MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm6 Structured version   Visualization version   GIF version

Theorem isprm6 16748
Description: A number is prime iff it satisfies Euclid's lemma euclemma 16747. (Contributed by Mario Carneiro, 6-Sep-2015.)
Assertion
Ref Expression
isprm6 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))))
Distinct variable group:   𝑥,𝑦,𝑃

Proof of Theorem isprm6
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 prmuz2 16730 . . 3 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
2 euclemma 16747 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑃 ∥ (𝑥 · 𝑦) ↔ (𝑃𝑥𝑃𝑦)))
323expb 1119 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑃 ∥ (𝑥 · 𝑦) ↔ (𝑃𝑥𝑃𝑦)))
43biimpd 229 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦)))
54ralrimivva 3200 . . 3 (𝑃 ∈ ℙ → ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦)))
61, 5jca 511 . 2 (𝑃 ∈ ℙ → (𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))))
7 simpl 482 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → 𝑃 ∈ (ℤ‘2))
8 eluz2nn 12922 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
98adantr 480 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃 ∈ ℕ)
109nnzd 12638 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃 ∈ ℤ)
11 iddvds 16304 . . . . . . . . . . 11 (𝑃 ∈ ℤ → 𝑃𝑃)
1210, 11syl 17 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃𝑃)
13 nncn 12272 . . . . . . . . . . . 12 (𝑃 ∈ ℕ → 𝑃 ∈ ℂ)
149, 13syl 17 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃 ∈ ℂ)
15 nncn 12272 . . . . . . . . . . . 12 (𝑧 ∈ ℕ → 𝑧 ∈ ℂ)
1615ad2antrl 728 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑧 ∈ ℂ)
17 nnne0 12298 . . . . . . . . . . . 12 (𝑧 ∈ ℕ → 𝑧 ≠ 0)
1817ad2antrl 728 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑧 ≠ 0)
1914, 16, 18divcan1d 12042 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → ((𝑃 / 𝑧) · 𝑧) = 𝑃)
2012, 19breqtrrd 5176 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃 ∥ ((𝑃 / 𝑧) · 𝑧))
2120adantr 480 . . . . . . . 8 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → 𝑃 ∥ ((𝑃 / 𝑧) · 𝑧))
22 simprr 773 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑧𝑃)
23 simprl 771 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑧 ∈ ℕ)
24 nndivdvds 16296 . . . . . . . . . . . . 13 ((𝑃 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧𝑃 ↔ (𝑃 / 𝑧) ∈ ℕ))
259, 23, 24syl2anc 584 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑧𝑃 ↔ (𝑃 / 𝑧) ∈ ℕ))
2622, 25mpbid 232 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 / 𝑧) ∈ ℕ)
2726nnzd 12638 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 / 𝑧) ∈ ℤ)
28 nnz 12632 . . . . . . . . . . 11 (𝑧 ∈ ℕ → 𝑧 ∈ ℤ)
2928ad2antrl 728 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑧 ∈ ℤ)
3027, 29jca 511 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → ((𝑃 / 𝑧) ∈ ℤ ∧ 𝑧 ∈ ℤ))
31 oveq1 7438 . . . . . . . . . . . 12 (𝑥 = (𝑃 / 𝑧) → (𝑥 · 𝑦) = ((𝑃 / 𝑧) · 𝑦))
3231breq2d 5160 . . . . . . . . . . 11 (𝑥 = (𝑃 / 𝑧) → (𝑃 ∥ (𝑥 · 𝑦) ↔ 𝑃 ∥ ((𝑃 / 𝑧) · 𝑦)))
33 breq2 5152 . . . . . . . . . . . 12 (𝑥 = (𝑃 / 𝑧) → (𝑃𝑥𝑃 ∥ (𝑃 / 𝑧)))
3433orbi1d 916 . . . . . . . . . . 11 (𝑥 = (𝑃 / 𝑧) → ((𝑃𝑥𝑃𝑦) ↔ (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑦)))
3532, 34imbi12d 344 . . . . . . . . . 10 (𝑥 = (𝑃 / 𝑧) → ((𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦)) ↔ (𝑃 ∥ ((𝑃 / 𝑧) · 𝑦) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑦))))
36 oveq2 7439 . . . . . . . . . . . 12 (𝑦 = 𝑧 → ((𝑃 / 𝑧) · 𝑦) = ((𝑃 / 𝑧) · 𝑧))
3736breq2d 5160 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑃 ∥ ((𝑃 / 𝑧) · 𝑦) ↔ 𝑃 ∥ ((𝑃 / 𝑧) · 𝑧)))
38 breq2 5152 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑃𝑦𝑃𝑧))
3938orbi2d 915 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑦) ↔ (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧)))
4037, 39imbi12d 344 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝑃 ∥ ((𝑃 / 𝑧) · 𝑦) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑦)) ↔ (𝑃 ∥ ((𝑃 / 𝑧) · 𝑧) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧))))
4135, 40rspc2va 3634 . . . . . . . . 9 ((((𝑃 / 𝑧) ∈ ℤ ∧ 𝑧 ∈ ℤ) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → (𝑃 ∥ ((𝑃 / 𝑧) · 𝑧) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧)))
4230, 41sylan 580 . . . . . . . 8 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → (𝑃 ∥ ((𝑃 / 𝑧) · 𝑧) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧)))
4321, 42mpd 15 . . . . . . 7 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧))
44 dvdsle 16344 . . . . . . . . . . . . 13 ((𝑃 ∈ ℤ ∧ (𝑃 / 𝑧) ∈ ℕ) → (𝑃 ∥ (𝑃 / 𝑧) → 𝑃 ≤ (𝑃 / 𝑧)))
4510, 26, 44syl2anc 584 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 ∥ (𝑃 / 𝑧) → 𝑃 ≤ (𝑃 / 𝑧)))
4614div1d 12033 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 / 1) = 𝑃)
4746breq1d 5158 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → ((𝑃 / 1) ≤ (𝑃 / 𝑧) ↔ 𝑃 ≤ (𝑃 / 𝑧)))
4845, 47sylibrd 259 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 ∥ (𝑃 / 𝑧) → (𝑃 / 1) ≤ (𝑃 / 𝑧)))
49 nnrp 13044 . . . . . . . . . . . . . 14 (𝑧 ∈ ℕ → 𝑧 ∈ ℝ+)
5049rpregt0d 13081 . . . . . . . . . . . . 13 (𝑧 ∈ ℕ → (𝑧 ∈ ℝ ∧ 0 < 𝑧))
5150ad2antrl 728 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑧 ∈ ℝ ∧ 0 < 𝑧))
52 1rp 13036 . . . . . . . . . . . . 13 1 ∈ ℝ+
53 rpregt0 13047 . . . . . . . . . . . . 13 (1 ∈ ℝ+ → (1 ∈ ℝ ∧ 0 < 1))
5452, 53mp1i 13 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (1 ∈ ℝ ∧ 0 < 1))
55 nnrp 13044 . . . . . . . . . . . . . 14 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ+)
569, 55syl 17 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃 ∈ ℝ+)
5756rpregt0d 13081 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 ∈ ℝ ∧ 0 < 𝑃))
58 lediv2 12156 . . . . . . . . . . . 12 (((𝑧 ∈ ℝ ∧ 0 < 𝑧) ∧ (1 ∈ ℝ ∧ 0 < 1) ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (𝑧 ≤ 1 ↔ (𝑃 / 1) ≤ (𝑃 / 𝑧)))
5951, 54, 57, 58syl3anc 1370 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑧 ≤ 1 ↔ (𝑃 / 1) ≤ (𝑃 / 𝑧)))
6048, 59sylibrd 259 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 ∥ (𝑃 / 𝑧) → 𝑧 ≤ 1))
61 nnle1eq1 12294 . . . . . . . . . . 11 (𝑧 ∈ ℕ → (𝑧 ≤ 1 ↔ 𝑧 = 1))
6261ad2antrl 728 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑧 ≤ 1 ↔ 𝑧 = 1))
6360, 62sylibd 239 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃 ∥ (𝑃 / 𝑧) → 𝑧 = 1))
64 nnnn0 12531 . . . . . . . . . . . . 13 (𝑧 ∈ ℕ → 𝑧 ∈ ℕ0)
6564ad2antrl 728 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑧 ∈ ℕ0)
6665adantr 480 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ 𝑃𝑧) → 𝑧 ∈ ℕ0)
67 nnnn0 12531 . . . . . . . . . . . . 13 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
689, 67syl 17 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → 𝑃 ∈ ℕ0)
6968adantr 480 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ 𝑃𝑧) → 𝑃 ∈ ℕ0)
70 simplrr 778 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ 𝑃𝑧) → 𝑧𝑃)
71 simpr 484 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ 𝑃𝑧) → 𝑃𝑧)
72 dvdseq 16348 . . . . . . . . . . 11 (((𝑧 ∈ ℕ0𝑃 ∈ ℕ0) ∧ (𝑧𝑃𝑃𝑧)) → 𝑧 = 𝑃)
7366, 69, 70, 71, 72syl22anc 839 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ 𝑃𝑧) → 𝑧 = 𝑃)
7473ex 412 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑃𝑧𝑧 = 𝑃))
7563, 74orim12d 966 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → ((𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧) → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
7675imp 406 . . . . . . 7 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ (𝑃 ∥ (𝑃 / 𝑧) ∨ 𝑃𝑧)) → (𝑧 = 1 ∨ 𝑧 = 𝑃))
7743, 76syldan 591 . . . . . 6 (((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → (𝑧 = 1 ∨ 𝑧 = 𝑃))
7877an32s 652 . . . . 5 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) ∧ (𝑧 ∈ ℕ ∧ 𝑧𝑃)) → (𝑧 = 1 ∨ 𝑧 = 𝑃))
7978expr 456 . . . 4 (((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) ∧ 𝑧 ∈ ℕ) → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
8079ralrimiva 3144 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
81 isprm2 16716 . . 3 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
827, 80, 81sylanbrc 583 . 2 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))) → 𝑃 ∈ ℙ)
836, 82impbii 209 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  wne 2938  wral 3059   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   · cmul 11158   < clt 11293  cle 11294   / cdiv 11918  cn 12264  2c2 12319  0cn0 12524  cz 12611  cuz 12876  +crp 13032  cdvds 16287  cprime 16705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-prm 16706
This theorem is referenced by:  domnchr  21565
  Copyright terms: Public domain W3C validator