MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chto1ub Structured version   Visualization version   GIF version

Theorem chto1ub 27387
Description: The θ function is upper bounded by a linear term. Corollary of chtub 27123. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
chto1ub (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1)

Proof of Theorem chto1ub
StepHypRef Expression
1 rpssre 12959 . . . 4 + ⊆ ℝ
21a1i 11 . . 3 (⊤ → ℝ+ ⊆ ℝ)
3 rpre 12960 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
4 chtcl 27019 . . . . . . 7 (𝑥 ∈ ℝ → (θ‘𝑥) ∈ ℝ)
53, 4syl 17 . . . . . 6 (𝑥 ∈ ℝ+ → (θ‘𝑥) ∈ ℝ)
6 rerpdivcl 12983 . . . . . 6 (((θ‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((θ‘𝑥) / 𝑥) ∈ ℝ)
75, 6mpancom 688 . . . . 5 (𝑥 ∈ ℝ+ → ((θ‘𝑥) / 𝑥) ∈ ℝ)
87recnd 11202 . . . 4 (𝑥 ∈ ℝ+ → ((θ‘𝑥) / 𝑥) ∈ ℂ)
98adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((θ‘𝑥) / 𝑥) ∈ ℂ)
10 3re 12266 . . . 4 3 ∈ ℝ
1110a1i 11 . . 3 (⊤ → 3 ∈ ℝ)
12 2rp 12956 . . . . . 6 2 ∈ ℝ+
13 relogcl 26484 . . . . . 6 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
1412, 13ax-mp 5 . . . . 5 (log‘2) ∈ ℝ
15 2re 12260 . . . . 5 2 ∈ ℝ
1614, 15remulcli 11190 . . . 4 ((log‘2) · 2) ∈ ℝ
1716a1i 11 . . 3 (⊤ → ((log‘2) · 2) ∈ ℝ)
18 chtge0 27022 . . . . . . . . 9 (𝑥 ∈ ℝ → 0 ≤ (θ‘𝑥))
193, 18syl 17 . . . . . . . 8 (𝑥 ∈ ℝ+ → 0 ≤ (θ‘𝑥))
20 rpregt0 12966 . . . . . . . 8 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
21 divge0 12052 . . . . . . . 8 ((((θ‘𝑥) ∈ ℝ ∧ 0 ≤ (θ‘𝑥)) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → 0 ≤ ((θ‘𝑥) / 𝑥))
225, 19, 20, 21syl21anc 837 . . . . . . 7 (𝑥 ∈ ℝ+ → 0 ≤ ((θ‘𝑥) / 𝑥))
237, 22absidd 15389 . . . . . 6 (𝑥 ∈ ℝ+ → (abs‘((θ‘𝑥) / 𝑥)) = ((θ‘𝑥) / 𝑥))
2423adantr 480 . . . . 5 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (abs‘((θ‘𝑥) / 𝑥)) = ((θ‘𝑥) / 𝑥))
257adantr 480 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((θ‘𝑥) / 𝑥) ∈ ℝ)
2616a1i 11 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((log‘2) · 2) ∈ ℝ)
275adantr 480 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (θ‘𝑥) ∈ ℝ)
283adantr 480 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 𝑥 ∈ ℝ)
29 remulcl 11153 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (2 · 𝑥) ∈ ℝ)
3015, 28, 29sylancr 587 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (2 · 𝑥) ∈ ℝ)
31 resubcl 11486 . . . . . . . . . . 11 (((2 · 𝑥) ∈ ℝ ∧ 3 ∈ ℝ) → ((2 · 𝑥) − 3) ∈ ℝ)
3230, 10, 31sylancl 586 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((2 · 𝑥) − 3) ∈ ℝ)
33 remulcl 11153 . . . . . . . . . 10 (((log‘2) ∈ ℝ ∧ ((2 · 𝑥) − 3) ∈ ℝ) → ((log‘2) · ((2 · 𝑥) − 3)) ∈ ℝ)
3414, 32, 33sylancr 587 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((log‘2) · ((2 · 𝑥) − 3)) ∈ ℝ)
35 remulcl 11153 . . . . . . . . . 10 (((log‘2) ∈ ℝ ∧ (2 · 𝑥) ∈ ℝ) → ((log‘2) · (2 · 𝑥)) ∈ ℝ)
3614, 30, 35sylancr 587 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((log‘2) · (2 · 𝑥)) ∈ ℝ)
3715a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 2 ∈ ℝ)
3810a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 3 ∈ ℝ)
39 2lt3 12353 . . . . . . . . . . . 12 2 < 3
4039a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 2 < 3)
41 simpr 484 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 3 ≤ 𝑥)
4237, 38, 28, 40, 41ltletrd 11334 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 2 < 𝑥)
43 chtub 27123 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 2 < 𝑥) → (θ‘𝑥) < ((log‘2) · ((2 · 𝑥) − 3)))
4428, 42, 43syl2anc 584 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (θ‘𝑥) < ((log‘2) · ((2 · 𝑥) − 3)))
45 3rp 12957 . . . . . . . . . . 11 3 ∈ ℝ+
46 ltsubrp 12989 . . . . . . . . . . 11 (((2 · 𝑥) ∈ ℝ ∧ 3 ∈ ℝ+) → ((2 · 𝑥) − 3) < (2 · 𝑥))
4730, 45, 46sylancl 586 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((2 · 𝑥) − 3) < (2 · 𝑥))
48 1lt2 12352 . . . . . . . . . . . . . 14 1 < 2
49 rplogcl 26513 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ 1 < 2) → (log‘2) ∈ ℝ+)
5015, 48, 49mp2an 692 . . . . . . . . . . . . 13 (log‘2) ∈ ℝ+
51 elrp 12953 . . . . . . . . . . . . 13 ((log‘2) ∈ ℝ+ ↔ ((log‘2) ∈ ℝ ∧ 0 < (log‘2)))
5250, 51mpbi 230 . . . . . . . . . . . 12 ((log‘2) ∈ ℝ ∧ 0 < (log‘2))
5352a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((log‘2) ∈ ℝ ∧ 0 < (log‘2)))
54 ltmul2 12033 . . . . . . . . . . 11 ((((2 · 𝑥) − 3) ∈ ℝ ∧ (2 · 𝑥) ∈ ℝ ∧ ((log‘2) ∈ ℝ ∧ 0 < (log‘2))) → (((2 · 𝑥) − 3) < (2 · 𝑥) ↔ ((log‘2) · ((2 · 𝑥) − 3)) < ((log‘2) · (2 · 𝑥))))
5532, 30, 53, 54syl3anc 1373 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (((2 · 𝑥) − 3) < (2 · 𝑥) ↔ ((log‘2) · ((2 · 𝑥) − 3)) < ((log‘2) · (2 · 𝑥))))
5647, 55mpbid 232 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((log‘2) · ((2 · 𝑥) − 3)) < ((log‘2) · (2 · 𝑥)))
5727, 34, 36, 44, 56lttrd 11335 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (θ‘𝑥) < ((log‘2) · (2 · 𝑥)))
5814recni 11188 . . . . . . . . . 10 (log‘2) ∈ ℂ
5958a1i 11 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (log‘2) ∈ ℂ)
60 2cnd 12264 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 2 ∈ ℂ)
613recnd 11202 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
6261adantr 480 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 𝑥 ∈ ℂ)
6359, 60, 62mulassd 11197 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (((log‘2) · 2) · 𝑥) = ((log‘2) · (2 · 𝑥)))
6457, 63breqtrrd 5135 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (θ‘𝑥) < (((log‘2) · 2) · 𝑥))
6520adantr 480 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
66 ltdivmul2 12060 . . . . . . . 8 (((θ‘𝑥) ∈ ℝ ∧ ((log‘2) · 2) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (((θ‘𝑥) / 𝑥) < ((log‘2) · 2) ↔ (θ‘𝑥) < (((log‘2) · 2) · 𝑥)))
6727, 26, 65, 66syl3anc 1373 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (((θ‘𝑥) / 𝑥) < ((log‘2) · 2) ↔ (θ‘𝑥) < (((log‘2) · 2) · 𝑥)))
6864, 67mpbird 257 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((θ‘𝑥) / 𝑥) < ((log‘2) · 2))
6925, 26, 68ltled 11322 . . . . 5 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((θ‘𝑥) / 𝑥) ≤ ((log‘2) · 2))
7024, 69eqbrtrd 5129 . . . 4 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (abs‘((θ‘𝑥) / 𝑥)) ≤ ((log‘2) · 2))
7170adantl 481 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥)) → (abs‘((θ‘𝑥) / 𝑥)) ≤ ((log‘2) · 2))
722, 9, 11, 17, 71elo1d 15502 . 2 (⊤ → (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1))
7372mptru 1547 1 (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  wss 3914   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   · cmul 11073   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  2c2 12241  3c3 12242  +crp 12951  abscabs 15200  𝑂(1)co1 15452  logclog 26463  θccht 27001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-o1 15456  df-lo1 15457  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-cht 27007
This theorem is referenced by:  chebbnd2  27388  chpo1ub  27391
  Copyright terms: Public domain W3C validator