Step | Hyp | Ref
| Expression |
1 | | prmuz2 16092 |
. . 3
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
(ℤ≥‘2)) |
2 | | euclemma 16109 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑃 ∥ (𝑥 · 𝑦) ↔ (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) |
3 | 2 | 3expb 1117 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑃 ∥ (𝑥 · 𝑦) ↔ (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) |
4 | 3 | biimpd 232 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) |
5 | 4 | ralrimivva 3120 |
. . 3
⊢ (𝑃 ∈ ℙ →
∀𝑥 ∈ ℤ
∀𝑦 ∈ ℤ
(𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) |
6 | 1, 5 | jca 515 |
. 2
⊢ (𝑃 ∈ ℙ → (𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦)))) |
7 | | simpl 486 |
. . 3
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) → 𝑃 ∈
(ℤ≥‘2)) |
8 | | eluz2nn 12324 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈
(ℤ≥‘2) → 𝑃 ∈ ℕ) |
9 | 8 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑃 ∈ ℕ) |
10 | 9 | nnzd 12125 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑃 ∈ ℤ) |
11 | | iddvds 15671 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ ℤ → 𝑃 ∥ 𝑃) |
12 | 10, 11 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑃 ∥ 𝑃) |
13 | | nncn 11682 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℂ) |
14 | 9, 13 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑃 ∈ ℂ) |
15 | | nncn 11682 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ℕ → 𝑧 ∈
ℂ) |
16 | 15 | ad2antrl 727 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑧 ∈ ℂ) |
17 | | nnne0 11708 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ℕ → 𝑧 ≠ 0) |
18 | 17 | ad2antrl 727 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑧 ≠ 0) |
19 | 14, 16, 18 | divcan1d 11455 |
. . . . . . . . . 10
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → ((𝑃 / 𝑧) · 𝑧) = 𝑃) |
20 | 12, 19 | breqtrrd 5060 |
. . . . . . . . 9
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑃 ∥ ((𝑃 / 𝑧) · 𝑧)) |
21 | 20 | adantr 484 |
. . . . . . . 8
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) → 𝑃 ∥ ((𝑃 / 𝑧) · 𝑧)) |
22 | | simprr 772 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑧 ∥ 𝑃) |
23 | | simprl 770 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑧 ∈ ℕ) |
24 | | nndivdvds 15664 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧 ∥ 𝑃 ↔ (𝑃 / 𝑧) ∈ ℕ)) |
25 | 9, 23, 24 | syl2anc 587 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑧 ∥ 𝑃 ↔ (𝑃 / 𝑧) ∈ ℕ)) |
26 | 22, 25 | mpbid 235 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑃 / 𝑧) ∈ ℕ) |
27 | 26 | nnzd 12125 |
. . . . . . . . . 10
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑃 / 𝑧) ∈ ℤ) |
28 | | nnz 12043 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℕ → 𝑧 ∈
ℤ) |
29 | 28 | ad2antrl 727 |
. . . . . . . . . 10
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑧 ∈ ℤ) |
30 | 27, 29 | jca 515 |
. . . . . . . . 9
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → ((𝑃 / 𝑧) ∈ ℤ ∧ 𝑧 ∈ ℤ)) |
31 | | oveq1 7157 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑃 / 𝑧) → (𝑥 · 𝑦) = ((𝑃 / 𝑧) · 𝑦)) |
32 | 31 | breq2d 5044 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑃 / 𝑧) → (𝑃 ∥ (𝑥 · 𝑦) ↔ 𝑃 ∥ ((𝑃 / 𝑧) · 𝑦))) |
33 | | breq2 5036 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑃 / 𝑧) → (𝑃 ∥ 𝑥 ↔ 𝑃 ∥ (𝑃 / 𝑧))) |
34 | 33 | orbi1d 914 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑃 / 𝑧) → ((𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦) ↔ (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃 ∥ 𝑦))) |
35 | 32, 34 | imbi12d 348 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑃 / 𝑧) → ((𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦)) ↔ (𝑃 ∥ ((𝑃 / 𝑧) · 𝑦) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃 ∥ 𝑦)))) |
36 | | oveq2 7158 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → ((𝑃 / 𝑧) · 𝑦) = ((𝑃 / 𝑧) · 𝑧)) |
37 | 36 | breq2d 5044 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → (𝑃 ∥ ((𝑃 / 𝑧) · 𝑦) ↔ 𝑃 ∥ ((𝑃 / 𝑧) · 𝑧))) |
38 | | breq2 5036 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → (𝑃 ∥ 𝑦 ↔ 𝑃 ∥ 𝑧)) |
39 | 38 | orbi2d 913 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → ((𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃 ∥ 𝑦) ↔ (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃 ∥ 𝑧))) |
40 | 37, 39 | imbi12d 348 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → ((𝑃 ∥ ((𝑃 / 𝑧) · 𝑦) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃 ∥ 𝑦)) ↔ (𝑃 ∥ ((𝑃 / 𝑧) · 𝑧) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃 ∥ 𝑧)))) |
41 | 35, 40 | rspc2va 3552 |
. . . . . . . . 9
⊢ ((((𝑃 / 𝑧) ∈ ℤ ∧ 𝑧 ∈ ℤ) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) → (𝑃 ∥ ((𝑃 / 𝑧) · 𝑧) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃 ∥ 𝑧))) |
42 | 30, 41 | sylan 583 |
. . . . . . . 8
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) → (𝑃 ∥ ((𝑃 / 𝑧) · 𝑧) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃 ∥ 𝑧))) |
43 | 21, 42 | mpd 15 |
. . . . . . 7
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃 ∥ 𝑧)) |
44 | | dvdsle 15711 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℤ ∧ (𝑃 / 𝑧) ∈ ℕ) → (𝑃 ∥ (𝑃 / 𝑧) → 𝑃 ≤ (𝑃 / 𝑧))) |
45 | 10, 26, 44 | syl2anc 587 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑃 ∥ (𝑃 / 𝑧) → 𝑃 ≤ (𝑃 / 𝑧))) |
46 | 14 | div1d 11446 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑃 / 1) = 𝑃) |
47 | 46 | breq1d 5042 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → ((𝑃 / 1) ≤ (𝑃 / 𝑧) ↔ 𝑃 ≤ (𝑃 / 𝑧))) |
48 | 45, 47 | sylibrd 262 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑃 ∥ (𝑃 / 𝑧) → (𝑃 / 1) ≤ (𝑃 / 𝑧))) |
49 | | nnrp 12441 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ ℕ → 𝑧 ∈
ℝ+) |
50 | 49 | rpregt0d 12478 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ℕ → (𝑧 ∈ ℝ ∧ 0 <
𝑧)) |
51 | 50 | ad2antrl 727 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑧 ∈ ℝ ∧ 0 < 𝑧)) |
52 | | 1rp 12434 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℝ+ |
53 | | rpregt0 12444 |
. . . . . . . . . . . . 13
⊢ (1 ∈
ℝ+ → (1 ∈ ℝ ∧ 0 < 1)) |
54 | 52, 53 | mp1i 13 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (1 ∈ ℝ ∧ 0 <
1)) |
55 | | nnrp 12441 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℝ+) |
56 | 9, 55 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑃 ∈
ℝ+) |
57 | 56 | rpregt0d 12478 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑃 ∈ ℝ ∧ 0 < 𝑃)) |
58 | | lediv2 11568 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∈ ℝ ∧ 0 <
𝑧) ∧ (1 ∈ ℝ
∧ 0 < 1) ∧ (𝑃
∈ ℝ ∧ 0 < 𝑃)) → (𝑧 ≤ 1 ↔ (𝑃 / 1) ≤ (𝑃 / 𝑧))) |
59 | 51, 54, 57, 58 | syl3anc 1368 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑧 ≤ 1 ↔ (𝑃 / 1) ≤ (𝑃 / 𝑧))) |
60 | 48, 59 | sylibrd 262 |
. . . . . . . . . 10
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑃 ∥ (𝑃 / 𝑧) → 𝑧 ≤ 1)) |
61 | | nnle1eq1 11704 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℕ → (𝑧 ≤ 1 ↔ 𝑧 = 1)) |
62 | 61 | ad2antrl 727 |
. . . . . . . . . 10
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑧 ≤ 1 ↔ 𝑧 = 1)) |
63 | 60, 62 | sylibd 242 |
. . . . . . . . 9
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑃 ∥ (𝑃 / 𝑧) → 𝑧 = 1)) |
64 | | nnnn0 11941 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ℕ → 𝑧 ∈
ℕ0) |
65 | 64 | ad2antrl 727 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑧 ∈ ℕ0) |
66 | 65 | adantr 484 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) ∧ 𝑃 ∥ 𝑧) → 𝑧 ∈ ℕ0) |
67 | | nnnn0 11941 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℕ0) |
68 | 9, 67 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → 𝑃 ∈
ℕ0) |
69 | 68 | adantr 484 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) ∧ 𝑃 ∥ 𝑧) → 𝑃 ∈
ℕ0) |
70 | | simplrr 777 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) ∧ 𝑃 ∥ 𝑧) → 𝑧 ∥ 𝑃) |
71 | | simpr 488 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) ∧ 𝑃 ∥ 𝑧) → 𝑃 ∥ 𝑧) |
72 | | dvdseq 15715 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ ℕ0
∧ 𝑃 ∈
ℕ0) ∧ (𝑧 ∥ 𝑃 ∧ 𝑃 ∥ 𝑧)) → 𝑧 = 𝑃) |
73 | 66, 69, 70, 71, 72 | syl22anc 837 |
. . . . . . . . . 10
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) ∧ 𝑃 ∥ 𝑧) → 𝑧 = 𝑃) |
74 | 73 | ex 416 |
. . . . . . . . 9
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑃 ∥ 𝑧 → 𝑧 = 𝑃)) |
75 | 63, 74 | orim12d 962 |
. . . . . . . 8
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → ((𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃 ∥ 𝑧) → (𝑧 = 1 ∨ 𝑧 = 𝑃))) |
76 | 75 | imp 410 |
. . . . . . 7
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) ∧ (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃 ∥ 𝑧)) → (𝑧 = 1 ∨ 𝑧 = 𝑃)) |
77 | 43, 76 | syldan 594 |
. . . . . 6
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) → (𝑧 = 1 ∨ 𝑧 = 𝑃)) |
78 | 77 | an32s 651 |
. . . . 5
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) ∧ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) → (𝑧 = 1 ∨ 𝑧 = 𝑃)) |
79 | 78 | expr 460 |
. . . 4
⊢ (((𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) ∧ 𝑧 ∈ ℕ) → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) |
80 | 79 | ralrimiva 3113 |
. . 3
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) → ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) |
81 | | isprm2 16078 |
. . 3
⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
82 | 7, 80, 81 | sylanbrc 586 |
. 2
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))) → 𝑃 ∈ ℙ) |
83 | 6, 82 | impbii 212 |
1
⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦)))) |