Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > modlt | Structured version Visualization version GIF version |
Description: The modulo operation is less than its second argument. (Contributed by NM, 10-Nov-2008.) |
Ref | Expression |
---|---|
modlt | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) < 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn 10678 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
2 | rpcnne0 12461 | . . . . 5 ⊢ (𝐵 ∈ ℝ+ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) | |
3 | divcan2 11357 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵 · (𝐴 / 𝐵)) = 𝐴) | |
4 | 3 | 3expb 1117 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐵 · (𝐴 / 𝐵)) = 𝐴) |
5 | 1, 2, 4 | syl2an 598 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (𝐴 / 𝐵)) = 𝐴) |
6 | 5 | oveq1d 7171 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐵 · (𝐴 / 𝐵)) − (𝐵 · (⌊‘(𝐴 / 𝐵)))) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) |
7 | rpcn 12453 | . . . . 5 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ) | |
8 | 7 | adantl 485 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℂ) |
9 | rerpdivcl 12473 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) | |
10 | 9 | recnd 10720 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℂ) |
11 | refldivcl 13255 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℝ) | |
12 | 11 | recnd 10720 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℂ) |
13 | 8, 10, 12 | subdid 11147 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵)))) = ((𝐵 · (𝐴 / 𝐵)) − (𝐵 · (⌊‘(𝐴 / 𝐵))))) |
14 | modval 13301 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) | |
15 | 6, 13, 14 | 3eqtr4rd 2804 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐵 · ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))))) |
16 | fraclt1 13234 | . . . . 5 ⊢ ((𝐴 / 𝐵) ∈ ℝ → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < 1) | |
17 | 9, 16 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < 1) |
18 | divid 11378 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵 / 𝐵) = 1) | |
19 | 2, 18 | syl 17 | . . . . 5 ⊢ (𝐵 ∈ ℝ+ → (𝐵 / 𝐵) = 1) |
20 | 19 | adantl 485 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 / 𝐵) = 1) |
21 | 17, 20 | breqtrrd 5064 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < (𝐵 / 𝐵)) |
22 | 9, 11 | resubcld 11119 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) ∈ ℝ) |
23 | rpre 12451 | . . . . 5 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ) | |
24 | 23 | adantl 485 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ) |
25 | rpregt0 12457 | . . . . 5 ⊢ (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 0 < 𝐵)) | |
26 | 25 | adantl 485 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 ∈ ℝ ∧ 0 < 𝐵)) |
27 | ltmuldiv2 11565 | . . . 4 ⊢ ((((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐵 · ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵)))) < 𝐵 ↔ ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < (𝐵 / 𝐵))) | |
28 | 22, 24, 26, 27 | syl3anc 1368 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐵 · ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵)))) < 𝐵 ↔ ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < (𝐵 / 𝐵))) |
29 | 21, 28 | mpbird 260 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵)))) < 𝐵) |
30 | 15, 29 | eqbrtrd 5058 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) < 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 class class class wbr 5036 ‘cfv 6340 (class class class)co 7156 ℂcc 10586 ℝcr 10587 0cc0 10588 1c1 10589 · cmul 10593 < clt 10726 − cmin 10921 / cdiv 11348 ℝ+crp 12443 ⌊cfl 13222 mod cmo 13299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-sup 8952 df-inf 8953 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-nn 11688 df-n0 11948 df-z 12034 df-uz 12296 df-rp 12444 df-fl 13224 df-mod 13300 |
This theorem is referenced by: modelico 13311 zmodfz 13323 modid2 13328 modabs 13334 modaddmodup 13364 modsubdir 13370 digit1 13661 cshwidxmod 14225 repswcshw 14234 divalgmod 15820 bitsmod 15848 bitsinv1lem 15853 bezoutlem3 15954 eucalglt 15995 odzdvds 16201 fldivp1 16302 4sqlem6 16348 4sqlem12 16361 mndodcong 18751 oddvds 18756 gexdvds 18790 zringlpirlem3 20268 sineq0 25229 efif1olem2 25248 lgseisenlem1 26072 irrapxlem1 40181 pellfund14 40257 jm2.19 40352 sineq0ALT 42061 fourierswlem 43283 fouriersw 43284 |
Copyright terms: Public domain | W3C validator |