MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modlt Structured version   Visualization version   GIF version

Theorem modlt 12890
Description: The modulo operation is less than its second argument. (Contributed by NM, 10-Nov-2008.)
Assertion
Ref Expression
modlt ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) < 𝐵)

Proof of Theorem modlt
StepHypRef Expression
1 recn 10281 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 rpcnne0 12051 . . . . 5 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
3 divcan2 10949 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵 · (𝐴 / 𝐵)) = 𝐴)
433expb 1149 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐵 · (𝐴 / 𝐵)) = 𝐴)
51, 2, 4syl2an 589 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (𝐴 / 𝐵)) = 𝐴)
65oveq1d 6859 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐵 · (𝐴 / 𝐵)) − (𝐵 · (⌊‘(𝐴 / 𝐵)))) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
7 rpcn 12043 . . . . 5 (𝐵 ∈ ℝ+𝐵 ∈ ℂ)
87adantl 473 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℂ)
9 rerpdivcl 12062 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
109recnd 10324 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℂ)
11 refldivcl 12835 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℝ)
1211recnd 10324 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℂ)
138, 10, 12subdid 10742 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵)))) = ((𝐵 · (𝐴 / 𝐵)) − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
14 modval 12881 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
156, 13, 143eqtr4rd 2810 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐵 · ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵)))))
16 fraclt1 12814 . . . . 5 ((𝐴 / 𝐵) ∈ ℝ → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < 1)
179, 16syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < 1)
18 divid 10970 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵 / 𝐵) = 1)
192, 18syl 17 . . . . 5 (𝐵 ∈ ℝ+ → (𝐵 / 𝐵) = 1)
2019adantl 473 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 / 𝐵) = 1)
2117, 20breqtrrd 4839 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < (𝐵 / 𝐵))
229, 11resubcld 10714 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) ∈ ℝ)
23 rpre 12039 . . . . 5 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
2423adantl 473 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ)
25 rpregt0 12047 . . . . 5 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
2625adantl 473 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
27 ltmuldiv2 11153 . . . 4 ((((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐵 · ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵)))) < 𝐵 ↔ ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < (𝐵 / 𝐵)))
2822, 24, 26, 27syl3anc 1490 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐵 · ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵)))) < 𝐵 ↔ ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < (𝐵 / 𝐵)))
2921, 28mpbird 248 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵)))) < 𝐵)
3015, 29eqbrtrd 4833 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) < 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wne 2937   class class class wbr 4811  cfv 6070  (class class class)co 6844  cc 10189  cr 10190  0cc0 10191  1c1 10192   · cmul 10196   < clt 10330  cmin 10522   / cdiv 10940  +crp 12031  cfl 12802   mod cmo 12879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268  ax-pre-sup 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-om 7266  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-er 7949  df-en 8163  df-dom 8164  df-sdom 8165  df-sup 8557  df-inf 8558  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-div 10941  df-nn 11277  df-n0 11541  df-z 11627  df-uz 11890  df-rp 12032  df-fl 12804  df-mod 12880
This theorem is referenced by:  modelico  12891  zmodfz  12903  modid2  12908  modabs  12914  modaddmodup  12944  modsubdir  12950  digit1  13208  cshwidxmod  13835  repswcshw  13844  divalgmod  15414  bitsmod  15442  bitsinv1lem  15447  bezoutlem3  15542  eucalglt  15582  odzdvds  15782  fldivp1  15883  4sqlem6  15929  4sqlem12  15942  mndodcong  18228  oddvds  18233  gexdvds  18266  zringlpirlem3  20110  sineq0  24568  efif1olem2  24584  lgseisenlem1  25394  irrapxlem1  38067  pellfund14  38143  jm2.19  38240  sineq0ALT  39828  fourierswlem  41087  fouriersw  41088
  Copyright terms: Public domain W3C validator