| Step | Hyp | Ref
| Expression |
| 1 | | 1red 11241 |
. 2
⊢ (𝜑 → 1 ∈
ℝ) |
| 2 | | ioossre 13429 |
. . . 4
⊢
(1(,)+∞) ⊆ ℝ |
| 3 | | selberg3lem1.1 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
| 4 | 3 | rpcnd 13058 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 5 | | o1const 15641 |
. . . 4
⊢
(((1(,)+∞) ⊆ ℝ ∧ 𝐴 ∈ ℂ) → (𝑥 ∈ (1(,)+∞) ↦ 𝐴) ∈
𝑂(1)) |
| 6 | 2, 4, 5 | sylancr 587 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ 𝐴) ∈
𝑂(1)) |
| 7 | | fzfid 13996 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(1...(⌊‘𝑥))
∈ Fin) |
| 8 | | elfznn 13575 |
. . . . . . . . . 10
⊢ (𝑛 ∈
(1...(⌊‘𝑥))
→ 𝑛 ∈
ℕ) |
| 9 | 8 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℕ) |
| 10 | | vmacl 27085 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ →
(Λ‘𝑛) ∈
ℝ) |
| 11 | 9, 10 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (Λ‘𝑛)
∈ ℝ) |
| 12 | 11, 9 | nndivred 12299 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑛)
/ 𝑛) ∈
ℝ) |
| 13 | 7, 12 | fsumrecl 15755 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℝ) |
| 14 | | elioore 13397 |
. . . . . . . . 9
⊢ (𝑥 ∈ (1(,)+∞) →
𝑥 ∈
ℝ) |
| 15 | | eliooord 13427 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (1(,)+∞) → (1
< 𝑥 ∧ 𝑥 <
+∞)) |
| 16 | 15 | simpld 494 |
. . . . . . . . 9
⊢ (𝑥 ∈ (1(,)+∞) → 1
< 𝑥) |
| 17 | 14, 16 | rplogcld 26595 |
. . . . . . . 8
⊢ (𝑥 ∈ (1(,)+∞) →
(log‘𝑥) ∈
ℝ+) |
| 18 | | rpdivcl 13039 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ+
∧ (log‘𝑥) ∈
ℝ+) → (𝐴 / (log‘𝑥)) ∈
ℝ+) |
| 19 | 3, 17, 18 | syl2an 596 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝐴 / (log‘𝑥)) ∈
ℝ+) |
| 20 | 19 | rpred 13056 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝐴 / (log‘𝑥)) ∈ ℝ) |
| 21 | 13, 20 | remulcld 11270 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) ∈ ℝ) |
| 22 | 21 | recnd 11268 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) ∈ ℂ) |
| 23 | 4 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝐴 ∈
ℂ) |
| 24 | 13 | recnd 11268 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℂ) |
| 25 | 17 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(log‘𝑥) ∈
ℝ+) |
| 26 | 25 | rpcnd 13058 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(log‘𝑥) ∈
ℂ) |
| 27 | 19 | rpcnd 13058 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝐴 / (log‘𝑥)) ∈ ℂ) |
| 28 | 24, 26, 27 | subdird 11699 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) · (𝐴 / (log‘𝑥))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) − ((log‘𝑥) · (𝐴 / (log‘𝑥))))) |
| 29 | 25 | rpne0d 13061 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(log‘𝑥) ≠
0) |
| 30 | 23, 26, 29 | divcan2d 12024 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((log‘𝑥) ·
(𝐴 / (log‘𝑥))) = 𝐴) |
| 31 | 30 | oveq2d 7426 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) − ((log‘𝑥) · (𝐴 / (log‘𝑥)))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) − 𝐴)) |
| 32 | 28, 31 | eqtrd 2771 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) · (𝐴 / (log‘𝑥))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) − 𝐴)) |
| 33 | 32 | mpteq2dva 5219 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) · (𝐴 / (log‘𝑥)))) = (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) − 𝐴))) |
| 34 | 25 | rpred 13056 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(log‘𝑥) ∈
ℝ) |
| 35 | 13, 34 | resubcld 11670 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) ∈ ℝ) |
| 36 | 14 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈
ℝ) |
| 37 | | 0red 11243 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ∈
ℝ) |
| 38 | | 1red 11241 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈
ℝ) |
| 39 | | 0lt1 11764 |
. . . . . . . . . . . 12
⊢ 0 <
1 |
| 40 | 39 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 <
1) |
| 41 | 16 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 < 𝑥) |
| 42 | 37, 38, 36, 40, 41 | lttrd 11401 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 < 𝑥) |
| 43 | 36, 42 | elrpd 13053 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈
ℝ+) |
| 44 | 43 | ex 412 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) → 𝑥 ∈
ℝ+)) |
| 45 | 44 | ssrdv 3969 |
. . . . . . 7
⊢ (𝜑 → (1(,)+∞) ⊆
ℝ+) |
| 46 | | vmadivsum 27450 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
↦ (Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1) |
| 47 | 46 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1)) |
| 48 | 45, 47 | o1res2 15584 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1)) |
| 49 | 2 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (1(,)+∞) ⊆
ℝ) |
| 50 | | ere 16110 |
. . . . . . . 8
⊢ e ∈
ℝ |
| 51 | 50 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → e ∈
ℝ) |
| 52 | 3 | rpred 13056 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 53 | 19 | adantrr 717 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (𝐴 / (log‘𝑥)) ∈
ℝ+) |
| 54 | 53 | rprege0d 13063 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → ((𝐴 / (log‘𝑥)) ∈ ℝ ∧ 0 ≤ (𝐴 / (log‘𝑥)))) |
| 55 | | absid 15320 |
. . . . . . . . 9
⊢ (((𝐴 / (log‘𝑥)) ∈ ℝ ∧ 0 ≤ (𝐴 / (log‘𝑥))) → (abs‘(𝐴 / (log‘𝑥))) = (𝐴 / (log‘𝑥))) |
| 56 | 54, 55 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (abs‘(𝐴 / (log‘𝑥))) = (𝐴 / (log‘𝑥))) |
| 57 | | loge 26552 |
. . . . . . . . . . 11
⊢
(log‘e) = 1 |
| 58 | | simprr 772 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → e ≤ 𝑥) |
| 59 | | epr 16231 |
. . . . . . . . . . . . 13
⊢ e ∈
ℝ+ |
| 60 | 43 | adantrr 717 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → 𝑥 ∈ ℝ+) |
| 61 | | logleb 26569 |
. . . . . . . . . . . . 13
⊢ ((e
∈ ℝ+ ∧ 𝑥 ∈ ℝ+) → (e ≤
𝑥 ↔ (log‘e) ≤
(log‘𝑥))) |
| 62 | 59, 60, 61 | sylancr 587 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (e ≤ 𝑥 ↔ (log‘e) ≤
(log‘𝑥))) |
| 63 | 58, 62 | mpbid 232 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (log‘e) ≤
(log‘𝑥)) |
| 64 | 57, 63 | eqbrtrrid 5160 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → 1 ≤
(log‘𝑥)) |
| 65 | | 1rp 13017 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℝ+ |
| 66 | | rpregt0 13028 |
. . . . . . . . . . . 12
⊢ (1 ∈
ℝ+ → (1 ∈ ℝ ∧ 0 < 1)) |
| 67 | 65, 66 | mp1i 13 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (1 ∈ ℝ
∧ 0 < 1)) |
| 68 | 25 | adantrr 717 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (log‘𝑥) ∈
ℝ+) |
| 69 | 68 | rpregt0d 13062 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → ((log‘𝑥) ∈ ℝ ∧ 0 <
(log‘𝑥))) |
| 70 | 3 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → 𝐴 ∈
ℝ+) |
| 71 | 70 | rpregt0d 13062 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| 72 | | lediv2 12137 |
. . . . . . . . . . 11
⊢ (((1
∈ ℝ ∧ 0 < 1) ∧ ((log‘𝑥) ∈ ℝ ∧ 0 <
(log‘𝑥)) ∧ (𝐴 ∈ ℝ ∧ 0 <
𝐴)) → (1 ≤
(log‘𝑥) ↔ (𝐴 / (log‘𝑥)) ≤ (𝐴 / 1))) |
| 73 | 67, 69, 71, 72 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (1 ≤
(log‘𝑥) ↔ (𝐴 / (log‘𝑥)) ≤ (𝐴 / 1))) |
| 74 | 64, 73 | mpbid 232 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (𝐴 / (log‘𝑥)) ≤ (𝐴 / 1)) |
| 75 | 4 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → 𝐴 ∈ ℂ) |
| 76 | 75 | div1d 12014 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (𝐴 / 1) = 𝐴) |
| 77 | 74, 76 | breqtrd 5150 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (𝐴 / (log‘𝑥)) ≤ 𝐴) |
| 78 | 56, 77 | eqbrtrd 5146 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (abs‘(𝐴 / (log‘𝑥))) ≤ 𝐴) |
| 79 | 49, 27, 51, 52, 78 | elo1d 15557 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (𝐴 / (log‘𝑥))) ∈ 𝑂(1)) |
| 80 | 35, 20, 48, 79 | o1mul2 15646 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) · (𝐴 / (log‘𝑥)))) ∈ 𝑂(1)) |
| 81 | 33, 80 | eqeltrrd 2836 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) − 𝐴)) ∈ 𝑂(1)) |
| 82 | 22, 23, 81 | o1dif 15651 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥)))) ∈ 𝑂(1) ↔ (𝑥 ∈ (1(,)+∞) ↦
𝐴) ∈
𝑂(1))) |
| 83 | 6, 82 | mpbird 257 |
. 2
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥)))) ∈ 𝑂(1)) |
| 84 | | 2re 12319 |
. . . . . . 7
⊢ 2 ∈
ℝ |
| 85 | | rerpdivcl 13044 |
. . . . . . 7
⊢ ((2
∈ ℝ ∧ (log‘𝑥) ∈ ℝ+) → (2 /
(log‘𝑥)) ∈
ℝ) |
| 86 | 84, 25, 85 | sylancr 587 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (2 /
(log‘𝑥)) ∈
ℝ) |
| 87 | | nndivre 12286 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑥 / 𝑛) ∈ ℝ) |
| 88 | 36, 8, 87 | syl2an 596 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑛) ∈
ℝ) |
| 89 | | chpcl 27091 |
. . . . . . . . . 10
⊢ ((𝑥 / 𝑛) ∈ ℝ → (ψ‘(𝑥 / 𝑛)) ∈ ℝ) |
| 90 | 88, 89 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (ψ‘(𝑥 /
𝑛)) ∈
ℝ) |
| 91 | 11, 90 | remulcld 11270 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑛)
· (ψ‘(𝑥 /
𝑛))) ∈
ℝ) |
| 92 | 9 | nnrpd 13054 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℝ+) |
| 93 | 92 | relogcld 26589 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (log‘𝑛) ∈
ℝ) |
| 94 | 91, 93 | remulcld 11270 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((Λ‘𝑛)
· (ψ‘(𝑥 /
𝑛))) ·
(log‘𝑛)) ∈
ℝ) |
| 95 | 7, 94 | fsumrecl 15755 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ) |
| 96 | 86, 95 | remulcld 11270 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℝ) |
| 97 | 7, 91 | fsumrecl 15755 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) ∈ ℝ) |
| 98 | 96, 97 | resubcld 11670 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) ∈ ℝ) |
| 99 | 98, 43 | rerpdivcld 13087 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) ∈ ℝ) |
| 100 | 99 | recnd 11268 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) ∈ ℂ) |
| 101 | 100 | abscld 15460 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(abs‘((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ ℝ) |
| 102 | 22 | abscld 15460 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(abs‘(Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥)))) ∈ ℝ) |
| 103 | | 2cnd 12323 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈
ℂ) |
| 104 | 95 | recnd 11268 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ) |
| 105 | 103, 104 | mulcld 11260 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (2 ·
Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℂ) |
| 106 | 97 | recnd 11268 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) ∈ ℂ) |
| 107 | 106, 26 | mulcld 11260 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)) ∈ ℂ) |
| 108 | 105, 107 | subcld 11599 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 ·
Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) ∈ ℂ) |
| 109 | 108 | abscld 15460 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘((2
· Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) ∈ ℝ) |
| 110 | 42 | gt0ne0d 11806 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ≠ 0) |
| 111 | 109, 36, 110 | redivcld 12074 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / 𝑥) ∈ ℝ) |
| 112 | 52 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝐴 ∈
ℝ) |
| 113 | 13, 112 | remulcld 11270 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴) ∈ ℝ) |
| 114 | 11 | recnd 11268 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (Λ‘𝑛)
∈ ℂ) |
| 115 | | fzfid 13996 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (1...(⌊‘(𝑥 / 𝑛))) ∈ Fin) |
| 116 | | elfznn 13575 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛))) → 𝑚 ∈
ℕ) |
| 117 | 116 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))) → 𝑚 ∈
ℕ) |
| 118 | | vmacl 27085 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ ℕ →
(Λ‘𝑚) ∈
ℝ) |
| 119 | 117, 118 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))) →
(Λ‘𝑚) ∈
ℝ) |
| 120 | 117 | nnrpd 13054 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))) → 𝑚 ∈
ℝ+) |
| 121 | 120 | relogcld 26589 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))) →
(log‘𝑚) ∈
ℝ) |
| 122 | 119, 121 | remulcld 11270 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))) →
((Λ‘𝑚)
· (log‘𝑚))
∈ ℝ) |
| 123 | 115, 122 | fsumrecl 15755 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) ∈
ℝ) |
| 124 | 8 | nnrpd 13054 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈
(1...(⌊‘𝑥))
→ 𝑛 ∈
ℝ+) |
| 125 | | rpdivcl 13039 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
ℝ+) → (𝑥 / 𝑛) ∈
ℝ+) |
| 126 | 43, 124, 125 | syl2an 596 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑛) ∈
ℝ+) |
| 127 | 126 | relogcld 26589 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (log‘(𝑥 /
𝑛)) ∈
ℝ) |
| 128 | 90, 127 | remulcld 11270 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((ψ‘(𝑥 /
𝑛)) ·
(log‘(𝑥 / 𝑛))) ∈
ℝ) |
| 129 | 123, 128 | resubcld 11670 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) ∈ ℝ) |
| 130 | 129 | recnd 11268 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) ∈ ℂ) |
| 131 | 114, 130 | mulcld 11260 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑛)
· (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) ∈ ℂ) |
| 132 | 7, 131 | fsumcl 15754 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) ∈ ℂ) |
| 133 | 132 | abscld 15460 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(abs‘Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ∈ ℝ) |
| 134 | 131 | abscld 15460 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ∈ ℝ) |
| 135 | 7, 134 | fsumrecl 15755 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(abs‘((Λ‘𝑛) · (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ∈ ℝ) |
| 136 | 112, 36 | remulcld 11270 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝐴 · 𝑥) ∈ ℝ) |
| 137 | 13, 136 | remulcld 11270 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥)) ∈ ℝ) |
| 138 | 7, 131 | fsumabs 15822 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(abs‘Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((Λ‘𝑛) · (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))))) |
| 139 | 52 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝐴 ∈
ℝ) |
| 140 | 36 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑥 ∈
ℝ) |
| 141 | 139, 140 | remulcld 11270 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝐴 · 𝑥) ∈
ℝ) |
| 142 | 12, 141 | remulcld 11270 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((Λ‘𝑛)
/ 𝑛) · (𝐴 · 𝑥)) ∈ ℝ) |
| 143 | 130 | abscld 15460 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘(Σ𝑚
∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) ∈ ℝ) |
| 144 | 141, 9 | nndivred 12299 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((𝐴 · 𝑥) / 𝑛) ∈ ℝ) |
| 145 | | vmage0 27088 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → 0 ≤
(Λ‘𝑛)) |
| 146 | 9, 145 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ (Λ‘𝑛)) |
| 147 | 88 | recnd 11268 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑛) ∈
ℂ) |
| 148 | 126 | rpne0d 13061 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑛) ≠ 0) |
| 149 | 130, 147,
148 | absdivd 15479 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) / (𝑥 / 𝑛))) = ((abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) / (abs‘(𝑥 / 𝑛)))) |
| 150 | 126 | rpge0d 13060 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ (𝑥 / 𝑛)) |
| 151 | 88, 150 | absidd 15446 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘(𝑥 /
𝑛)) = (𝑥 / 𝑛)) |
| 152 | 151 | oveq2d 7426 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) / (abs‘(𝑥 / 𝑛))) = ((abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) / (𝑥 / 𝑛))) |
| 153 | 149, 152 | eqtrd 2771 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) / (𝑥 / 𝑛))) = ((abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) / (𝑥 / 𝑛))) |
| 154 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = 𝑚 → (Λ‘𝑘) = (Λ‘𝑚)) |
| 155 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = 𝑚 → (log‘𝑘) = (log‘𝑚)) |
| 156 | 154, 155 | oveq12d 7428 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 𝑚 → ((Λ‘𝑘) · (log‘𝑘)) = ((Λ‘𝑚) · (log‘𝑚))) |
| 157 | 156 | cbvsumv 15717 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Σ𝑘 ∈
(1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) = Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) |
| 158 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = (𝑥 / 𝑛) → (⌊‘𝑦) = (⌊‘(𝑥 / 𝑛))) |
| 159 | 158 | oveq2d 7426 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 = (𝑥 / 𝑛) → (1...(⌊‘𝑦)) = (1...(⌊‘(𝑥 / 𝑛)))) |
| 160 | 159 | sumeq1d 15721 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = (𝑥 / 𝑛) → Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) |
| 161 | 157, 160 | eqtrid 2783 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = (𝑥 / 𝑛) → Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) |
| 162 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = (𝑥 / 𝑛) → (ψ‘𝑦) = (ψ‘(𝑥 / 𝑛))) |
| 163 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = (𝑥 / 𝑛) → (log‘𝑦) = (log‘(𝑥 / 𝑛))) |
| 164 | 162, 163 | oveq12d 7428 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = (𝑥 / 𝑛) → ((ψ‘𝑦) · (log‘𝑦)) = ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) |
| 165 | 161, 164 | oveq12d 7428 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (𝑥 / 𝑛) → (Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) − ((ψ‘𝑦) · (log‘𝑦))) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) |
| 166 | | id 22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (𝑥 / 𝑛) → 𝑦 = (𝑥 / 𝑛)) |
| 167 | 165, 166 | oveq12d 7428 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (𝑥 / 𝑛) → ((Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦) = ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) / (𝑥 / 𝑛))) |
| 168 | 167 | fveq2d 6885 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = (𝑥 / 𝑛) → (abs‘((Σ𝑘 ∈
(1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) = (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) / (𝑥 / 𝑛)))) |
| 169 | 168 | breq1d 5134 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝑥 / 𝑛) → ((abs‘((Σ𝑘 ∈
(1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝐴 ↔ (abs‘((Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) / (𝑥 / 𝑛))) ≤ 𝐴)) |
| 170 | | selberg3lem1.2 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑦 ∈
(1[,)+∞)(abs‘((Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝐴) |
| 171 | 170 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ∀𝑦 ∈
(1[,)+∞)(abs‘((Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝐴) |
| 172 | 9 | nncnd 12261 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℂ) |
| 173 | 172 | mullidd 11258 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (1 · 𝑛) =
𝑛) |
| 174 | | fznnfl 13884 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ ℝ → (𝑛 ∈
(1...(⌊‘𝑥))
↔ (𝑛 ∈ ℕ
∧ 𝑛 ≤ 𝑥))) |
| 175 | 36, 174 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑛 ∈
(1...(⌊‘𝑥))
↔ (𝑛 ∈ ℕ
∧ 𝑛 ≤ 𝑥))) |
| 176 | 175 | simplbda 499 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ≤ 𝑥) |
| 177 | 173, 176 | eqbrtrd 5146 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (1 · 𝑛) ≤
𝑥) |
| 178 | | 1red 11241 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 1 ∈ ℝ) |
| 179 | 178, 140,
92 | lemuldivd 13105 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((1 · 𝑛) ≤
𝑥 ↔ 1 ≤ (𝑥 / 𝑛))) |
| 180 | 177, 179 | mpbid 232 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 1 ≤ (𝑥 / 𝑛)) |
| 181 | | 1re 11240 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℝ |
| 182 | | elicopnf 13467 |
. . . . . . . . . . . . . . . . . . 19
⊢ (1 ∈
ℝ → ((𝑥 / 𝑛) ∈ (1[,)+∞) ↔
((𝑥 / 𝑛) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑛)))) |
| 183 | 181, 182 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 / 𝑛) ∈ (1[,)+∞) ↔ ((𝑥 / 𝑛) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑛))) |
| 184 | 88, 180, 183 | sylanbrc 583 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑛) ∈
(1[,)+∞)) |
| 185 | 169, 171,
184 | rspcdva 3607 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) / (𝑥 / 𝑛))) ≤ 𝐴) |
| 186 | 153, 185 | eqbrtrrd 5148 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) / (𝑥 / 𝑛)) ≤ 𝐴) |
| 187 | 143, 139,
126 | ledivmul2d 13110 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) / (𝑥 / 𝑛)) ≤ 𝐴 ↔ (abs‘(Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) ≤ (𝐴 · (𝑥 / 𝑛)))) |
| 188 | 186, 187 | mpbid 232 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘(Σ𝑚
∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) ≤ (𝐴 · (𝑥 / 𝑛))) |
| 189 | 23 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝐴 ∈
ℂ) |
| 190 | 140 | recnd 11268 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑥 ∈
ℂ) |
| 191 | 9 | nnne0d 12295 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ≠
0) |
| 192 | 189, 190,
172, 191 | divassd 12057 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((𝐴 · 𝑥) / 𝑛) = (𝐴 · (𝑥 / 𝑛))) |
| 193 | 188, 192 | breqtrrd 5152 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘(Σ𝑚
∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) ≤ ((𝐴 · 𝑥) / 𝑛)) |
| 194 | 143, 144,
11, 146, 193 | lemul2ad 12187 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑛)
· (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ≤ ((Λ‘𝑛) · ((𝐴 · 𝑥) / 𝑛))) |
| 195 | 114, 130 | absmuld 15478 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) = ((abs‘(Λ‘𝑛)) ·
(abs‘(Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))))) |
| 196 | 11, 146 | absidd 15446 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘(Λ‘𝑛)) = (Λ‘𝑛)) |
| 197 | 196 | oveq1d 7425 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((abs‘(Λ‘𝑛)) · (abs‘(Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) = ((Λ‘𝑛) · (abs‘(Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))))) |
| 198 | 195, 197 | eqtrd 2771 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) = ((Λ‘𝑛) · (abs‘(Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))))) |
| 199 | 141 | recnd 11268 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝐴 · 𝑥) ∈
ℂ) |
| 200 | 114, 172,
199, 191 | div32d 12045 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((Λ‘𝑛)
/ 𝑛) · (𝐴 · 𝑥)) = ((Λ‘𝑛) · ((𝐴 · 𝑥) / 𝑛))) |
| 201 | 194, 198,
200 | 3brtr4d 5156 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ≤ (((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥))) |
| 202 | 7, 134, 142, 201 | fsumle 15820 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(abs‘((Λ‘𝑛) · (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥))) |
| 203 | 36 | recnd 11268 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈
ℂ) |
| 204 | 23, 203 | mulcld 11260 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝐴 · 𝑥) ∈ ℂ) |
| 205 | 114, 172,
191 | divcld 12022 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑛)
/ 𝑛) ∈
ℂ) |
| 206 | 7, 204, 205 | fsummulc1 15806 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥))) |
| 207 | 202, 206 | breqtrrd 5152 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(abs‘((Λ‘𝑛) · (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥))) |
| 208 | 133, 135,
137, 138, 207 | letrd 11397 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(abs‘Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥))) |
| 209 | 123 | recnd 11268 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) ∈
ℂ) |
| 210 | 90 | recnd 11268 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (ψ‘(𝑥 /
𝑛)) ∈
ℂ) |
| 211 | 93 | recnd 11268 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (log‘𝑛) ∈
ℂ) |
| 212 | 210, 211 | mulcld 11260 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((ψ‘(𝑥 /
𝑛)) ·
(log‘𝑛)) ∈
ℂ) |
| 213 | 209, 212 | addcld 11259 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))) ∈ ℂ) |
| 214 | 114, 213 | mulcld 11260 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑛)
· (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) ∈ ℂ) |
| 215 | 114, 210 | mulcld 11260 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑛)
· (ψ‘(𝑥 /
𝑛))) ∈
ℂ) |
| 216 | 26 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (log‘𝑥) ∈
ℂ) |
| 217 | 215, 216 | mulcld 11260 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((Λ‘𝑛)
· (ψ‘(𝑥 /
𝑛))) ·
(log‘𝑥)) ∈
ℂ) |
| 218 | 7, 214, 217 | fsumsub 15809 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) − (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) |
| 219 | 210, 216 | mulcld 11260 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((ψ‘(𝑥 /
𝑛)) ·
(log‘𝑥)) ∈
ℂ) |
| 220 | 114, 213,
219 | subdid 11698 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑛)
· ((Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))) − ((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)))) = (((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) − ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑥))))) |
| 221 | 43 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑥 ∈
ℝ+) |
| 222 | 221, 92 | relogdivd 26592 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (log‘(𝑥 /
𝑛)) = ((log‘𝑥) − (log‘𝑛))) |
| 223 | 222 | oveq2d 7426 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((ψ‘(𝑥 /
𝑛)) ·
(log‘(𝑥 / 𝑛))) = ((ψ‘(𝑥 / 𝑛)) · ((log‘𝑥) − (log‘𝑛)))) |
| 224 | 210, 216,
211 | subdid 11698 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((ψ‘(𝑥 /
𝑛)) ·
((log‘𝑥) −
(log‘𝑛))) =
(((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)) − ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) |
| 225 | 223, 224 | eqtrd 2771 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((ψ‘(𝑥 /
𝑛)) ·
(log‘(𝑥 / 𝑛))) = (((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)) − ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) |
| 226 | 225 | oveq2d 7426 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − (((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)) − ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))))) |
| 227 | 209, 219,
212 | subsub3d 11629 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) − (((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)) − ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) = ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))) − ((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)))) |
| 228 | 226, 227 | eqtrd 2771 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) = ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))) − ((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)))) |
| 229 | 228 | oveq2d 7426 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑛)
· (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) = ((Λ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))) − ((ψ‘(𝑥 / 𝑛)) · (log‘𝑥))))) |
| 230 | 114, 210,
216 | mulassd 11263 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((Λ‘𝑛)
· (ψ‘(𝑥 /
𝑛))) ·
(log‘𝑥)) =
((Λ‘𝑛)
· ((ψ‘(𝑥 /
𝑛)) ·
(log‘𝑥)))) |
| 231 | 230 | oveq2d 7426 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((Λ‘𝑛)
· (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) − (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) = (((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) − ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑥))))) |
| 232 | 220, 229,
231 | 3eqtr4d 2781 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑛)
· (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) = (((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) − (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) |
| 233 | 232 | sumeq2dv 15723 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) − (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) |
| 234 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑚 → (Λ‘𝑛) = (Λ‘𝑚)) |
| 235 | | oveq2 7418 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑚 → (𝑥 / 𝑛) = (𝑥 / 𝑚)) |
| 236 | 235 | fveq2d 6885 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑚 → (ψ‘(𝑥 / 𝑛)) = (ψ‘(𝑥 / 𝑚))) |
| 237 | 234, 236 | oveq12d 7428 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑚 → ((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) = ((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚)))) |
| 238 | | fveq2 6881 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑚 → (log‘𝑛) = (log‘𝑚)) |
| 239 | 237, 238 | oveq12d 7428 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑚 → (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) = (((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))) |
| 240 | 239 | cbvsumv 15717 |
. . . . . . . . . . . . . . 15
⊢
Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) = Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚)) |
| 241 | | elfznn 13575 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈
(1...(⌊‘(𝑥 /
𝑚))) → 𝑛 ∈
ℕ) |
| 242 | 241 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
∧ 𝑛 ∈
(1...(⌊‘(𝑥 /
𝑚)))) → 𝑛 ∈
ℕ) |
| 243 | 242, 10 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
∧ 𝑛 ∈
(1...(⌊‘(𝑥 /
𝑚)))) →
(Λ‘𝑛) ∈
ℝ) |
| 244 | 243 | recnd 11268 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
∧ 𝑛 ∈
(1...(⌊‘(𝑥 /
𝑚)))) →
(Λ‘𝑛) ∈
ℂ) |
| 245 | 244 | anasss 466 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑚 ∈
(1...(⌊‘𝑥))
∧ 𝑛 ∈
(1...(⌊‘(𝑥 /
𝑚))))) →
(Λ‘𝑛) ∈
ℂ) |
| 246 | | elfznn 13575 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 ∈
(1...(⌊‘𝑥))
→ 𝑚 ∈
ℕ) |
| 247 | 246 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ 𝑚 ∈
ℕ) |
| 248 | 247, 118 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (Λ‘𝑚)
∈ ℝ) |
| 249 | 248 | recnd 11268 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (Λ‘𝑚)
∈ ℂ) |
| 250 | 247 | nnrpd 13054 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ 𝑚 ∈
ℝ+) |
| 251 | 250 | relogcld 26589 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (log‘𝑚) ∈
ℝ) |
| 252 | 251 | recnd 11268 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (log‘𝑚) ∈
ℂ) |
| 253 | 249, 252 | mulcld 11260 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑚)
· (log‘𝑚))
∈ ℂ) |
| 254 | 253 | adantrr 717 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑚 ∈
(1...(⌊‘𝑥))
∧ 𝑛 ∈
(1...(⌊‘(𝑥 /
𝑚))))) →
((Λ‘𝑚)
· (log‘𝑚))
∈ ℂ) |
| 255 | 245, 254 | mulcld 11260 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑚 ∈
(1...(⌊‘𝑥))
∧ 𝑛 ∈
(1...(⌊‘(𝑥 /
𝑚))))) →
((Λ‘𝑛)
· ((Λ‘𝑚) · (log‘𝑚))) ∈ ℂ) |
| 256 | 36, 255 | fsumfldivdiag 27157 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑚 ∈
(1...(⌊‘𝑥))Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚)))) |
| 257 | 36 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ 𝑥 ∈
ℝ) |
| 258 | 257, 247 | nndivred 12299 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑚) ∈
ℝ) |
| 259 | | chpcl 27091 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 / 𝑚) ∈ ℝ → (ψ‘(𝑥 / 𝑚)) ∈ ℝ) |
| 260 | 258, 259 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (ψ‘(𝑥 /
𝑚)) ∈
ℝ) |
| 261 | 260 | recnd 11268 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (ψ‘(𝑥 /
𝑚)) ∈
ℂ) |
| 262 | 249, 261,
252 | mul32d 11450 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (((Λ‘𝑚)
· (ψ‘(𝑥 /
𝑚))) ·
(log‘𝑚)) =
(((Λ‘𝑚)
· (log‘𝑚))
· (ψ‘(𝑥 /
𝑚)))) |
| 263 | 248, 251 | remulcld 11270 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑚)
· (log‘𝑚))
∈ ℝ) |
| 264 | 263 | recnd 11268 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑚)
· (log‘𝑚))
∈ ℂ) |
| 265 | 264, 261 | mulcomd 11261 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (((Λ‘𝑚)
· (log‘𝑚))
· (ψ‘(𝑥 /
𝑚))) = ((ψ‘(𝑥 / 𝑚)) · ((Λ‘𝑚) · (log‘𝑚)))) |
| 266 | | chpval 27089 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 / 𝑚) ∈ ℝ → (ψ‘(𝑥 / 𝑚)) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))(Λ‘𝑛)) |
| 267 | 258, 266 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (ψ‘(𝑥 /
𝑚)) = Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝑚)))(Λ‘𝑛)) |
| 268 | 267 | oveq1d 7425 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ ((ψ‘(𝑥 /
𝑚)) ·
((Λ‘𝑚)
· (log‘𝑚))) =
(Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝑚)))(Λ‘𝑛) ·
((Λ‘𝑚)
· (log‘𝑚)))) |
| 269 | | fzfid 13996 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (1...(⌊‘(𝑥 / 𝑚))) ∈ Fin) |
| 270 | 269, 264,
244 | fsummulc1 15806 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝑚)))(Λ‘𝑛) ·
((Λ‘𝑚)
· (log‘𝑚))) =
Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝑚)))((Λ‘𝑛) ·
((Λ‘𝑚)
· (log‘𝑚)))) |
| 271 | 268, 270 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ ((ψ‘(𝑥 /
𝑚)) ·
((Λ‘𝑚)
· (log‘𝑚))) =
Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝑚)))((Λ‘𝑛) ·
((Λ‘𝑚)
· (log‘𝑚)))) |
| 272 | 262, 265,
271 | 3eqtrd 2775 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈
(1...(⌊‘𝑥)))
→ (((Λ‘𝑚)
· (ψ‘(𝑥 /
𝑚))) ·
(log‘𝑚)) =
Σ𝑛 ∈
(1...(⌊‘(𝑥 /
𝑚)))((Λ‘𝑛) ·
((Λ‘𝑚)
· (log‘𝑚)))) |
| 273 | 272 | sumeq2dv 15723 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑚 ∈
(1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚)) = Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚)))) |
| 274 | 122 | recnd 11268 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))) →
((Λ‘𝑚)
· (log‘𝑚))
∈ ℂ) |
| 275 | 115, 114,
274 | fsummulc2 15805 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑛)
· Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚)))) |
| 276 | 275 | sumeq2dv 15723 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚)))) |
| 277 | 256, 273,
276 | 3eqtr4d 2781 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑚 ∈
(1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚)) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)))) |
| 278 | 240, 277 | eqtrid 2783 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)))) |
| 279 | 114, 210,
211 | mulassd 11263 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((Λ‘𝑛)
· (ψ‘(𝑥 /
𝑛))) ·
(log‘𝑛)) =
((Λ‘𝑛)
· ((ψ‘(𝑥 /
𝑛)) ·
(log‘𝑛)))) |
| 280 | 279 | sumeq2dv 15723 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) |
| 281 | 278, 280 | oveq12d 7428 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))))) |
| 282 | 104 | 2timesd 12489 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (2 ·
Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) |
| 283 | 114, 209 | mulcld 11260 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑛)
· Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚))) ∈
ℂ) |
| 284 | 114, 212 | mulcld 11260 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑛)
· ((ψ‘(𝑥 /
𝑛)) ·
(log‘𝑛))) ∈
ℂ) |
| 285 | 7, 283, 284 | fsumadd 15761 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))))) |
| 286 | 281, 282,
285 | 3eqtr4d 2781 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (2 ·
Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚))) + ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))))) |
| 287 | 114, 209,
212 | adddid 11264 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑛)
· (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) = (((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))))) |
| 288 | 287 | sumeq2dv 15723 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚))) + ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))))) |
| 289 | 286, 288 | eqtr4d 2774 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (2 ·
Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))))) |
| 290 | 91 | recnd 11268 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑛)
· (ψ‘(𝑥 /
𝑛))) ∈
ℂ) |
| 291 | 7, 26, 290 | fsummulc1 15806 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) |
| 292 | 289, 291 | oveq12d 7428 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 ·
Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) |
| 293 | 218, 233,
292 | 3eqtr4rd 2782 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 ·
Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) |
| 294 | 293 | fveq2d 6885 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘((2
· Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) = (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))))) |
| 295 | 24, 23, 203 | mulassd 11263 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴) · 𝑥) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥))) |
| 296 | 208, 294,
295 | 3brtr4d 5156 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘((2
· Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴) · 𝑥)) |
| 297 | 109, 113,
43 | ledivmul2d 13110 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / 𝑥) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴) ↔ (abs‘((2 ·
Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴) · 𝑥))) |
| 298 | 296, 297 | mpbird 257 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / 𝑥) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴)) |
| 299 | 111, 113,
25, 298 | lediv1dd 13114 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / 𝑥) / (log‘𝑥)) ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴) / (log‘𝑥))) |
| 300 | 109 | recnd 11268 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘((2
· Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) ∈ ℂ) |
| 301 | 300, 203,
26, 110, 29 | divdiv1d 12053 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / 𝑥) / (log‘𝑥)) = ((abs‘((2 · Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / (𝑥 · (log‘𝑥)))) |
| 302 | 108, 26, 203, 29, 110 | divdiv32d 12047 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((((2 ·
Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / (log‘𝑥)) / 𝑥) = ((((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / 𝑥) / (log‘𝑥))) |
| 303 | 105, 107,
26, 29 | divsubdird 12061 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (((2 ·
Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / (log‘𝑥)) = (((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) / (log‘𝑥)) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)) / (log‘𝑥)))) |
| 304 | 103, 104,
26, 29 | div23d 12059 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((2 ·
Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) / (log‘𝑥)) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) |
| 305 | 106, 26, 29 | divcan4d 12028 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)) / (log‘𝑥)) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) |
| 306 | 304, 305 | oveq12d 7428 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (((2 ·
Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) / (log‘𝑥)) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)) / (log‘𝑥))) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))))) |
| 307 | 303, 306 | eqtrd 2771 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (((2 ·
Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / (log‘𝑥)) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))))) |
| 308 | 307 | oveq1d 7425 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((((2 ·
Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / (log‘𝑥)) / 𝑥) = ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) |
| 309 | 108, 203,
26, 110, 29 | divdiv1d 12053 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((((2 ·
Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / 𝑥) / (log‘𝑥)) = (((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / (𝑥 · (log‘𝑥)))) |
| 310 | 302, 308,
309 | 3eqtr3d 2779 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) = (((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / (𝑥 · (log‘𝑥)))) |
| 311 | 310 | fveq2d 6885 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(abs‘((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) = (abs‘(((2 · Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / (𝑥 · (log‘𝑥))))) |
| 312 | 43, 25 | rpmulcld 13072 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈
ℝ+) |
| 313 | 312 | rpcnd 13058 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈
ℂ) |
| 314 | 312 | rpne0d 13061 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ≠ 0) |
| 315 | 108, 313,
314 | absdivd 15479 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(abs‘(((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / (𝑥 · (log‘𝑥)))) = ((abs‘((2 · Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / (abs‘(𝑥 · (log‘𝑥))))) |
| 316 | 312 | rpred 13056 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈
ℝ) |
| 317 | 312 | rpge0d 13060 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ (𝑥 · (log‘𝑥))) |
| 318 | 316, 317 | absidd 15446 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(abs‘(𝑥 ·
(log‘𝑥))) = (𝑥 · (log‘𝑥))) |
| 319 | 318 | oveq2d 7426 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / (abs‘(𝑥 · (log‘𝑥)))) = ((abs‘((2 · Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / (𝑥 · (log‘𝑥)))) |
| 320 | 311, 315,
319 | 3eqtrd 2775 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(abs‘((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) = ((abs‘((2 · Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / (𝑥 · (log‘𝑥)))) |
| 321 | 301, 320 | eqtr4d 2774 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / 𝑥) / (log‘𝑥)) = (abs‘((((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥))) |
| 322 | 24, 23, 26, 29 | divassd 12057 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴) / (log‘𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥)))) |
| 323 | 299, 321,
322 | 3brtr3d 5155 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(abs‘((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥)))) |
| 324 | 21 | leabsd 15438 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) ≤ (abs‘(Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))))) |
| 325 | 101, 21, 102, 323, 324 | letrd 11397 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) →
(abs‘((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ≤ (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))))) |
| 326 | 325 | adantrr 717 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → (abs‘((((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ≤ (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))))) |
| 327 | 1, 83, 21, 100, 326 | o1le 15674 |
1
⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ 𝑂(1)) |