Proof of Theorem chto1ub
Step | Hyp | Ref
| Expression |
1 | | rpssre 12737 |
. . . 4
⊢
ℝ+ ⊆ ℝ |
2 | 1 | a1i 11 |
. . 3
⊢ (⊤
→ ℝ+ ⊆ ℝ) |
3 | | rpre 12738 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
4 | | chtcl 26258 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ →
(θ‘𝑥) ∈
ℝ) |
5 | 3, 4 | syl 17 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ (θ‘𝑥)
∈ ℝ) |
6 | | rerpdivcl 12760 |
. . . . . 6
⊢
(((θ‘𝑥)
∈ ℝ ∧ 𝑥
∈ ℝ+) → ((θ‘𝑥) / 𝑥) ∈ ℝ) |
7 | 5, 6 | mpancom 685 |
. . . . 5
⊢ (𝑥 ∈ ℝ+
→ ((θ‘𝑥) /
𝑥) ∈
ℝ) |
8 | 7 | recnd 11003 |
. . . 4
⊢ (𝑥 ∈ ℝ+
→ ((θ‘𝑥) /
𝑥) ∈
ℂ) |
9 | 8 | adantl 482 |
. . 3
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → ((θ‘𝑥) / 𝑥) ∈ ℂ) |
10 | | 3re 12053 |
. . . 4
⊢ 3 ∈
ℝ |
11 | 10 | a1i 11 |
. . 3
⊢ (⊤
→ 3 ∈ ℝ) |
12 | | 2rp 12735 |
. . . . . 6
⊢ 2 ∈
ℝ+ |
13 | | relogcl 25731 |
. . . . . 6
⊢ (2 ∈
ℝ+ → (log‘2) ∈ ℝ) |
14 | 12, 13 | ax-mp 5 |
. . . . 5
⊢
(log‘2) ∈ ℝ |
15 | | 2re 12047 |
. . . . 5
⊢ 2 ∈
ℝ |
16 | 14, 15 | remulcli 10991 |
. . . 4
⊢
((log‘2) · 2) ∈ ℝ |
17 | 16 | a1i 11 |
. . 3
⊢ (⊤
→ ((log‘2) · 2) ∈ ℝ) |
18 | | chtge0 26261 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ → 0 ≤
(θ‘𝑥)) |
19 | 3, 18 | syl 17 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ 0 ≤ (θ‘𝑥)) |
20 | | rpregt0 12744 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ∈ ℝ
∧ 0 < 𝑥)) |
21 | | divge0 11844 |
. . . . . . . 8
⊢
((((θ‘𝑥)
∈ ℝ ∧ 0 ≤ (θ‘𝑥)) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → 0 ≤
((θ‘𝑥) / 𝑥)) |
22 | 5, 19, 20, 21 | syl21anc 835 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ 0 ≤ ((θ‘𝑥) / 𝑥)) |
23 | 7, 22 | absidd 15134 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ (abs‘((θ‘𝑥) / 𝑥)) = ((θ‘𝑥) / 𝑥)) |
24 | 23 | adantr 481 |
. . . . 5
⊢ ((𝑥 ∈ ℝ+
∧ 3 ≤ 𝑥) →
(abs‘((θ‘𝑥) / 𝑥)) = ((θ‘𝑥) / 𝑥)) |
25 | 7 | adantr 481 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ+
∧ 3 ≤ 𝑥) →
((θ‘𝑥) / 𝑥) ∈
ℝ) |
26 | 16 | a1i 11 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ+
∧ 3 ≤ 𝑥) →
((log‘2) · 2) ∈ ℝ) |
27 | 5 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 3 ≤ 𝑥) →
(θ‘𝑥) ∈
ℝ) |
28 | 3 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 3 ≤ 𝑥) →
𝑥 ∈
ℝ) |
29 | | remulcl 10956 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℝ ∧ 𝑥
∈ ℝ) → (2 · 𝑥) ∈ ℝ) |
30 | 15, 28, 29 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 3 ≤ 𝑥) → (2
· 𝑥) ∈
ℝ) |
31 | | resubcl 11285 |
. . . . . . . . . . 11
⊢ (((2
· 𝑥) ∈ ℝ
∧ 3 ∈ ℝ) → ((2 · 𝑥) − 3) ∈ ℝ) |
32 | 30, 10, 31 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 3 ≤ 𝑥) → ((2
· 𝑥) − 3)
∈ ℝ) |
33 | | remulcl 10956 |
. . . . . . . . . 10
⊢
(((log‘2) ∈ ℝ ∧ ((2 · 𝑥) − 3) ∈ ℝ) →
((log‘2) · ((2 · 𝑥) − 3)) ∈
ℝ) |
34 | 14, 32, 33 | sylancr 587 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 3 ≤ 𝑥) →
((log‘2) · ((2 · 𝑥) − 3)) ∈
ℝ) |
35 | | remulcl 10956 |
. . . . . . . . . 10
⊢
(((log‘2) ∈ ℝ ∧ (2 · 𝑥) ∈ ℝ) → ((log‘2)
· (2 · 𝑥))
∈ ℝ) |
36 | 14, 30, 35 | sylancr 587 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 3 ≤ 𝑥) →
((log‘2) · (2 · 𝑥)) ∈ ℝ) |
37 | 15 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 3 ≤ 𝑥) → 2
∈ ℝ) |
38 | 10 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 3 ≤ 𝑥) → 3
∈ ℝ) |
39 | | 2lt3 12145 |
. . . . . . . . . . . 12
⊢ 2 <
3 |
40 | 39 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 3 ≤ 𝑥) → 2
< 3) |
41 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 3 ≤ 𝑥) → 3
≤ 𝑥) |
42 | 37, 38, 28, 40, 41 | ltletrd 11135 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 3 ≤ 𝑥) → 2
< 𝑥) |
43 | | chtub 26360 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 2 <
𝑥) →
(θ‘𝑥) <
((log‘2) · ((2 · 𝑥) − 3))) |
44 | 28, 42, 43 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 3 ≤ 𝑥) →
(θ‘𝑥) <
((log‘2) · ((2 · 𝑥) − 3))) |
45 | | 3rp 12736 |
. . . . . . . . . . 11
⊢ 3 ∈
ℝ+ |
46 | | ltsubrp 12766 |
. . . . . . . . . . 11
⊢ (((2
· 𝑥) ∈ ℝ
∧ 3 ∈ ℝ+) → ((2 · 𝑥) − 3) < (2 · 𝑥)) |
47 | 30, 45, 46 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 3 ≤ 𝑥) → ((2
· 𝑥) − 3) <
(2 · 𝑥)) |
48 | | 1lt2 12144 |
. . . . . . . . . . . . . 14
⊢ 1 <
2 |
49 | | rplogcl 25759 |
. . . . . . . . . . . . . 14
⊢ ((2
∈ ℝ ∧ 1 < 2) → (log‘2) ∈
ℝ+) |
50 | 15, 48, 49 | mp2an 689 |
. . . . . . . . . . . . 13
⊢
(log‘2) ∈ ℝ+ |
51 | | elrp 12732 |
. . . . . . . . . . . . 13
⊢
((log‘2) ∈ ℝ+ ↔ ((log‘2) ∈
ℝ ∧ 0 < (log‘2))) |
52 | 50, 51 | mpbi 229 |
. . . . . . . . . . . 12
⊢
((log‘2) ∈ ℝ ∧ 0 <
(log‘2)) |
53 | 52 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 3 ≤ 𝑥) →
((log‘2) ∈ ℝ ∧ 0 < (log‘2))) |
54 | | ltmul2 11826 |
. . . . . . . . . . 11
⊢ ((((2
· 𝑥) − 3)
∈ ℝ ∧ (2 · 𝑥) ∈ ℝ ∧ ((log‘2) ∈
ℝ ∧ 0 < (log‘2))) → (((2 · 𝑥) − 3) < (2 · 𝑥) ↔ ((log‘2) ·
((2 · 𝑥) − 3))
< ((log‘2) · (2 · 𝑥)))) |
55 | 32, 30, 53, 54 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 3 ≤ 𝑥) → (((2
· 𝑥) − 3) <
(2 · 𝑥) ↔
((log‘2) · ((2 · 𝑥) − 3)) < ((log‘2) · (2
· 𝑥)))) |
56 | 47, 55 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 3 ≤ 𝑥) →
((log‘2) · ((2 · 𝑥) − 3)) < ((log‘2) · (2
· 𝑥))) |
57 | 27, 34, 36, 44, 56 | lttrd 11136 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
∧ 3 ≤ 𝑥) →
(θ‘𝑥) <
((log‘2) · (2 · 𝑥))) |
58 | 14 | recni 10989 |
. . . . . . . . . 10
⊢
(log‘2) ∈ ℂ |
59 | 58 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 3 ≤ 𝑥) →
(log‘2) ∈ ℂ) |
60 | | 2cnd 12051 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 3 ≤ 𝑥) → 2
∈ ℂ) |
61 | 3 | recnd 11003 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℂ) |
62 | 61 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 3 ≤ 𝑥) →
𝑥 ∈
ℂ) |
63 | 59, 60, 62 | mulassd 10998 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
∧ 3 ≤ 𝑥) →
(((log‘2) · 2) · 𝑥) = ((log‘2) · (2 · 𝑥))) |
64 | 57, 63 | breqtrrd 5102 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ+
∧ 3 ≤ 𝑥) →
(θ‘𝑥) <
(((log‘2) · 2) · 𝑥)) |
65 | 20 | adantr 481 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
∧ 3 ≤ 𝑥) →
(𝑥 ∈ ℝ ∧ 0
< 𝑥)) |
66 | | ltdivmul2 11852 |
. . . . . . . 8
⊢
(((θ‘𝑥)
∈ ℝ ∧ ((log‘2) · 2) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 <
𝑥)) →
(((θ‘𝑥) / 𝑥) < ((log‘2) ·
2) ↔ (θ‘𝑥)
< (((log‘2) · 2) · 𝑥))) |
67 | 27, 26, 65, 66 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ+
∧ 3 ≤ 𝑥) →
(((θ‘𝑥) / 𝑥) < ((log‘2) ·
2) ↔ (θ‘𝑥)
< (((log‘2) · 2) · 𝑥))) |
68 | 64, 67 | mpbird 256 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ+
∧ 3 ≤ 𝑥) →
((θ‘𝑥) / 𝑥) < ((log‘2) ·
2)) |
69 | 25, 26, 68 | ltled 11123 |
. . . . 5
⊢ ((𝑥 ∈ ℝ+
∧ 3 ≤ 𝑥) →
((θ‘𝑥) / 𝑥) ≤ ((log‘2) ·
2)) |
70 | 24, 69 | eqbrtrd 5096 |
. . . 4
⊢ ((𝑥 ∈ ℝ+
∧ 3 ≤ 𝑥) →
(abs‘((θ‘𝑥) / 𝑥)) ≤ ((log‘2) ·
2)) |
71 | 70 | adantl 482 |
. . 3
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 3 ≤ 𝑥)) → (abs‘((θ‘𝑥) / 𝑥)) ≤ ((log‘2) ·
2)) |
72 | 2, 9, 11, 17, 71 | elo1d 15245 |
. 2
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1)) |
73 | 72 | mptru 1546 |
1
⊢ (𝑥 ∈ ℝ+
↦ ((θ‘𝑥)
/ 𝑥)) ∈
𝑂(1) |