MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modlt Structured version   Visualization version   GIF version

Theorem modlt 13786
Description: The modulo operation is less than its second argument. (Contributed by NM, 10-Nov-2008.)
Assertion
Ref Expression
modlt ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) < 𝐵)

Proof of Theorem modlt
StepHypRef Expression
1 recn 11103 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 rpcnne0 12911 . . . . 5 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
3 divcan2 11791 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵 · (𝐴 / 𝐵)) = 𝐴)
433expb 1120 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐵 · (𝐴 / 𝐵)) = 𝐴)
51, 2, 4syl2an 596 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (𝐴 / 𝐵)) = 𝐴)
65oveq1d 7367 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐵 · (𝐴 / 𝐵)) − (𝐵 · (⌊‘(𝐴 / 𝐵)))) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
7 rpcn 12903 . . . . 5 (𝐵 ∈ ℝ+𝐵 ∈ ℂ)
87adantl 481 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℂ)
9 rerpdivcl 12924 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
109recnd 11147 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℂ)
11 refldivcl 13729 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℝ)
1211recnd 11147 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℂ)
138, 10, 12subdid 11580 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵)))) = ((𝐵 · (𝐴 / 𝐵)) − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
14 modval 13777 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
156, 13, 143eqtr4rd 2779 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐵 · ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵)))))
16 fraclt1 13708 . . . . 5 ((𝐴 / 𝐵) ∈ ℝ → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < 1)
179, 16syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < 1)
18 divid 11814 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵 / 𝐵) = 1)
192, 18syl 17 . . . . 5 (𝐵 ∈ ℝ+ → (𝐵 / 𝐵) = 1)
2019adantl 481 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 / 𝐵) = 1)
2117, 20breqtrrd 5121 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < (𝐵 / 𝐵))
229, 11resubcld 11552 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) ∈ ℝ)
23 rpre 12901 . . . . 5 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
2423adantl 481 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ)
25 rpregt0 12907 . . . . 5 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
2625adantl 481 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
27 ltmuldiv2 12003 . . . 4 ((((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐵 · ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵)))) < 𝐵 ↔ ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < (𝐵 / 𝐵)))
2822, 24, 26, 27syl3anc 1373 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐵 · ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵)))) < 𝐵 ↔ ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < (𝐵 / 𝐵)))
2921, 28mpbird 257 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵)))) < 𝐵)
3015, 29eqbrtrd 5115 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) < 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929   class class class wbr 5093  cfv 6486  (class class class)co 7352  cc 11011  cr 11012  0cc0 11013  1c1 11014   · cmul 11018   < clt 11153  cmin 11351   / cdiv 11781  +crp 12892  cfl 13696   mod cmo 13775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-fl 13698  df-mod 13776
This theorem is referenced by:  modelico  13787  zmodfz  13799  modid2  13804  modabs  13810  modaddmodup  13843  modsubdir  13849  digit1  14146  cshwidxmod  14712  repswcshw  14721  divalgmod  16319  bitsmod  16349  bitsinv1lem  16354  bezoutlem3  16454  eucalglt  16498  odzdvds  16709  fldivp1  16811  4sqlem6  16857  4sqlem12  16870  mndodcong  19456  oddvds  19461  gexdvds  19498  zringlpirlem3  21403  sineq0  26461  efif1olem2  26480  lgseisenlem1  27314  irrapxlem1  42939  pellfund14  43015  jm2.19  43110  sineq0ALT  45053  fourierswlem  46352  fouriersw  46353  gpg3nbgrvtx0  48200
  Copyright terms: Public domain W3C validator