MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modlt Structured version   Visualization version   GIF version

Theorem modlt 13600
Description: The modulo operation is less than its second argument. (Contributed by NM, 10-Nov-2008.)
Assertion
Ref Expression
modlt ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) < 𝐵)

Proof of Theorem modlt
StepHypRef Expression
1 recn 10961 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 rpcnne0 12748 . . . . 5 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
3 divcan2 11641 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵 · (𝐴 / 𝐵)) = 𝐴)
433expb 1119 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐵 · (𝐴 / 𝐵)) = 𝐴)
51, 2, 4syl2an 596 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (𝐴 / 𝐵)) = 𝐴)
65oveq1d 7290 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐵 · (𝐴 / 𝐵)) − (𝐵 · (⌊‘(𝐴 / 𝐵)))) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
7 rpcn 12740 . . . . 5 (𝐵 ∈ ℝ+𝐵 ∈ ℂ)
87adantl 482 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℂ)
9 rerpdivcl 12760 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
109recnd 11003 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℂ)
11 refldivcl 13543 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℝ)
1211recnd 11003 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℂ)
138, 10, 12subdid 11431 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵)))) = ((𝐵 · (𝐴 / 𝐵)) − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
14 modval 13591 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
156, 13, 143eqtr4rd 2789 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐵 · ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵)))))
16 fraclt1 13522 . . . . 5 ((𝐴 / 𝐵) ∈ ℝ → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < 1)
179, 16syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < 1)
18 divid 11662 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵 / 𝐵) = 1)
192, 18syl 17 . . . . 5 (𝐵 ∈ ℝ+ → (𝐵 / 𝐵) = 1)
2019adantl 482 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 / 𝐵) = 1)
2117, 20breqtrrd 5102 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < (𝐵 / 𝐵))
229, 11resubcld 11403 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) ∈ ℝ)
23 rpre 12738 . . . . 5 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
2423adantl 482 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ)
25 rpregt0 12744 . . . . 5 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
2625adantl 482 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
27 ltmuldiv2 11849 . . . 4 ((((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐵 · ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵)))) < 𝐵 ↔ ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < (𝐵 / 𝐵)))
2822, 24, 26, 27syl3anc 1370 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐵 · ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵)))) < 𝐵 ↔ ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < (𝐵 / 𝐵)))
2921, 28mpbird 256 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵)))) < 𝐵)
3015, 29eqbrtrd 5096 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) < 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   · cmul 10876   < clt 11009  cmin 11205   / cdiv 11632  +crp 12730  cfl 13510   mod cmo 13589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fl 13512  df-mod 13590
This theorem is referenced by:  modelico  13601  zmodfz  13613  modid2  13618  modabs  13624  modaddmodup  13654  modsubdir  13660  digit1  13952  cshwidxmod  14516  repswcshw  14525  divalgmod  16115  bitsmod  16143  bitsinv1lem  16148  bezoutlem3  16249  eucalglt  16290  odzdvds  16496  fldivp1  16598  4sqlem6  16644  4sqlem12  16657  mndodcong  19150  oddvds  19155  gexdvds  19189  zringlpirlem3  20686  sineq0  25680  efif1olem2  25699  lgseisenlem1  26523  irrapxlem1  40644  pellfund14  40720  jm2.19  40815  sineq0ALT  42557  fourierswlem  43771  fouriersw  43772
  Copyright terms: Public domain W3C validator