MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg3lem1 Structured version   Visualization version   GIF version

Theorem selberg3lem1 27475
Description: Introduce a log weighting on the summands of Σ𝑚 · 𝑛𝑥, Λ(𝑚)Λ(𝑛), the core of selberg2 27469 (written here as Σ𝑛𝑥, Λ(𝑛)ψ(𝑥 / 𝑛)). Equation 10.4.21 of [Shapiro], p. 422. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
selberg3lem1.1 (𝜑𝐴 ∈ ℝ+)
selberg3lem1.2 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝐴)
Assertion
Ref Expression
selberg3lem1 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ 𝑂(1))
Distinct variable groups:   𝑘,𝑛,𝑥,𝑦,𝐴   𝜑,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑘)

Proof of Theorem selberg3lem1
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 1red 11182 . 2 (𝜑 → 1 ∈ ℝ)
2 ioossre 13375 . . . 4 (1(,)+∞) ⊆ ℝ
3 selberg3lem1.1 . . . . 5 (𝜑𝐴 ∈ ℝ+)
43rpcnd 13004 . . . 4 (𝜑𝐴 ∈ ℂ)
5 o1const 15593 . . . 4 (((1(,)+∞) ⊆ ℝ ∧ 𝐴 ∈ ℂ) → (𝑥 ∈ (1(,)+∞) ↦ 𝐴) ∈ 𝑂(1))
62, 4, 5sylancr 587 . . 3 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ 𝐴) ∈ 𝑂(1))
7 fzfid 13945 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin)
8 elfznn 13521 . . . . . . . . . 10 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
98adantl 481 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
10 vmacl 27035 . . . . . . . . 9 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
119, 10syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
1211, 9nndivred 12247 . . . . . . 7 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
137, 12fsumrecl 15707 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℝ)
14 elioore 13343 . . . . . . . . 9 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
15 eliooord 13373 . . . . . . . . . 10 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
1615simpld 494 . . . . . . . . 9 (𝑥 ∈ (1(,)+∞) → 1 < 𝑥)
1714, 16rplogcld 26545 . . . . . . . 8 (𝑥 ∈ (1(,)+∞) → (log‘𝑥) ∈ ℝ+)
18 rpdivcl 12985 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ (log‘𝑥) ∈ ℝ+) → (𝐴 / (log‘𝑥)) ∈ ℝ+)
193, 17, 18syl2an 596 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐴 / (log‘𝑥)) ∈ ℝ+)
2019rpred 13002 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐴 / (log‘𝑥)) ∈ ℝ)
2113, 20remulcld 11211 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) ∈ ℝ)
2221recnd 11209 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) ∈ ℂ)
234adantr 480 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐴 ∈ ℂ)
2413recnd 11209 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℂ)
2517adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ+)
2625rpcnd 13004 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℂ)
2719rpcnd 13004 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐴 / (log‘𝑥)) ∈ ℂ)
2824, 26, 27subdird 11642 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) · (𝐴 / (log‘𝑥))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) − ((log‘𝑥) · (𝐴 / (log‘𝑥)))))
2925rpne0d 13007 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ≠ 0)
3023, 26, 29divcan2d 11967 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) · (𝐴 / (log‘𝑥))) = 𝐴)
3130oveq2d 7406 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) − ((log‘𝑥) · (𝐴 / (log‘𝑥)))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) − 𝐴))
3228, 31eqtrd 2765 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) · (𝐴 / (log‘𝑥))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) − 𝐴))
3332mpteq2dva 5203 . . . . 5 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) · (𝐴 / (log‘𝑥)))) = (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) − 𝐴)))
3425rpred 13002 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ)
3513, 34resubcld 11613 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) ∈ ℝ)
3614adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
37 0red 11184 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ∈ ℝ)
38 1red 11182 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
39 0lt1 11707 . . . . . . . . . . . 12 0 < 1
4039a1i 11 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 < 1)
4116adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
4237, 38, 36, 40, 41lttrd 11342 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 < 𝑥)
4336, 42elrpd 12999 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
4443ex 412 . . . . . . . 8 (𝜑 → (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ+))
4544ssrdv 3955 . . . . . . 7 (𝜑 → (1(,)+∞) ⊆ ℝ+)
46 vmadivsum 27400 . . . . . . . 8 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1)
4746a1i 11 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1))
4845, 47o1res2 15536 . . . . . 6 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1))
492a1i 11 . . . . . . 7 (𝜑 → (1(,)+∞) ⊆ ℝ)
50 ere 16062 . . . . . . . 8 e ∈ ℝ
5150a1i 11 . . . . . . 7 (𝜑 → e ∈ ℝ)
523rpred 13002 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
5319adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (𝐴 / (log‘𝑥)) ∈ ℝ+)
5453rprege0d 13009 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → ((𝐴 / (log‘𝑥)) ∈ ℝ ∧ 0 ≤ (𝐴 / (log‘𝑥))))
55 absid 15269 . . . . . . . . 9 (((𝐴 / (log‘𝑥)) ∈ ℝ ∧ 0 ≤ (𝐴 / (log‘𝑥))) → (abs‘(𝐴 / (log‘𝑥))) = (𝐴 / (log‘𝑥)))
5654, 55syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (abs‘(𝐴 / (log‘𝑥))) = (𝐴 / (log‘𝑥)))
57 loge 26502 . . . . . . . . . . 11 (log‘e) = 1
58 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → e ≤ 𝑥)
59 epr 16183 . . . . . . . . . . . . 13 e ∈ ℝ+
6043adantrr 717 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → 𝑥 ∈ ℝ+)
61 logleb 26519 . . . . . . . . . . . . 13 ((e ∈ ℝ+𝑥 ∈ ℝ+) → (e ≤ 𝑥 ↔ (log‘e) ≤ (log‘𝑥)))
6259, 60, 61sylancr 587 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (e ≤ 𝑥 ↔ (log‘e) ≤ (log‘𝑥)))
6358, 62mpbid 232 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (log‘e) ≤ (log‘𝑥))
6457, 63eqbrtrrid 5146 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → 1 ≤ (log‘𝑥))
65 1rp 12962 . . . . . . . . . . . 12 1 ∈ ℝ+
66 rpregt0 12973 . . . . . . . . . . . 12 (1 ∈ ℝ+ → (1 ∈ ℝ ∧ 0 < 1))
6765, 66mp1i 13 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (1 ∈ ℝ ∧ 0 < 1))
6825adantrr 717 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (log‘𝑥) ∈ ℝ+)
6968rpregt0d 13008 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → ((log‘𝑥) ∈ ℝ ∧ 0 < (log‘𝑥)))
703adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → 𝐴 ∈ ℝ+)
7170rpregt0d 13008 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
72 lediv2 12080 . . . . . . . . . . 11 (((1 ∈ ℝ ∧ 0 < 1) ∧ ((log‘𝑥) ∈ ℝ ∧ 0 < (log‘𝑥)) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 ≤ (log‘𝑥) ↔ (𝐴 / (log‘𝑥)) ≤ (𝐴 / 1)))
7367, 69, 71, 72syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (1 ≤ (log‘𝑥) ↔ (𝐴 / (log‘𝑥)) ≤ (𝐴 / 1)))
7464, 73mpbid 232 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (𝐴 / (log‘𝑥)) ≤ (𝐴 / 1))
754adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → 𝐴 ∈ ℂ)
7675div1d 11957 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (𝐴 / 1) = 𝐴)
7774, 76breqtrd 5136 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (𝐴 / (log‘𝑥)) ≤ 𝐴)
7856, 77eqbrtrd 5132 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (abs‘(𝐴 / (log‘𝑥))) ≤ 𝐴)
7949, 27, 51, 52, 78elo1d 15509 . . . . . 6 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (𝐴 / (log‘𝑥))) ∈ 𝑂(1))
8035, 20, 48, 79o1mul2 15598 . . . . 5 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) · (𝐴 / (log‘𝑥)))) ∈ 𝑂(1))
8133, 80eqeltrrd 2830 . . . 4 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) − 𝐴)) ∈ 𝑂(1))
8222, 23, 81o1dif 15603 . . 3 (𝜑 → ((𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥)))) ∈ 𝑂(1) ↔ (𝑥 ∈ (1(,)+∞) ↦ 𝐴) ∈ 𝑂(1)))
836, 82mpbird 257 . 2 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥)))) ∈ 𝑂(1))
84 2re 12267 . . . . . . 7 2 ∈ ℝ
85 rerpdivcl 12990 . . . . . . 7 ((2 ∈ ℝ ∧ (log‘𝑥) ∈ ℝ+) → (2 / (log‘𝑥)) ∈ ℝ)
8684, 25, 85sylancr 587 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℝ)
87 nndivre 12234 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑥 / 𝑛) ∈ ℝ)
8836, 8, 87syl2an 596 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
89 chpcl 27041 . . . . . . . . . 10 ((𝑥 / 𝑛) ∈ ℝ → (ψ‘(𝑥 / 𝑛)) ∈ ℝ)
9088, 89syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑛)) ∈ ℝ)
9111, 90remulcld 11211 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) ∈ ℝ)
929nnrpd 13000 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
9392relogcld 26539 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ)
9491, 93remulcld 11211 . . . . . . 7 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
957, 94fsumrecl 15707 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
9686, 95remulcld 11211 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℝ)
977, 91fsumrecl 15707 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) ∈ ℝ)
9896, 97resubcld 11613 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) ∈ ℝ)
9998, 43rerpdivcld 13033 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) ∈ ℝ)
10099recnd 11209 . 2 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) ∈ ℂ)
101100abscld 15412 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ ℝ)
10222abscld 15412 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥)))) ∈ ℝ)
103 2cnd 12271 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → 2 ∈ ℂ)
10495recnd 11209 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ)
105103, 104mulcld 11201 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℂ)
10697recnd 11209 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) ∈ ℂ)
107106, 26mulcld 11201 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)) ∈ ℂ)
108105, 107subcld 11540 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) ∈ ℂ)
109108abscld 15412 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) ∈ ℝ)
11042gt0ne0d 11749 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ≠ 0)
111109, 36, 110redivcld 12017 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / 𝑥) ∈ ℝ)
11252adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐴 ∈ ℝ)
11313, 112remulcld 11211 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴) ∈ ℝ)
11411recnd 11209 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℂ)
115 fzfid 13945 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑛))) ∈ Fin)
116 elfznn 13521 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛))) → 𝑚 ∈ ℕ)
117116adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ ℕ)
118 vmacl 27035 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → (Λ‘𝑚) ∈ ℝ)
119117, 118syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (Λ‘𝑚) ∈ ℝ)
120117nnrpd 13000 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ ℝ+)
121120relogcld 26539 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (log‘𝑚) ∈ ℝ)
122119, 121remulcld 11211 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
123115, 122fsumrecl 15707 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
1248nnrpd 13000 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℝ+)
125 rpdivcl 12985 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑥 / 𝑛) ∈ ℝ+)
12643, 124, 125syl2an 596 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
127126relogcld 26539 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℝ)
12890, 127remulcld 11211 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))) ∈ ℝ)
129123, 128resubcld 11613 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) ∈ ℝ)
130129recnd 11209 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) ∈ ℂ)
131114, 130mulcld 11201 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) ∈ ℂ)
1327, 131fsumcl 15706 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) ∈ ℂ)
133132abscld 15412 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ∈ ℝ)
134131abscld 15412 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ∈ ℝ)
1357, 134fsumrecl 15707 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ∈ ℝ)
136112, 36remulcld 11211 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐴 · 𝑥) ∈ ℝ)
13713, 136remulcld 11211 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥)) ∈ ℝ)
1387, 131fsumabs 15774 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))))
13952ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐴 ∈ ℝ)
14036adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
141139, 140remulcld 11211 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐴 · 𝑥) ∈ ℝ)
14212, 141remulcld 11211 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥)) ∈ ℝ)
143130abscld 15412 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) ∈ ℝ)
144141, 9nndivred 12247 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝐴 · 𝑥) / 𝑛) ∈ ℝ)
145 vmage0 27038 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 0 ≤ (Λ‘𝑛))
1469, 145syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (Λ‘𝑛))
14788recnd 11209 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℂ)
148126rpne0d 13007 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ≠ 0)
149130, 147, 148absdivd 15431 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) / (𝑥 / 𝑛))) = ((abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) / (abs‘(𝑥 / 𝑛))))
150126rpge0d 13006 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (𝑥 / 𝑛))
15188, 150absidd 15396 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑥 / 𝑛)) = (𝑥 / 𝑛))
152151oveq2d 7406 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) / (abs‘(𝑥 / 𝑛))) = ((abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) / (𝑥 / 𝑛)))
153149, 152eqtrd 2765 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) / (𝑥 / 𝑛))) = ((abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) / (𝑥 / 𝑛)))
154 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑚 → (Λ‘𝑘) = (Λ‘𝑚))
155 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑚 → (log‘𝑘) = (log‘𝑚))
156154, 155oveq12d 7408 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑚 → ((Λ‘𝑘) · (log‘𝑘)) = ((Λ‘𝑚) · (log‘𝑚)))
157156cbvsumv 15669 . . . . . . . . . . . . . . . . . . . . . 22 Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) = Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚))
158 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = (𝑥 / 𝑛) → (⌊‘𝑦) = (⌊‘(𝑥 / 𝑛)))
159158oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (𝑥 / 𝑛) → (1...(⌊‘𝑦)) = (1...(⌊‘(𝑥 / 𝑛))))
160159sumeq1d 15673 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (𝑥 / 𝑛) → Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))
161157, 160eqtrid 2777 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑥 / 𝑛) → Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))
162 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (𝑥 / 𝑛) → (ψ‘𝑦) = (ψ‘(𝑥 / 𝑛)))
163 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (𝑥 / 𝑛) → (log‘𝑦) = (log‘(𝑥 / 𝑛)))
164162, 163oveq12d 7408 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑥 / 𝑛) → ((ψ‘𝑦) · (log‘𝑦)) = ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))
165161, 164oveq12d 7408 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑥 / 𝑛) → (Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) − ((ψ‘𝑦) · (log‘𝑦))) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))
166 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑥 / 𝑛) → 𝑦 = (𝑥 / 𝑛))
167165, 166oveq12d 7408 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑥 / 𝑛) → ((Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦) = ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) / (𝑥 / 𝑛)))
168167fveq2d 6865 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑥 / 𝑛) → (abs‘((Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) = (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) / (𝑥 / 𝑛))))
169168breq1d 5120 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑥 / 𝑛) → ((abs‘((Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝐴 ↔ (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) / (𝑥 / 𝑛))) ≤ 𝐴))
170 selberg3lem1.2 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝐴)
171170ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝐴)
1729nncnd 12209 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
173172mullidd 11199 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · 𝑛) = 𝑛)
174 fznnfl 13831 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℝ → (𝑛 ∈ (1...(⌊‘𝑥)) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝑥)))
17536, 174syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑛 ∈ (1...(⌊‘𝑥)) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝑥)))
176175simplbda 499 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛𝑥)
177173, 176eqbrtrd 5132 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · 𝑛) ≤ 𝑥)
178 1red 11182 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
179178, 140, 92lemuldivd 13051 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((1 · 𝑛) ≤ 𝑥 ↔ 1 ≤ (𝑥 / 𝑛)))
180177, 179mpbid 232 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ≤ (𝑥 / 𝑛))
181 1re 11181 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
182 elicopnf 13413 . . . . . . . . . . . . . . . . . . 19 (1 ∈ ℝ → ((𝑥 / 𝑛) ∈ (1[,)+∞) ↔ ((𝑥 / 𝑛) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑛))))
183181, 182ax-mp 5 . . . . . . . . . . . . . . . . . 18 ((𝑥 / 𝑛) ∈ (1[,)+∞) ↔ ((𝑥 / 𝑛) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑛)))
18488, 180, 183sylanbrc 583 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ (1[,)+∞))
185169, 171, 184rspcdva 3592 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) / (𝑥 / 𝑛))) ≤ 𝐴)
186153, 185eqbrtrrd 5134 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) / (𝑥 / 𝑛)) ≤ 𝐴)
187143, 139, 126ledivmul2d 13056 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) / (𝑥 / 𝑛)) ≤ 𝐴 ↔ (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) ≤ (𝐴 · (𝑥 / 𝑛))))
188186, 187mpbid 232 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) ≤ (𝐴 · (𝑥 / 𝑛)))
18923adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐴 ∈ ℂ)
190140recnd 11209 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℂ)
1919nnne0d 12243 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ≠ 0)
192189, 190, 172, 191divassd 12000 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝐴 · 𝑥) / 𝑛) = (𝐴 · (𝑥 / 𝑛)))
193188, 192breqtrrd 5138 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) ≤ ((𝐴 · 𝑥) / 𝑛))
194143, 144, 11, 146, 193lemul2ad 12130 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ≤ ((Λ‘𝑛) · ((𝐴 · 𝑥) / 𝑛)))
195114, 130absmuld 15430 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) = ((abs‘(Λ‘𝑛)) · (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))))
19611, 146absidd 15396 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(Λ‘𝑛)) = (Λ‘𝑛))
197196oveq1d 7405 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(Λ‘𝑛)) · (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) = ((Λ‘𝑛) · (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))))
198195, 197eqtrd 2765 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) = ((Λ‘𝑛) · (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))))
199141recnd 11209 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐴 · 𝑥) ∈ ℂ)
200114, 172, 199, 191div32d 11988 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥)) = ((Λ‘𝑛) · ((𝐴 · 𝑥) / 𝑛)))
201194, 198, 2003brtr4d 5142 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ≤ (((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥)))
2027, 134, 142, 201fsumle 15772 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥)))
20336recnd 11209 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℂ)
20423, 203mulcld 11201 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐴 · 𝑥) ∈ ℂ)
205114, 172, 191divcld 11965 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
2067, 204, 205fsummulc1 15758 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥)))
207202, 206breqtrrd 5138 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥)))
208133, 135, 137, 138, 207letrd 11338 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥)))
209123recnd 11209 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) ∈ ℂ)
21090recnd 11209 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑛)) ∈ ℂ)
21193recnd 11209 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℂ)
212210, 211mulcld 11201 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)) ∈ ℂ)
213209, 212addcld 11200 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))) ∈ ℂ)
214114, 213mulcld 11201 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) ∈ ℂ)
215114, 210mulcld 11201 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) ∈ ℂ)
21626adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑥) ∈ ℂ)
217215, 216mulcld 11201 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)) ∈ ℂ)
2187, 214, 217fsumsub 15761 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) − (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))))
219210, 216mulcld 11201 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)) ∈ ℂ)
220114, 213, 219subdid 11641 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))) − ((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)))) = (((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) − ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)))))
22143adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
222221, 92relogdivd 26542 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) = ((log‘𝑥) − (log‘𝑛)))
223222oveq2d 7406 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))) = ((ψ‘(𝑥 / 𝑛)) · ((log‘𝑥) − (log‘𝑛))))
224210, 216, 211subdid 11641 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑛)) · ((log‘𝑥) − (log‘𝑛))) = (((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)) − ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))))
225223, 224eqtrd 2765 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))) = (((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)) − ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))))
226225oveq2d 7406 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − (((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)) − ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))))
227209, 219, 212subsub3d 11570 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − (((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)) − ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) = ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))) − ((ψ‘(𝑥 / 𝑛)) · (log‘𝑥))))
228226, 227eqtrd 2765 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) = ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))) − ((ψ‘(𝑥 / 𝑛)) · (log‘𝑥))))
229228oveq2d 7406 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) = ((Λ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))) − ((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)))))
230114, 210, 216mulassd 11204 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)) = ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑥))))
231230oveq2d 7406 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) − (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) = (((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) − ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)))))
232220, 229, 2313eqtr4d 2775 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) = (((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) − (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))))
233232sumeq2dv 15675 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) − (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))))
234 fveq2 6861 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → (Λ‘𝑛) = (Λ‘𝑚))
235 oveq2 7398 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → (𝑥 / 𝑛) = (𝑥 / 𝑚))
236235fveq2d 6865 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → (ψ‘(𝑥 / 𝑛)) = (ψ‘(𝑥 / 𝑚)))
237234, 236oveq12d 7408 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → ((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) = ((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))))
238 fveq2 6861 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (log‘𝑛) = (log‘𝑚))
239237, 238oveq12d 7408 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) = (((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚)))
240239cbvsumv 15669 . . . . . . . . . . . . . . 15 Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) = Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))
241 elfznn 13521 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))) → 𝑛 ∈ ℕ)
242241adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → 𝑛 ∈ ℕ)
243242, 10syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (Λ‘𝑛) ∈ ℝ)
244243recnd 11209 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (Λ‘𝑛) ∈ ℂ)
245244anasss 466 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ (𝑚 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))))) → (Λ‘𝑛) ∈ ℂ)
246 elfznn 13521 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℕ)
247246adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℕ)
248247, 118syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑚) ∈ ℝ)
249248recnd 11209 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑚) ∈ ℂ)
250247nnrpd 13000 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℝ+)
251250relogcld 26539 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (log‘𝑚) ∈ ℝ)
252251recnd 11209 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (log‘𝑚) ∈ ℂ)
253249, 252mulcld 11201 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℂ)
254253adantrr 717 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ (𝑚 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℂ)
255245, 254mulcld 11201 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ (𝑚 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))))) → ((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))) ∈ ℂ)
25636, 255fsumfldivdiag 27107 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
25736adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
258257, 247nndivred 12247 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑚) ∈ ℝ)
259 chpcl 27041 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 / 𝑚) ∈ ℝ → (ψ‘(𝑥 / 𝑚)) ∈ ℝ)
260258, 259syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑚)) ∈ ℝ)
261260recnd 11209 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑚)) ∈ ℂ)
262249, 261, 252mul32d 11391 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚)) = (((Λ‘𝑚) · (log‘𝑚)) · (ψ‘(𝑥 / 𝑚))))
263248, 251remulcld 11211 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
264263recnd 11209 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℂ)
265264, 261mulcomd 11202 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑚) · (log‘𝑚)) · (ψ‘(𝑥 / 𝑚))) = ((ψ‘(𝑥 / 𝑚)) · ((Λ‘𝑚) · (log‘𝑚))))
266 chpval 27039 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 / 𝑚) ∈ ℝ → (ψ‘(𝑥 / 𝑚)) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))(Λ‘𝑛))
267258, 266syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑚)) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))(Λ‘𝑛))
268267oveq1d 7405 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑚)) · ((Λ‘𝑚) · (log‘𝑚))) = (Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))(Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
269 fzfid 13945 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑚))) ∈ Fin)
270269, 264, 244fsummulc1 15758 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))(Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
271268, 270eqtrd 2765 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑚)) · ((Λ‘𝑚) · (log‘𝑚))) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
272262, 265, 2713eqtrd 2769 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚)) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
273272sumeq2dv 15675 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚)) = Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
274122recnd 11209 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℂ)
275115, 114, 274fsummulc2 15757 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
276275sumeq2dv 15675 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
277256, 273, 2763eqtr4d 2775 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚)) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))))
278240, 277eqtrid 2777 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))))
279114, 210, 211mulassd 11204 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) = ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))))
280279sumeq2dv 15675 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))))
281278, 280oveq12d 7408 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))))
2821042timesd 12432 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))))
283114, 209mulcld 11201 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) ∈ ℂ)
284114, 212mulcld 11201 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))) ∈ ℂ)
2857, 283, 284fsumadd 15713 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))))
286281, 282, 2853eqtr4d 2775 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))))
287114, 209, 212adddid 11205 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) = (((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))))
288287sumeq2dv 15675 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))))
289286, 288eqtr4d 2768 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))))
29091recnd 11209 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) ∈ ℂ)
2917, 26, 290fsummulc1 15758 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))
292289, 291oveq12d 7408 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))))
293218, 233, 2923eqtr4rd 2776 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))))
294293fveq2d 6865 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) = (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))))
29524, 23, 203mulassd 11204 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴) · 𝑥) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥)))
296208, 294, 2953brtr4d 5142 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴) · 𝑥))
297109, 113, 43ledivmul2d 13056 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / 𝑥) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴) ↔ (abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴) · 𝑥)))
298296, 297mpbird 257 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / 𝑥) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴))
299111, 113, 25, 298lediv1dd 13060 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / 𝑥) / (log‘𝑥)) ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴) / (log‘𝑥)))
300109recnd 11209 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) ∈ ℂ)
301300, 203, 26, 110, 29divdiv1d 11996 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / 𝑥) / (log‘𝑥)) = ((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / (𝑥 · (log‘𝑥))))
302108, 26, 203, 29, 110divdiv32d 11990 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / (log‘𝑥)) / 𝑥) = ((((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / 𝑥) / (log‘𝑥)))
303105, 107, 26, 29divsubdird 12004 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / (log‘𝑥)) = (((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) / (log‘𝑥)) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)) / (log‘𝑥))))
304103, 104, 26, 29div23d 12002 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) / (log‘𝑥)) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))))
305106, 26, 29divcan4d 11971 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)) / (log‘𝑥)) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))))
306304, 305oveq12d 7408 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) / (log‘𝑥)) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)) / (log‘𝑥))) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))))
307303, 306eqtrd 2765 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / (log‘𝑥)) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))))
308307oveq1d 7405 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / (log‘𝑥)) / 𝑥) = ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥))
309108, 203, 26, 110, 29divdiv1d 11996 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / 𝑥) / (log‘𝑥)) = (((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / (𝑥 · (log‘𝑥))))
310302, 308, 3093eqtr3d 2773 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) = (((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / (𝑥 · (log‘𝑥))))
311310fveq2d 6865 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) = (abs‘(((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / (𝑥 · (log‘𝑥)))))
31243, 25rpmulcld 13018 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℝ+)
313312rpcnd 13004 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℂ)
314312rpne0d 13007 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ≠ 0)
315108, 313, 314absdivd 15431 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / (𝑥 · (log‘𝑥)))) = ((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / (abs‘(𝑥 · (log‘𝑥)))))
316312rpred 13002 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℝ)
317312rpge0d 13006 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ (𝑥 · (log‘𝑥)))
318316, 317absidd 15396 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(𝑥 · (log‘𝑥))) = (𝑥 · (log‘𝑥)))
319318oveq2d 7406 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / (abs‘(𝑥 · (log‘𝑥)))) = ((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / (𝑥 · (log‘𝑥))))
320311, 315, 3193eqtrd 2769 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) = ((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / (𝑥 · (log‘𝑥))))
321301, 320eqtr4d 2768 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / 𝑥) / (log‘𝑥)) = (abs‘((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)))
32224, 23, 26, 29divassd 12000 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴) / (log‘𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))))
323299, 321, 3223brtr3d 5141 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))))
32421leabsd 15388 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) ≤ (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥)))))
325101, 21, 102, 323, 324letrd 11338 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ≤ (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥)))))
326325adantrr 717 . 2 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → (abs‘((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ≤ (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥)))))
3271, 83, 21, 100, 326o1le 15626 1 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wss 3917   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  +∞cpnf 11212   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  +crp 12958  (,)cioo 13313  [,)cico 13315  ...cfz 13475  cfl 13759  abscabs 15207  𝑂(1)co1 15459  Σcsu 15659  eceu 16035  logclog 26470  Λcvma 27009  ψcchp 27010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-o1 15463  df-lo1 15464  df-sum 15660  df-ef 16040  df-e 16041  df-sin 16042  df-cos 16043  df-pi 16045  df-dvds 16230  df-gcd 16472  df-prm 16649  df-pc 16815  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-cxp 26473  df-cht 27014  df-vma 27015  df-chp 27016  df-ppi 27017
This theorem is referenced by:  selberg3lem2  27476
  Copyright terms: Public domain W3C validator