MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modlt Structured version   Visualization version   GIF version

Theorem modlt 13895
Description: The modulo operation is less than its second argument. (Contributed by NM, 10-Nov-2008.)
Assertion
Ref Expression
modlt ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) < 𝐵)

Proof of Theorem modlt
StepHypRef Expression
1 recn 11244 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 rpcnne0 13041 . . . . 5 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
3 divcan2 11927 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵 · (𝐴 / 𝐵)) = 𝐴)
433expb 1117 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐵 · (𝐴 / 𝐵)) = 𝐴)
51, 2, 4syl2an 594 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (𝐴 / 𝐵)) = 𝐴)
65oveq1d 7438 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐵 · (𝐴 / 𝐵)) − (𝐵 · (⌊‘(𝐴 / 𝐵)))) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
7 rpcn 13033 . . . . 5 (𝐵 ∈ ℝ+𝐵 ∈ ℂ)
87adantl 480 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℂ)
9 rerpdivcl 13053 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
109recnd 11288 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℂ)
11 refldivcl 13838 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℝ)
1211recnd 11288 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℂ)
138, 10, 12subdid 11716 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵)))) = ((𝐵 · (𝐴 / 𝐵)) − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
14 modval 13886 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
156, 13, 143eqtr4rd 2776 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐵 · ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵)))))
16 fraclt1 13817 . . . . 5 ((𝐴 / 𝐵) ∈ ℝ → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < 1)
179, 16syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < 1)
18 divid 11948 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵 / 𝐵) = 1)
192, 18syl 17 . . . . 5 (𝐵 ∈ ℝ+ → (𝐵 / 𝐵) = 1)
2019adantl 480 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 / 𝐵) = 1)
2117, 20breqtrrd 5180 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < (𝐵 / 𝐵))
229, 11resubcld 11688 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) ∈ ℝ)
23 rpre 13031 . . . . 5 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
2423adantl 480 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ)
25 rpregt0 13037 . . . . 5 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
2625adantl 480 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
27 ltmuldiv2 12135 . . . 4 ((((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐵 · ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵)))) < 𝐵 ↔ ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < (𝐵 / 𝐵)))
2822, 24, 26, 27syl3anc 1368 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐵 · ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵)))) < 𝐵 ↔ ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < (𝐵 / 𝐵)))
2921, 28mpbird 256 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵)))) < 𝐵)
3015, 29eqbrtrd 5174 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) < 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2929   class class class wbr 5152  cfv 6553  (class class class)co 7423  cc 11152  cr 11153  0cc0 11154  1c1 11155   · cmul 11159   < clt 11294  cmin 11490   / cdiv 11917  +crp 13023  cfl 13805   mod cmo 13884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-cnex 11210  ax-resscn 11211  ax-1cn 11212  ax-icn 11213  ax-addcl 11214  ax-addrcl 11215  ax-mulcl 11216  ax-mulrcl 11217  ax-mulcom 11218  ax-addass 11219  ax-mulass 11220  ax-distr 11221  ax-i2m1 11222  ax-1ne0 11223  ax-1rid 11224  ax-rnegex 11225  ax-rrecex 11226  ax-cnre 11227  ax-pre-lttri 11228  ax-pre-lttrn 11229  ax-pre-ltadd 11230  ax-pre-mulgt0 11231  ax-pre-sup 11232
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5579  df-eprel 5585  df-po 5593  df-so 5594  df-fr 5636  df-we 5638  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-pred 6311  df-ord 6378  df-on 6379  df-lim 6380  df-suc 6381  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-om 7876  df-2nd 8003  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-er 8733  df-en 8974  df-dom 8975  df-sdom 8976  df-sup 9481  df-inf 9482  df-pnf 11296  df-mnf 11297  df-xr 11298  df-ltxr 11299  df-le 11300  df-sub 11492  df-neg 11493  df-div 11918  df-nn 12260  df-n0 12520  df-z 12606  df-uz 12870  df-rp 13024  df-fl 13807  df-mod 13885
This theorem is referenced by:  modelico  13896  zmodfz  13908  modid2  13913  modabs  13919  modaddmodup  13949  modsubdir  13955  digit1  14249  cshwidxmod  14806  repswcshw  14815  divalgmod  16403  bitsmod  16431  bitsinv1lem  16436  bezoutlem3  16537  eucalglt  16581  odzdvds  16792  fldivp1  16894  4sqlem6  16940  4sqlem12  16953  mndodcong  19535  oddvds  19540  gexdvds  19577  zringlpirlem3  21446  sineq0  26543  efif1olem2  26562  lgseisenlem1  27396  irrapxlem1  42428  pellfund14  42504  jm2.19  42600  sineq0ALT  44562  fourierswlem  45800  fouriersw  45801
  Copyright terms: Public domain W3C validator