MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg3lem1 Structured version   Visualization version   GIF version

Theorem selberg3lem1 27466
Description: Introduce a log weighting on the summands of Σ𝑚 · 𝑛𝑥, Λ(𝑚)Λ(𝑛), the core of selberg2 27460 (written here as Σ𝑛𝑥, Λ(𝑛)ψ(𝑥 / 𝑛)). Equation 10.4.21 of [Shapiro], p. 422. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
selberg3lem1.1 (𝜑𝐴 ∈ ℝ+)
selberg3lem1.2 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝐴)
Assertion
Ref Expression
selberg3lem1 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ 𝑂(1))
Distinct variable groups:   𝑘,𝑛,𝑥,𝑦,𝐴   𝜑,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑘)

Proof of Theorem selberg3lem1
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 1red 11116 . 2 (𝜑 → 1 ∈ ℝ)
2 ioossre 13310 . . . 4 (1(,)+∞) ⊆ ℝ
3 selberg3lem1.1 . . . . 5 (𝜑𝐴 ∈ ℝ+)
43rpcnd 12939 . . . 4 (𝜑𝐴 ∈ ℂ)
5 o1const 15527 . . . 4 (((1(,)+∞) ⊆ ℝ ∧ 𝐴 ∈ ℂ) → (𝑥 ∈ (1(,)+∞) ↦ 𝐴) ∈ 𝑂(1))
62, 4, 5sylancr 587 . . 3 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ 𝐴) ∈ 𝑂(1))
7 fzfid 13880 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin)
8 elfznn 13456 . . . . . . . . . 10 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
98adantl 481 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
10 vmacl 27026 . . . . . . . . 9 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
119, 10syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
1211, 9nndivred 12182 . . . . . . 7 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
137, 12fsumrecl 15641 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℝ)
14 elioore 13278 . . . . . . . . 9 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
15 eliooord 13308 . . . . . . . . . 10 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
1615simpld 494 . . . . . . . . 9 (𝑥 ∈ (1(,)+∞) → 1 < 𝑥)
1714, 16rplogcld 26536 . . . . . . . 8 (𝑥 ∈ (1(,)+∞) → (log‘𝑥) ∈ ℝ+)
18 rpdivcl 12920 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ (log‘𝑥) ∈ ℝ+) → (𝐴 / (log‘𝑥)) ∈ ℝ+)
193, 17, 18syl2an 596 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐴 / (log‘𝑥)) ∈ ℝ+)
2019rpred 12937 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐴 / (log‘𝑥)) ∈ ℝ)
2113, 20remulcld 11145 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) ∈ ℝ)
2221recnd 11143 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) ∈ ℂ)
234adantr 480 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐴 ∈ ℂ)
2413recnd 11143 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℂ)
2517adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ+)
2625rpcnd 12939 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℂ)
2719rpcnd 12939 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐴 / (log‘𝑥)) ∈ ℂ)
2824, 26, 27subdird 11577 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) · (𝐴 / (log‘𝑥))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) − ((log‘𝑥) · (𝐴 / (log‘𝑥)))))
2925rpne0d 12942 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ≠ 0)
3023, 26, 29divcan2d 11902 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) · (𝐴 / (log‘𝑥))) = 𝐴)
3130oveq2d 7365 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) − ((log‘𝑥) · (𝐴 / (log‘𝑥)))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) − 𝐴))
3228, 31eqtrd 2764 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) · (𝐴 / (log‘𝑥))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) − 𝐴))
3332mpteq2dva 5185 . . . . 5 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) · (𝐴 / (log‘𝑥)))) = (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) − 𝐴)))
3425rpred 12937 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ)
3513, 34resubcld 11548 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) ∈ ℝ)
3614adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
37 0red 11118 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ∈ ℝ)
38 1red 11116 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
39 0lt1 11642 . . . . . . . . . . . 12 0 < 1
4039a1i 11 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 < 1)
4116adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
4237, 38, 36, 40, 41lttrd 11277 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 < 𝑥)
4336, 42elrpd 12934 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
4443ex 412 . . . . . . . 8 (𝜑 → (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ+))
4544ssrdv 3941 . . . . . . 7 (𝜑 → (1(,)+∞) ⊆ ℝ+)
46 vmadivsum 27391 . . . . . . . 8 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1)
4746a1i 11 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1))
4845, 47o1res2 15470 . . . . . 6 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1))
492a1i 11 . . . . . . 7 (𝜑 → (1(,)+∞) ⊆ ℝ)
50 ere 15996 . . . . . . . 8 e ∈ ℝ
5150a1i 11 . . . . . . 7 (𝜑 → e ∈ ℝ)
523rpred 12937 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
5319adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (𝐴 / (log‘𝑥)) ∈ ℝ+)
5453rprege0d 12944 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → ((𝐴 / (log‘𝑥)) ∈ ℝ ∧ 0 ≤ (𝐴 / (log‘𝑥))))
55 absid 15203 . . . . . . . . 9 (((𝐴 / (log‘𝑥)) ∈ ℝ ∧ 0 ≤ (𝐴 / (log‘𝑥))) → (abs‘(𝐴 / (log‘𝑥))) = (𝐴 / (log‘𝑥)))
5654, 55syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (abs‘(𝐴 / (log‘𝑥))) = (𝐴 / (log‘𝑥)))
57 loge 26493 . . . . . . . . . . 11 (log‘e) = 1
58 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → e ≤ 𝑥)
59 epr 16117 . . . . . . . . . . . . 13 e ∈ ℝ+
6043adantrr 717 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → 𝑥 ∈ ℝ+)
61 logleb 26510 . . . . . . . . . . . . 13 ((e ∈ ℝ+𝑥 ∈ ℝ+) → (e ≤ 𝑥 ↔ (log‘e) ≤ (log‘𝑥)))
6259, 60, 61sylancr 587 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (e ≤ 𝑥 ↔ (log‘e) ≤ (log‘𝑥)))
6358, 62mpbid 232 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (log‘e) ≤ (log‘𝑥))
6457, 63eqbrtrrid 5128 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → 1 ≤ (log‘𝑥))
65 1rp 12897 . . . . . . . . . . . 12 1 ∈ ℝ+
66 rpregt0 12908 . . . . . . . . . . . 12 (1 ∈ ℝ+ → (1 ∈ ℝ ∧ 0 < 1))
6765, 66mp1i 13 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (1 ∈ ℝ ∧ 0 < 1))
6825adantrr 717 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (log‘𝑥) ∈ ℝ+)
6968rpregt0d 12943 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → ((log‘𝑥) ∈ ℝ ∧ 0 < (log‘𝑥)))
703adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → 𝐴 ∈ ℝ+)
7170rpregt0d 12943 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
72 lediv2 12015 . . . . . . . . . . 11 (((1 ∈ ℝ ∧ 0 < 1) ∧ ((log‘𝑥) ∈ ℝ ∧ 0 < (log‘𝑥)) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 ≤ (log‘𝑥) ↔ (𝐴 / (log‘𝑥)) ≤ (𝐴 / 1)))
7367, 69, 71, 72syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (1 ≤ (log‘𝑥) ↔ (𝐴 / (log‘𝑥)) ≤ (𝐴 / 1)))
7464, 73mpbid 232 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (𝐴 / (log‘𝑥)) ≤ (𝐴 / 1))
754adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → 𝐴 ∈ ℂ)
7675div1d 11892 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (𝐴 / 1) = 𝐴)
7774, 76breqtrd 5118 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (𝐴 / (log‘𝑥)) ≤ 𝐴)
7856, 77eqbrtrd 5114 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ e ≤ 𝑥)) → (abs‘(𝐴 / (log‘𝑥))) ≤ 𝐴)
7949, 27, 51, 52, 78elo1d 15443 . . . . . 6 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (𝐴 / (log‘𝑥))) ∈ 𝑂(1))
8035, 20, 48, 79o1mul2 15532 . . . . 5 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) · (𝐴 / (log‘𝑥)))) ∈ 𝑂(1))
8133, 80eqeltrrd 2829 . . . 4 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) − 𝐴)) ∈ 𝑂(1))
8222, 23, 81o1dif 15537 . . 3 (𝜑 → ((𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥)))) ∈ 𝑂(1) ↔ (𝑥 ∈ (1(,)+∞) ↦ 𝐴) ∈ 𝑂(1)))
836, 82mpbird 257 . 2 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥)))) ∈ 𝑂(1))
84 2re 12202 . . . . . . 7 2 ∈ ℝ
85 rerpdivcl 12925 . . . . . . 7 ((2 ∈ ℝ ∧ (log‘𝑥) ∈ ℝ+) → (2 / (log‘𝑥)) ∈ ℝ)
8684, 25, 85sylancr 587 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℝ)
87 nndivre 12169 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑥 / 𝑛) ∈ ℝ)
8836, 8, 87syl2an 596 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
89 chpcl 27032 . . . . . . . . . 10 ((𝑥 / 𝑛) ∈ ℝ → (ψ‘(𝑥 / 𝑛)) ∈ ℝ)
9088, 89syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑛)) ∈ ℝ)
9111, 90remulcld 11145 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) ∈ ℝ)
929nnrpd 12935 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
9392relogcld 26530 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ)
9491, 93remulcld 11145 . . . . . . 7 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
957, 94fsumrecl 15641 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
9686, 95remulcld 11145 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℝ)
977, 91fsumrecl 15641 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) ∈ ℝ)
9896, 97resubcld 11548 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) ∈ ℝ)
9998, 43rerpdivcld 12968 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) ∈ ℝ)
10099recnd 11143 . 2 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) ∈ ℂ)
101100abscld 15346 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ ℝ)
10222abscld 15346 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥)))) ∈ ℝ)
103 2cnd 12206 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → 2 ∈ ℂ)
10495recnd 11143 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ)
105103, 104mulcld 11135 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℂ)
10697recnd 11143 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) ∈ ℂ)
107106, 26mulcld 11135 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)) ∈ ℂ)
108105, 107subcld 11475 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) ∈ ℂ)
109108abscld 15346 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) ∈ ℝ)
11042gt0ne0d 11684 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ≠ 0)
111109, 36, 110redivcld 11952 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / 𝑥) ∈ ℝ)
11252adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐴 ∈ ℝ)
11313, 112remulcld 11145 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴) ∈ ℝ)
11411recnd 11143 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℂ)
115 fzfid 13880 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑛))) ∈ Fin)
116 elfznn 13456 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛))) → 𝑚 ∈ ℕ)
117116adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ ℕ)
118 vmacl 27026 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → (Λ‘𝑚) ∈ ℝ)
119117, 118syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (Λ‘𝑚) ∈ ℝ)
120117nnrpd 12935 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ ℝ+)
121120relogcld 26530 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (log‘𝑚) ∈ ℝ)
122119, 121remulcld 11145 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
123115, 122fsumrecl 15641 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
1248nnrpd 12935 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℝ+)
125 rpdivcl 12920 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑥 / 𝑛) ∈ ℝ+)
12643, 124, 125syl2an 596 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
127126relogcld 26530 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℝ)
12890, 127remulcld 11145 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))) ∈ ℝ)
129123, 128resubcld 11548 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) ∈ ℝ)
130129recnd 11143 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) ∈ ℂ)
131114, 130mulcld 11135 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) ∈ ℂ)
1327, 131fsumcl 15640 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) ∈ ℂ)
133132abscld 15346 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ∈ ℝ)
134131abscld 15346 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ∈ ℝ)
1357, 134fsumrecl 15641 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ∈ ℝ)
136112, 36remulcld 11145 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐴 · 𝑥) ∈ ℝ)
13713, 136remulcld 11145 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥)) ∈ ℝ)
1387, 131fsumabs 15708 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))))
13952ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐴 ∈ ℝ)
14036adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
141139, 140remulcld 11145 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐴 · 𝑥) ∈ ℝ)
14212, 141remulcld 11145 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥)) ∈ ℝ)
143130abscld 15346 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) ∈ ℝ)
144141, 9nndivred 12182 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝐴 · 𝑥) / 𝑛) ∈ ℝ)
145 vmage0 27029 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 0 ≤ (Λ‘𝑛))
1469, 145syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (Λ‘𝑛))
14788recnd 11143 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℂ)
148126rpne0d 12942 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ≠ 0)
149130, 147, 148absdivd 15365 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) / (𝑥 / 𝑛))) = ((abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) / (abs‘(𝑥 / 𝑛))))
150126rpge0d 12941 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (𝑥 / 𝑛))
15188, 150absidd 15330 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑥 / 𝑛)) = (𝑥 / 𝑛))
152151oveq2d 7365 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) / (abs‘(𝑥 / 𝑛))) = ((abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) / (𝑥 / 𝑛)))
153149, 152eqtrd 2764 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) / (𝑥 / 𝑛))) = ((abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) / (𝑥 / 𝑛)))
154 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑚 → (Λ‘𝑘) = (Λ‘𝑚))
155 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑚 → (log‘𝑘) = (log‘𝑚))
156154, 155oveq12d 7367 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑚 → ((Λ‘𝑘) · (log‘𝑘)) = ((Λ‘𝑚) · (log‘𝑚)))
157156cbvsumv 15603 . . . . . . . . . . . . . . . . . . . . . 22 Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) = Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚))
158 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = (𝑥 / 𝑛) → (⌊‘𝑦) = (⌊‘(𝑥 / 𝑛)))
159158oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (𝑥 / 𝑛) → (1...(⌊‘𝑦)) = (1...(⌊‘(𝑥 / 𝑛))))
160159sumeq1d 15607 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (𝑥 / 𝑛) → Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))
161157, 160eqtrid 2776 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑥 / 𝑛) → Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)))
162 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (𝑥 / 𝑛) → (ψ‘𝑦) = (ψ‘(𝑥 / 𝑛)))
163 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (𝑥 / 𝑛) → (log‘𝑦) = (log‘(𝑥 / 𝑛)))
164162, 163oveq12d 7367 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑥 / 𝑛) → ((ψ‘𝑦) · (log‘𝑦)) = ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))
165161, 164oveq12d 7367 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑥 / 𝑛) → (Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) − ((ψ‘𝑦) · (log‘𝑦))) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))
166 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑥 / 𝑛) → 𝑦 = (𝑥 / 𝑛))
167165, 166oveq12d 7367 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑥 / 𝑛) → ((Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦) = ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) / (𝑥 / 𝑛)))
168167fveq2d 6826 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑥 / 𝑛) → (abs‘((Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) = (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) / (𝑥 / 𝑛))))
169168breq1d 5102 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑥 / 𝑛) → ((abs‘((Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝐴 ↔ (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) / (𝑥 / 𝑛))) ≤ 𝐴))
170 selberg3lem1.2 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝐴)
171170ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝐴)
1729nncnd 12144 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
173172mullidd 11133 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · 𝑛) = 𝑛)
174 fznnfl 13766 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℝ → (𝑛 ∈ (1...(⌊‘𝑥)) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝑥)))
17536, 174syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑛 ∈ (1...(⌊‘𝑥)) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝑥)))
176175simplbda 499 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛𝑥)
177173, 176eqbrtrd 5114 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · 𝑛) ≤ 𝑥)
178 1red 11116 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
179178, 140, 92lemuldivd 12986 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((1 · 𝑛) ≤ 𝑥 ↔ 1 ≤ (𝑥 / 𝑛)))
180177, 179mpbid 232 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ≤ (𝑥 / 𝑛))
181 1re 11115 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
182 elicopnf 13348 . . . . . . . . . . . . . . . . . . 19 (1 ∈ ℝ → ((𝑥 / 𝑛) ∈ (1[,)+∞) ↔ ((𝑥 / 𝑛) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑛))))
183181, 182ax-mp 5 . . . . . . . . . . . . . . . . . 18 ((𝑥 / 𝑛) ∈ (1[,)+∞) ↔ ((𝑥 / 𝑛) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑛)))
18488, 180, 183sylanbrc 583 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ (1[,)+∞))
185169, 171, 184rspcdva 3578 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) / (𝑥 / 𝑛))) ≤ 𝐴)
186153, 185eqbrtrrd 5116 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) / (𝑥 / 𝑛)) ≤ 𝐴)
187143, 139, 126ledivmul2d 12991 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) / (𝑥 / 𝑛)) ≤ 𝐴 ↔ (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) ≤ (𝐴 · (𝑥 / 𝑛))))
188186, 187mpbid 232 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) ≤ (𝐴 · (𝑥 / 𝑛)))
18923adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐴 ∈ ℂ)
190140recnd 11143 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℂ)
1919nnne0d 12178 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ≠ 0)
192189, 190, 172, 191divassd 11935 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝐴 · 𝑥) / 𝑛) = (𝐴 · (𝑥 / 𝑛)))
193188, 192breqtrrd 5120 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) ≤ ((𝐴 · 𝑥) / 𝑛))
194143, 144, 11, 146, 193lemul2ad 12065 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ≤ ((Λ‘𝑛) · ((𝐴 · 𝑥) / 𝑛)))
195114, 130absmuld 15364 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) = ((abs‘(Λ‘𝑛)) · (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))))
19611, 146absidd 15330 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(Λ‘𝑛)) = (Λ‘𝑛))
197196oveq1d 7364 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(Λ‘𝑛)) · (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) = ((Λ‘𝑛) · (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))))
198195, 197eqtrd 2764 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) = ((Λ‘𝑛) · (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))))
199141recnd 11143 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐴 · 𝑥) ∈ ℂ)
200114, 172, 199, 191div32d 11923 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥)) = ((Λ‘𝑛) · ((𝐴 · 𝑥) / 𝑛)))
201194, 198, 2003brtr4d 5124 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ≤ (((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥)))
2027, 134, 142, 201fsumle 15706 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥)))
20336recnd 11143 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℂ)
20423, 203mulcld 11135 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐴 · 𝑥) ∈ ℂ)
205114, 172, 191divcld 11900 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
2067, 204, 205fsummulc1 15692 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥)))
207202, 206breqtrrd 5120 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥)))
208133, 135, 137, 138, 207letrd 11273 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥)))
209123recnd 11143 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) ∈ ℂ)
21090recnd 11143 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑛)) ∈ ℂ)
21193recnd 11143 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℂ)
212210, 211mulcld 11135 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)) ∈ ℂ)
213209, 212addcld 11134 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))) ∈ ℂ)
214114, 213mulcld 11135 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) ∈ ℂ)
215114, 210mulcld 11135 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) ∈ ℂ)
21626adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑥) ∈ ℂ)
217215, 216mulcld 11135 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)) ∈ ℂ)
2187, 214, 217fsumsub 15695 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) − (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))))
219210, 216mulcld 11135 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)) ∈ ℂ)
220114, 213, 219subdid 11576 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))) − ((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)))) = (((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) − ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)))))
22143adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
222221, 92relogdivd 26533 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) = ((log‘𝑥) − (log‘𝑛)))
223222oveq2d 7365 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))) = ((ψ‘(𝑥 / 𝑛)) · ((log‘𝑥) − (log‘𝑛))))
224210, 216, 211subdid 11576 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑛)) · ((log‘𝑥) − (log‘𝑛))) = (((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)) − ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))))
225223, 224eqtrd 2764 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))) = (((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)) − ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))))
226225oveq2d 7365 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − (((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)) − ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))))
227209, 219, 212subsub3d 11505 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − (((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)) − ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) = ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))) − ((ψ‘(𝑥 / 𝑛)) · (log‘𝑥))))
228226, 227eqtrd 2764 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))) = ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))) − ((ψ‘(𝑥 / 𝑛)) · (log‘𝑥))))
229228oveq2d 7365 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) = ((Λ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))) − ((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)))))
230114, 210, 216mulassd 11138 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)) = ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑥))))
231230oveq2d 7365 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) − (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) = (((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) − ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑥)))))
232220, 229, 2313eqtr4d 2774 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) = (((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) − (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))))
233232sumeq2dv 15609 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) − (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))))
234 fveq2 6822 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → (Λ‘𝑛) = (Λ‘𝑚))
235 oveq2 7357 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → (𝑥 / 𝑛) = (𝑥 / 𝑚))
236235fveq2d 6826 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → (ψ‘(𝑥 / 𝑛)) = (ψ‘(𝑥 / 𝑚)))
237234, 236oveq12d 7367 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → ((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) = ((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))))
238 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (log‘𝑛) = (log‘𝑚))
239237, 238oveq12d 7367 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) = (((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚)))
240239cbvsumv 15603 . . . . . . . . . . . . . . 15 Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) = Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚))
241 elfznn 13456 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))) → 𝑛 ∈ ℕ)
242241adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → 𝑛 ∈ ℕ)
243242, 10syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (Λ‘𝑛) ∈ ℝ)
244243recnd 11143 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (Λ‘𝑛) ∈ ℂ)
245244anasss 466 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ (𝑚 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))))) → (Λ‘𝑛) ∈ ℂ)
246 elfznn 13456 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℕ)
247246adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℕ)
248247, 118syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑚) ∈ ℝ)
249248recnd 11143 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑚) ∈ ℂ)
250247nnrpd 12935 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℝ+)
251250relogcld 26530 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (log‘𝑚) ∈ ℝ)
252251recnd 11143 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (log‘𝑚) ∈ ℂ)
253249, 252mulcld 11135 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℂ)
254253adantrr 717 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ (𝑚 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℂ)
255245, 254mulcld 11135 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ (𝑚 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚))))) → ((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))) ∈ ℂ)
25636, 255fsumfldivdiag 27098 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
25736adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
258257, 247nndivred 12182 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑚) ∈ ℝ)
259 chpcl 27032 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 / 𝑚) ∈ ℝ → (ψ‘(𝑥 / 𝑚)) ∈ ℝ)
260258, 259syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑚)) ∈ ℝ)
261260recnd 11143 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑚)) ∈ ℂ)
262249, 261, 252mul32d 11326 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚)) = (((Λ‘𝑚) · (log‘𝑚)) · (ψ‘(𝑥 / 𝑚))))
263248, 251remulcld 11145 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
264263recnd 11143 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℂ)
265264, 261mulcomd 11136 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑚) · (log‘𝑚)) · (ψ‘(𝑥 / 𝑚))) = ((ψ‘(𝑥 / 𝑚)) · ((Λ‘𝑚) · (log‘𝑚))))
266 chpval 27030 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 / 𝑚) ∈ ℝ → (ψ‘(𝑥 / 𝑚)) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))(Λ‘𝑛))
267258, 266syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑚)) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))(Λ‘𝑛))
268267oveq1d 7364 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑚)) · ((Λ‘𝑚) · (log‘𝑚))) = (Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))(Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
269 fzfid 13880 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑚))) ∈ Fin)
270269, 264, 244fsummulc1 15692 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))(Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
271268, 270eqtrd 2764 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑥 / 𝑚)) · ((Λ‘𝑚) · (log‘𝑚))) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
272262, 265, 2713eqtrd 2768 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚)) = Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
273272sumeq2dv 15609 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚)) = Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
274122recnd 11143 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℂ)
275115, 114, 274fsummulc2 15691 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
276275sumeq2dv 15609 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑛) · ((Λ‘𝑚) · (log‘𝑚))))
277256, 273, 2763eqtr4d 2774 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((Λ‘𝑚) · (ψ‘(𝑥 / 𝑚))) · (log‘𝑚)) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))))
278240, 277eqtrid 2776 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))))
279114, 210, 211mulassd 11138 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) = ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))))
280279sumeq2dv 15609 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))))
281278, 280oveq12d 7367 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))))
2821042timesd 12367 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))))
283114, 209mulcld 11135 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) ∈ ℂ)
284114, 212mulcld 11135 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛))) ∈ ℂ)
2857, 283, 284fsumadd 15647 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))))
286281, 282, 2853eqtr4d 2774 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))))
287114, 209, 212adddid 11139 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) = (((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))))
288287sumeq2dv 15609 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚))) + ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))))
289286, 288eqtr4d 2767 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))))
29091recnd 11143 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) ∈ ℂ)
2917, 26, 290fsummulc1 15692 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))
292289, 291oveq12d 7367 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘(𝑥 / 𝑛)) · (log‘𝑛)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))))
293218, 233, 2923eqtr4rd 2775 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛))))))
294293fveq2d 6826 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) = (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘(𝑥 / 𝑛)) · (log‘(𝑥 / 𝑛)))))))
29524, 23, 203mulassd 11138 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴) · 𝑥) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 · 𝑥)))
296208, 294, 2953brtr4d 5124 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴) · 𝑥))
297109, 113, 43ledivmul2d 12991 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / 𝑥) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴) ↔ (abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴) · 𝑥)))
298296, 297mpbird 257 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / 𝑥) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴))
299111, 113, 25, 298lediv1dd 12995 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / 𝑥) / (log‘𝑥)) ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴) / (log‘𝑥)))
300109recnd 11143 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) ∈ ℂ)
301300, 203, 26, 110, 29divdiv1d 11931 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / 𝑥) / (log‘𝑥)) = ((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / (𝑥 · (log‘𝑥))))
302108, 26, 203, 29, 110divdiv32d 11925 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / (log‘𝑥)) / 𝑥) = ((((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / 𝑥) / (log‘𝑥)))
303105, 107, 26, 29divsubdird 11939 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / (log‘𝑥)) = (((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) / (log‘𝑥)) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)) / (log‘𝑥))))
304103, 104, 26, 29div23d 11937 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) / (log‘𝑥)) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))))
305106, 26, 29divcan4d 11906 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)) / (log‘𝑥)) = Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))))
306304, 305oveq12d 7367 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) / (log‘𝑥)) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)) / (log‘𝑥))) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))))
307303, 306eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / (log‘𝑥)) = (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))))
308307oveq1d 7364 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / (log‘𝑥)) / 𝑥) = ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥))
309108, 203, 26, 110, 29divdiv1d 11931 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / 𝑥) / (log‘𝑥)) = (((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / (𝑥 · (log‘𝑥))))
310302, 308, 3093eqtr3d 2772 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) = (((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / (𝑥 · (log‘𝑥))))
311310fveq2d 6826 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) = (abs‘(((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / (𝑥 · (log‘𝑥)))))
31243, 25rpmulcld 12953 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℝ+)
313312rpcnd 12939 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℂ)
314312rpne0d 12942 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ≠ 0)
315108, 313, 314absdivd 15365 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥))) / (𝑥 · (log‘𝑥)))) = ((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / (abs‘(𝑥 · (log‘𝑥)))))
316312rpred 12937 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℝ)
317312rpge0d 12941 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ (𝑥 · (log‘𝑥)))
318316, 317absidd 15330 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(𝑥 · (log‘𝑥))) = (𝑥 · (log‘𝑥)))
319318oveq2d 7365 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / (abs‘(𝑥 · (log‘𝑥)))) = ((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / (𝑥 · (log‘𝑥))))
320311, 315, 3193eqtrd 2768 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) = ((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / (𝑥 · (log‘𝑥))))
321301, 320eqtr4d 2767 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (((abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑥)))) / 𝑥) / (log‘𝑥)) = (abs‘((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)))
32224, 23, 26, 29divassd 11935 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴) / (log‘𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))))
323299, 321, 3223brtr3d 5123 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))))
32421leabsd 15322 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥))) ≤ (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥)))))
325101, 21, 102, 323, 324letrd 11273 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ≤ (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥)))))
326325adantrr 717 . 2 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → (abs‘((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ≤ (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · (𝐴 / (log‘𝑥)))))
3271, 83, 21, 100, 326o1le 15560 1 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3903   class class class wbr 5092  cmpt 5173  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  +∞cpnf 11146   < clt 11149  cle 11150  cmin 11347   / cdiv 11777  cn 12128  2c2 12183  +crp 12893  (,)cioo 13248  [,)cico 13250  ...cfz 13410  cfl 13694  abscabs 15141  𝑂(1)co1 15393  Σcsu 15593  eceu 15969  logclog 26461  Λcvma 27000  ψcchp 27001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-o1 15397  df-lo1 15398  df-sum 15594  df-ef 15974  df-e 15975  df-sin 15976  df-cos 15977  df-pi 15979  df-dvds 16164  df-gcd 16406  df-prm 16583  df-pc 16749  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-cmp 23272  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766  df-log 26463  df-cxp 26464  df-cht 27005  df-vma 27006  df-chp 27007  df-ppi 27008
This theorem is referenced by:  selberg3lem2  27467
  Copyright terms: Public domain W3C validator