 / 𝑘𝐴))
143142breq1d 5134 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → ((abs‘𝐴) ≤ 𝑚 ↔ (abs‘𝑛 / 𝑘𝐴) ≤ 𝑚))
144141, 143imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → ((𝑐𝑘 → (abs‘𝐴) ≤ 𝑚) ↔ (𝑐𝑛 → (abs‘𝑛 / 𝑘𝐴) ≤ 𝑚)))
145140, 144rspc 3594 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚) → (𝑐𝑛 → (abs‘𝑛 / 𝑘𝐴) ≤ 𝑚)))
146122, 123, 133, 145syl3c 66 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → (abs‘𝑛 / 𝑘𝐴) ≤ 𝑚)
147119, 146sylan2 593 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))) → (abs‘𝑛 / 𝑘𝐴) ≤ 𝑚)
14877, 97, 118, 147fsumle 15820 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴) ≤ Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))𝑚)
14971recnd 11268 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 𝑚 ∈ ℂ)
150 fsumconst 15811 . . . . . . . . . . . . 13 (((((⌊‘𝑐) + 1)...(⌊‘𝑥)) ∈ Fin ∧ 𝑚 ∈ ℂ) → Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))𝑚 = ((♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) · 𝑚))
15177, 149, 150syl2anc 584 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))𝑚 = ((♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) · 𝑚))
152148, 151breqtrd 5150 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴) ≤ ((♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) · 𝑚))
153 biidd 262 . . . . . . . . . . . . 13 (𝑛 = ((⌊‘𝑐) + 1) → (0 ≤ 𝑚 ↔ 0 ≤ 𝑚))
154 0red 11243 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 0 ∈ ℝ)
15547, 30mpan9 506 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ 𝑛 ∈ ℕ) → 𝑛 / 𝑘𝐴 ∈ ℂ)
156155adantlr 715 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ ℕ) → 𝑛 / 𝑘𝐴 ∈ ℂ)
157122, 156syldan 591 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 𝑛 / 𝑘𝐴 ∈ ℂ)
158157abscld 15460 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → (abs‘𝑛 / 𝑘𝐴) ∈ ℝ)
15971adantr 480 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 𝑚 ∈ ℝ)
160157absge0d 15468 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 0 ≤ (abs‘𝑛 / 𝑘𝐴))
161154, 158, 159, 160, 146letrd 11397 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))) → 0 ≤ 𝑚)
162161ralrimiva 3133 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ∀𝑛 ∈ (ℤ‘((⌊‘𝑐) + 1))0 ≤ 𝑚)
163120nnzd 12620 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((⌊‘𝑐) + 1) ∈ ℤ)
164 uzid 12872 . . . . . . . . . . . . . 14 (((⌊‘𝑐) + 1) ∈ ℤ → ((⌊‘𝑐) + 1) ∈ (ℤ‘((⌊‘𝑐) + 1)))
165163, 164syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((⌊‘𝑐) + 1) ∈ (ℤ‘((⌊‘𝑐) + 1)))
166153, 162, 165rspcdva 3607 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 0 ≤ 𝑚)
167 reflcl 13818 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
16869, 167syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (⌊‘𝑥) ∈ ℝ)
169 ssdomg 9019 . . . . . . . . . . . . . . . 16 ((1...(⌊‘𝑥)) ∈ Fin → ((((⌊‘𝑐) + 1)...(⌊‘𝑥)) ⊆ (1...(⌊‘𝑥)) → (((⌊‘𝑐) + 1)...(⌊‘𝑥)) ≼ (1...(⌊‘𝑥))))
17064, 93, 169sylc 65 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (((⌊‘𝑐) + 1)...(⌊‘𝑥)) ≼ (1...(⌊‘𝑥)))
171 hashdomi 14403 . . . . . . . . . . . . . . 15 ((((⌊‘𝑐) + 1)...(⌊‘𝑥)) ≼ (1...(⌊‘𝑥)) → (♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) ≤ (♯‘(1...(⌊‘𝑥))))
172170, 171syl 17 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) ≤ (♯‘(1...(⌊‘𝑥))))
173 flge0nn0 13842 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
174 hashfz1 14369 . . . . . . . . . . . . . . 15 ((⌊‘𝑥) ∈ ℕ0 → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
17557, 173, 1743syl 18 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
176172, 175breqtrd 5150 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) ≤ (⌊‘𝑥))
177 flle 13821 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (⌊‘𝑥) ≤ 𝑥)
17869, 177syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (⌊‘𝑥) ≤ 𝑥)
179116, 168, 69, 176, 178letrd 11397 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) ≤ 𝑥)
180116, 69, 71, 166, 179lemul1ad 12186 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((♯‘(((⌊‘𝑐) + 1)...(⌊‘𝑥))) · 𝑚) ≤ (𝑥 · 𝑚))
18198, 117, 100, 152, 180letrd 11397 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴) ≤ (𝑥 · 𝑚))
18270, 98, 99, 100, 113, 181le2addd 11861 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴)) ≤ ((𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)) + (𝑥 · 𝑚)))
183 ltp1 12086 . . . . . . . . . . 11 ((⌊‘𝑐) ∈ ℝ → (⌊‘𝑐) < ((⌊‘𝑐) + 1))
184 fzdisj 13573 . . . . . . . . . . 11 ((⌊‘𝑐) < ((⌊‘𝑐) + 1) → ((1...(⌊‘𝑐)) ∩ (((⌊‘𝑐) + 1)...(⌊‘𝑥))) = ∅)
18582, 183, 1843syl 18 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((1...(⌊‘𝑐)) ∩ (((⌊‘𝑐) + 1)...(⌊‘𝑥))) = ∅)
18696recnd 11268 . . . . . . . . . 10 (((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘𝑛 / 𝑘𝐴) ∈ ℂ)
187185, 92, 64, 186fsumsplit 15762 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴) = (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + Σ𝑛 ∈ (((⌊‘𝑐) + 1)...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴)))
18836adantrr 717 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → 𝑥 ∈ ℂ)
189188, 101, 149adddid 11264 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (𝑥 · (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚)) = ((𝑥 · Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴)) + (𝑥 · 𝑚)))
190182, 187, 1893brtr4d 5156 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘𝑛 / 𝑘𝐴) ≤ (𝑥 · (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚)))
19163, 68, 73, 76, 190letrd 11397 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) ≤ (𝑥 · (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚)))
192 rpregt0 13028 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
193192ad2antrl 728 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
194 ledivmul 12123 . . . . . . . 8 (((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) ∈ ℝ ∧ (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) / 𝑥) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚) ↔ (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) ≤ (𝑥 · (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚))))
19563, 72, 193, 194syl3anc 1373 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) / 𝑥) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚) ↔ (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) ≤ (𝑥 · (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚))))
196191, 195mpbird 257 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → ((abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴) / 𝑥) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚))
19761, 196eqbrtrd 5146 . . . . 5 ((((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) ∧ (𝑥 ∈ ℝ+𝑐𝑥)) → (abs‘(Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑐))(abs‘𝑛 / 𝑘𝐴) + 𝑚))
19810, 39, 45, 53, 197elo1d 15557 . . . 4 (((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) ∧ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚)) → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) ∈ 𝑂(1))
199198ex 412 . . 3 ((𝜑 ∧ (𝑐 ∈ (1[,)+∞) ∧ 𝑚 ∈ ℝ)) → (∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚) → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) ∈ 𝑂(1)))
200199rexlimdvva 3202 . 2 (𝜑 → (∃𝑐 ∈ (1[,)+∞)∃𝑚 ∈ ℝ ∀𝑘 ∈ ℕ (𝑐𝑘 → (abs‘𝐴) ≤ 𝑚) → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) ∈ 𝑂(1)))
2018, 200mpd 15 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑘 ∈ (1...(⌊‘𝑥))𝐴 / 𝑥)) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  csb 3879  cun 3929  cin 3930  wss 3931  c0 4313   class class class wbr 5124  cmpt 5206  dom cdm 5659  wf 6532  cfv 6536  (class class class)co 7410  cdom 8962  Fincfn 8964  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  +∞cpnf 11271   < clt 11274  cle 11275   / cdiv 11899  cn 12245  0cn0 12506  cz 12593  cuz 12857  +crp 13013  [,)cico 13369  ...cfz 13529  cfl 13812  chash 14353  abscabs 15258  𝑂(1)co1 15507  Σcsu 15707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8724  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-rp 13014  df-ico 13373  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-o1 15511  df-lo1 15512  df-sum 15708
This theorem is referenced by:  selberg2lem  27518
  Copyright terms: Public domain W3C validator