MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm6 Structured version   Visualization version   GIF version

Theorem isprm6 16058
Description: A number is prime iff it satisfies Euclid's lemma euclemma 16057. (Contributed by Mario Carneiro, 6-Sep-2015.)
Assertion
Ref Expression
isprm6 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))))
Distinct variable group:   𝑥,𝑦,𝑃

Proof of Theorem isprm6
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 prmuz2 16040 . . 3 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
2 euclemma 16057 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑃 ∥ (𝑥 · 𝑦) ↔ (𝑃𝑥𝑃𝑦)))
323expb 1116 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑃 ∥ (𝑥 · 𝑦) ↔ (𝑃𝑥𝑃𝑦)))
43biimpd 231 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦)))
54ralrimivva 3191 . . 3 (𝑃 ∈ ℙ → ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦)))
61, 5jca 514 . 2 (𝑃 ∈ ℙ → (𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))))
7 simpl 485 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → 𝑃 ∈ (ℤ‘2))
8 eluz2nn 12285 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
98adantr 483 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃 ∈ ℕ)
109nnzd 12087 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃 ∈ ℤ)
11 iddvds 15623 . . . . . . . . . . 11 (𝑃 ∈ ℤ → 𝑃𝑃)
1210, 11syl 17 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃𝑃)
13 nncn 11646 . . . . . . . . . . . 12 (𝑃 ∈ ℕ → 𝑃 ∈ ℂ)
149, 13syl 17 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃 ∈ ℂ)
15 nncn 11646 . . . . . . . . . . . 12 (𝑧 ∈ ℕ → 𝑧 ∈ ℂ)
1615ad2antrl 726 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑧 ∈ ℂ)
17 nnne0 11672 . . . . . . . . . . . 12 (𝑧 ∈ ℕ → 𝑧 ≠ 0)
1817ad2antrl 726 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑧 ≠ 0)
1914, 16, 18divcan1d 11417 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → ((𝑃 / 𝑧) · 𝑧) = 𝑃)
2012, 19breqtrrd 5094 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃 ∥ ((𝑃 / 𝑧) · 𝑧))
2120adantr 483 . . . . . . . 8 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → 𝑃 ∥ ((𝑃 / 𝑧) · 𝑧))
22 simprr 771 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑧𝑃)
23 simprl 769 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑧 ∈ ℕ)
24 nndivdvds 15616 . . . . . . . . . . . . 13 ((𝑃 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧𝑃 ↔ (𝑃 / 𝑧) ∈ ℕ))
259, 23, 24syl2anc 586 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑧𝑃 ↔ (𝑃 / 𝑧) ∈ ℕ))
2622, 25mpbid 234 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 / 𝑧) ∈ ℕ)
2726nnzd 12087 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 / 𝑧) ∈ ℤ)
28 nnz 12005 . . . . . . . . . . 11 (𝑧 ∈ ℕ → 𝑧 ∈ ℤ)
2928ad2antrl 726 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑧 ∈ ℤ)
3027, 29jca 514 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → ((𝑃 / 𝑧) ∈ ℤ ∧ 𝑧 ∈ ℤ))
31 oveq1 7163 . . . . . . . . . . . 12 (𝑥 = (𝑃 / 𝑧) → (𝑥 · 𝑦) = ((𝑃 / 𝑧) · 𝑦))
3231breq2d 5078 . . . . . . . . . . 11 (𝑥 = (𝑃 / 𝑧) → (𝑃 ∥ (𝑥 · 𝑦) ↔ 𝑃 ∥ ((𝑃 / 𝑧) · 𝑦)))
33 breq2 5070 . . . . . . . . . . . 12 (𝑥 = (𝑃 / 𝑧) → (𝑃𝑥𝑃 ∥ (𝑃 / 𝑧)))
3433orbi1d 913 . . . . . . . . . . 11 (𝑥 = (𝑃 / 𝑧) → ((𝑃𝑥𝑃𝑦) ↔ (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑦)))
3532, 34imbi12d 347 . . . . . . . . . 10 (𝑥 = (𝑃 / 𝑧) → ((𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦)) ↔ (𝑃 ∥ ((𝑃 / 𝑧) · 𝑦) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑦))))
36 oveq2 7164 . . . . . . . . . . . 12 (𝑦 = 𝑧 → ((𝑃 / 𝑧) · 𝑦) = ((𝑃 / 𝑧) · 𝑧))
3736breq2d 5078 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑃 ∥ ((𝑃 / 𝑧) · 𝑦) ↔ 𝑃 ∥ ((𝑃 / 𝑧) · 𝑧)))
38 breq2 5070 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑃𝑦𝑃𝑧))
3938orbi2d 912 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑦) ↔ (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧)))
4037, 39imbi12d 347 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝑃 ∥ ((𝑃 / 𝑧) · 𝑦) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑦)) ↔ (𝑃 ∥ ((𝑃 / 𝑧) · 𝑧) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧))))
4135, 40rspc2va 3634 . . . . . . . . 9 ((((𝑃 / 𝑧) ∈ ℤ ∧ 𝑧 ∈ ℤ) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → (𝑃 ∥ ((𝑃 / 𝑧) · 𝑧) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧)))
4230, 41sylan 582 . . . . . . . 8 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → (𝑃 ∥ ((𝑃 / 𝑧) · 𝑧) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧)))
4321, 42mpd 15 . . . . . . 7 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧))
44 dvdsle 15660 . . . . . . . . . . . . 13 ((𝑃 ∈ ℤ ∧ (𝑃 / 𝑧) ∈ ℕ) → (𝑃 ∥ (𝑃 / 𝑧) → 𝑃 ≤ (𝑃 / 𝑧)))
4510, 26, 44syl2anc 586 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 ∥ (𝑃 / 𝑧) → 𝑃 ≤ (𝑃 / 𝑧)))
4614div1d 11408 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 / 1) = 𝑃)
4746breq1d 5076 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → ((𝑃 / 1) ≤ (𝑃 / 𝑧) ↔ 𝑃 ≤ (𝑃 / 𝑧)))
4845, 47sylibrd 261 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 ∥ (𝑃 / 𝑧) → (𝑃 / 1) ≤ (𝑃 / 𝑧)))
49 nnrp 12401 . . . . . . . . . . . . . 14 (𝑧 ∈ ℕ → 𝑧 ∈ ℝ+)
5049rpregt0d 12438 . . . . . . . . . . . . 13 (𝑧 ∈ ℕ → (𝑧 ∈ ℝ ∧ 0 < 𝑧))
5150ad2antrl 726 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑧 ∈ ℝ ∧ 0 < 𝑧))
52 1rp 12394 . . . . . . . . . . . . 13 1 ∈ ℝ+
53 rpregt0 12404 . . . . . . . . . . . . 13 (1 ∈ ℝ+ → (1 ∈ ℝ ∧ 0 < 1))
5452, 53mp1i 13 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (1 ∈ ℝ ∧ 0 < 1))
55 nnrp 12401 . . . . . . . . . . . . . 14 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ+)
569, 55syl 17 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃 ∈ ℝ+)
5756rpregt0d 12438 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 ∈ ℝ ∧ 0 < 𝑃))
58 lediv2 11530 . . . . . . . . . . . 12 (((𝑧 ∈ ℝ ∧ 0 < 𝑧) ∧ (1 ∈ ℝ ∧ 0 < 1) ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (𝑧 ≤ 1 ↔ (𝑃 / 1) ≤ (𝑃 / 𝑧)))
5951, 54, 57, 58syl3anc 1367 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑧 ≤ 1 ↔ (𝑃 / 1) ≤ (𝑃 / 𝑧)))
6048, 59sylibrd 261 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 ∥ (𝑃 / 𝑧) → 𝑧 ≤ 1))
61 nnle1eq1 11668 . . . . . . . . . . 11 (𝑧 ∈ ℕ → (𝑧 ≤ 1 ↔ 𝑧 = 1))
6261ad2antrl 726 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑧 ≤ 1 ↔ 𝑧 = 1))
6360, 62sylibd 241 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 ∥ (𝑃 / 𝑧) → 𝑧 = 1))
64 nnnn0 11905 . . . . . . . . . . . . 13 (𝑧 ∈ ℕ → 𝑧 ∈ ℕ0)
6564ad2antrl 726 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑧 ∈ ℕ0)
6665adantr 483 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ 𝑃𝑧) → 𝑧 ∈ ℕ0)
67 nnnn0 11905 . . . . . . . . . . . . 13 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
689, 67syl 17 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃 ∈ ℕ0)
6968adantr 483 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ 𝑃𝑧) → 𝑃 ∈ ℕ0)
70 simplrr 776 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ 𝑃𝑧) → 𝑧𝑃)
71 simpr 487 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ 𝑃𝑧) → 𝑃𝑧)
72 dvdseq 15664 . . . . . . . . . . 11 (((𝑧 ∈ ℕ0𝑃 ∈ ℕ0) ∧ (𝑧𝑃𝑃𝑧)) → 𝑧 = 𝑃)
7366, 69, 70, 71, 72syl22anc 836 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ 𝑃𝑧) → 𝑧 = 𝑃)
7473ex 415 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃𝑧𝑧 = 𝑃))
7563, 74orim12d 961 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → ((𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧) → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
7675imp 409 . . . . . . 7 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧)) → (𝑧 = 1 ∨ 𝑧 = 𝑃))
7743, 76syldan 593 . . . . . 6 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → (𝑧 = 1 ∨ 𝑧 = 𝑃))
7877an32s 650 . . . . 5 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑧 = 1 ∨ 𝑧 = 𝑃))
7978expr 459 . . . 4 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) ∧ 𝑧 ∈ ℕ) → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
8079ralrimiva 3182 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
81 isprm2 16026 . . 3 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
827, 80, 81sylanbrc 585 . 2 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → 𝑃 ∈ ℙ)
836, 82impbii 211 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3016  wral 3138   class class class wbr 5066  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   · cmul 10542   < clt 10675  cle 10676   / cdiv 11297  cn 11638  2c2 11693  0cn0 11898  cz 11982  cuz 12244  +crp 12390  cdvds 15607  cprime 16015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-dvds 15608  df-gcd 15844  df-prm 16016
This theorem is referenced by:  domnchr  20679
  Copyright terms: Public domain W3C validator