MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm6 Structured version   Visualization version   GIF version

Theorem isprm6 16419
Description: A number is prime iff it satisfies Euclid's lemma euclemma 16418. (Contributed by Mario Carneiro, 6-Sep-2015.)
Assertion
Ref Expression
isprm6 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))))
Distinct variable group:   𝑥,𝑦,𝑃

Proof of Theorem isprm6
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 prmuz2 16401 . . 3 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
2 euclemma 16418 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑃 ∥ (𝑥 · 𝑦) ↔ (𝑃𝑥𝑃𝑦)))
323expb 1119 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑃 ∥ (𝑥 · 𝑦) ↔ (𝑃𝑥𝑃𝑦)))
43biimpd 228 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦)))
54ralrimivva 3123 . . 3 (𝑃 ∈ ℙ → ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦)))
61, 5jca 512 . 2 (𝑃 ∈ ℙ → (𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))))
7 simpl 483 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → 𝑃 ∈ (ℤ‘2))
8 eluz2nn 12624 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
98adantr 481 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃 ∈ ℕ)
109nnzd 12425 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃 ∈ ℤ)
11 iddvds 15979 . . . . . . . . . . 11 (𝑃 ∈ ℤ → 𝑃𝑃)
1210, 11syl 17 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃𝑃)
13 nncn 11981 . . . . . . . . . . . 12 (𝑃 ∈ ℕ → 𝑃 ∈ ℂ)
149, 13syl 17 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃 ∈ ℂ)
15 nncn 11981 . . . . . . . . . . . 12 (𝑧 ∈ ℕ → 𝑧 ∈ ℂ)
1615ad2antrl 725 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑧 ∈ ℂ)
17 nnne0 12007 . . . . . . . . . . . 12 (𝑧 ∈ ℕ → 𝑧 ≠ 0)
1817ad2antrl 725 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑧 ≠ 0)
1914, 16, 18divcan1d 11752 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → ((𝑃 / 𝑧) · 𝑧) = 𝑃)
2012, 19breqtrrd 5102 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃 ∥ ((𝑃 / 𝑧) · 𝑧))
2120adantr 481 . . . . . . . 8 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → 𝑃 ∥ ((𝑃 / 𝑧) · 𝑧))
22 simprr 770 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑧𝑃)
23 simprl 768 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑧 ∈ ℕ)
24 nndivdvds 15972 . . . . . . . . . . . . 13 ((𝑃 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧𝑃 ↔ (𝑃 / 𝑧) ∈ ℕ))
259, 23, 24syl2anc 584 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑧𝑃 ↔ (𝑃 / 𝑧) ∈ ℕ))
2622, 25mpbid 231 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 / 𝑧) ∈ ℕ)
2726nnzd 12425 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 / 𝑧) ∈ ℤ)
28 nnz 12342 . . . . . . . . . . 11 (𝑧 ∈ ℕ → 𝑧 ∈ ℤ)
2928ad2antrl 725 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑧 ∈ ℤ)
3027, 29jca 512 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → ((𝑃 / 𝑧) ∈ ℤ ∧ 𝑧 ∈ ℤ))
31 oveq1 7282 . . . . . . . . . . . 12 (𝑥 = (𝑃 / 𝑧) → (𝑥 · 𝑦) = ((𝑃 / 𝑧) · 𝑦))
3231breq2d 5086 . . . . . . . . . . 11 (𝑥 = (𝑃 / 𝑧) → (𝑃 ∥ (𝑥 · 𝑦) ↔ 𝑃 ∥ ((𝑃 / 𝑧) · 𝑦)))
33 breq2 5078 . . . . . . . . . . . 12 (𝑥 = (𝑃 / 𝑧) → (𝑃𝑥𝑃 ∥ (𝑃 / 𝑧)))
3433orbi1d 914 . . . . . . . . . . 11 (𝑥 = (𝑃 / 𝑧) → ((𝑃𝑥𝑃𝑦) ↔ (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑦)))
3532, 34imbi12d 345 . . . . . . . . . 10 (𝑥 = (𝑃 / 𝑧) → ((𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦)) ↔ (𝑃 ∥ ((𝑃 / 𝑧) · 𝑦) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑦))))
36 oveq2 7283 . . . . . . . . . . . 12 (𝑦 = 𝑧 → ((𝑃 / 𝑧) · 𝑦) = ((𝑃 / 𝑧) · 𝑧))
3736breq2d 5086 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑃 ∥ ((𝑃 / 𝑧) · 𝑦) ↔ 𝑃 ∥ ((𝑃 / 𝑧) · 𝑧)))
38 breq2 5078 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑃𝑦𝑃𝑧))
3938orbi2d 913 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑦) ↔ (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧)))
4037, 39imbi12d 345 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝑃 ∥ ((𝑃 / 𝑧) · 𝑦) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑦)) ↔ (𝑃 ∥ ((𝑃 / 𝑧) · 𝑧) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧))))
4135, 40rspc2va 3571 . . . . . . . . 9 ((((𝑃 / 𝑧) ∈ ℤ ∧ 𝑧 ∈ ℤ) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → (𝑃 ∥ ((𝑃 / 𝑧) · 𝑧) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧)))
4230, 41sylan 580 . . . . . . . 8 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → (𝑃 ∥ ((𝑃 / 𝑧) · 𝑧) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧)))
4321, 42mpd 15 . . . . . . 7 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧))
44 dvdsle 16019 . . . . . . . . . . . . 13 ((𝑃 ∈ ℤ ∧ (𝑃 / 𝑧) ∈ ℕ) → (𝑃 ∥ (𝑃 / 𝑧) → 𝑃 ≤ (𝑃 / 𝑧)))
4510, 26, 44syl2anc 584 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 ∥ (𝑃 / 𝑧) → 𝑃 ≤ (𝑃 / 𝑧)))
4614div1d 11743 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 / 1) = 𝑃)
4746breq1d 5084 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → ((𝑃 / 1) ≤ (𝑃 / 𝑧) ↔ 𝑃 ≤ (𝑃 / 𝑧)))
4845, 47sylibrd 258 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 ∥ (𝑃 / 𝑧) → (𝑃 / 1) ≤ (𝑃 / 𝑧)))
49 nnrp 12741 . . . . . . . . . . . . . 14 (𝑧 ∈ ℕ → 𝑧 ∈ ℝ+)
5049rpregt0d 12778 . . . . . . . . . . . . 13 (𝑧 ∈ ℕ → (𝑧 ∈ ℝ ∧ 0 < 𝑧))
5150ad2antrl 725 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑧 ∈ ℝ ∧ 0 < 𝑧))
52 1rp 12734 . . . . . . . . . . . . 13 1 ∈ ℝ+
53 rpregt0 12744 . . . . . . . . . . . . 13 (1 ∈ ℝ+ → (1 ∈ ℝ ∧ 0 < 1))
5452, 53mp1i 13 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (1 ∈ ℝ ∧ 0 < 1))
55 nnrp 12741 . . . . . . . . . . . . . 14 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ+)
569, 55syl 17 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃 ∈ ℝ+)
5756rpregt0d 12778 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 ∈ ℝ ∧ 0 < 𝑃))
58 lediv2 11865 . . . . . . . . . . . 12 (((𝑧 ∈ ℝ ∧ 0 < 𝑧) ∧ (1 ∈ ℝ ∧ 0 < 1) ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (𝑧 ≤ 1 ↔ (𝑃 / 1) ≤ (𝑃 / 𝑧)))
5951, 54, 57, 58syl3anc 1370 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑧 ≤ 1 ↔ (𝑃 / 1) ≤ (𝑃 / 𝑧)))
6048, 59sylibrd 258 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 ∥ (𝑃 / 𝑧) → 𝑧 ≤ 1))
61 nnle1eq1 12003 . . . . . . . . . . 11 (𝑧 ∈ ℕ → (𝑧 ≤ 1 ↔ 𝑧 = 1))
6261ad2antrl 725 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑧 ≤ 1 ↔ 𝑧 = 1))
6360, 62sylibd 238 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 ∥ (𝑃 / 𝑧) → 𝑧 = 1))
64 nnnn0 12240 . . . . . . . . . . . . 13 (𝑧 ∈ ℕ → 𝑧 ∈ ℕ0)
6564ad2antrl 725 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑧 ∈ ℕ0)
6665adantr 481 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ 𝑃𝑧) → 𝑧 ∈ ℕ0)
67 nnnn0 12240 . . . . . . . . . . . . 13 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
689, 67syl 17 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃 ∈ ℕ0)
6968adantr 481 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ 𝑃𝑧) → 𝑃 ∈ ℕ0)
70 simplrr 775 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ 𝑃𝑧) → 𝑧𝑃)
71 simpr 485 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ 𝑃𝑧) → 𝑃𝑧)
72 dvdseq 16023 . . . . . . . . . . 11 (((𝑧 ∈ ℕ0𝑃 ∈ ℕ0) ∧ (𝑧𝑃𝑃𝑧)) → 𝑧 = 𝑃)
7366, 69, 70, 71, 72syl22anc 836 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ 𝑃𝑧) → 𝑧 = 𝑃)
7473ex 413 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃𝑧𝑧 = 𝑃))
7563, 74orim12d 962 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → ((𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧) → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
7675imp 407 . . . . . . 7 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧)) → (𝑧 = 1 ∨ 𝑧 = 𝑃))
7743, 76syldan 591 . . . . . 6 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → (𝑧 = 1 ∨ 𝑧 = 𝑃))
7877an32s 649 . . . . 5 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑧 = 1 ∨ 𝑧 = 𝑃))
7978expr 457 . . . 4 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) ∧ 𝑧 ∈ ℕ) → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
8079ralrimiva 3103 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
81 isprm2 16387 . . 3 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
827, 80, 81sylanbrc 583 . 2 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → 𝑃 ∈ ℙ)
836, 82impbii 208 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  wral 3064   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   · cmul 10876   < clt 11009  cle 11010   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  cz 12319  cuz 12582  +crp 12730  cdvds 15963  cprime 16376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-gcd 16202  df-prm 16377
This theorem is referenced by:  domnchr  20736
  Copyright terms: Public domain W3C validator