MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chto1ub Structured version   Visualization version   GIF version

Theorem chto1ub 26149
Description: The θ function is upper bounded by a linear term. Corollary of chtub 25885. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
chto1ub (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1)

Proof of Theorem chto1ub
StepHypRef Expression
1 rpssre 12427 . . . 4 + ⊆ ℝ
21a1i 11 . . 3 (⊤ → ℝ+ ⊆ ℝ)
3 rpre 12428 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
4 chtcl 25783 . . . . . . 7 (𝑥 ∈ ℝ → (θ‘𝑥) ∈ ℝ)
53, 4syl 17 . . . . . 6 (𝑥 ∈ ℝ+ → (θ‘𝑥) ∈ ℝ)
6 rerpdivcl 12450 . . . . . 6 (((θ‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((θ‘𝑥) / 𝑥) ∈ ℝ)
75, 6mpancom 688 . . . . 5 (𝑥 ∈ ℝ+ → ((θ‘𝑥) / 𝑥) ∈ ℝ)
87recnd 10697 . . . 4 (𝑥 ∈ ℝ+ → ((θ‘𝑥) / 𝑥) ∈ ℂ)
98adantl 486 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((θ‘𝑥) / 𝑥) ∈ ℂ)
10 3re 11744 . . . 4 3 ∈ ℝ
1110a1i 11 . . 3 (⊤ → 3 ∈ ℝ)
12 2rp 12425 . . . . . 6 2 ∈ ℝ+
13 relogcl 25256 . . . . . 6 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
1412, 13ax-mp 5 . . . . 5 (log‘2) ∈ ℝ
15 2re 11738 . . . . 5 2 ∈ ℝ
1614, 15remulcli 10685 . . . 4 ((log‘2) · 2) ∈ ℝ
1716a1i 11 . . 3 (⊤ → ((log‘2) · 2) ∈ ℝ)
18 chtge0 25786 . . . . . . . . 9 (𝑥 ∈ ℝ → 0 ≤ (θ‘𝑥))
193, 18syl 17 . . . . . . . 8 (𝑥 ∈ ℝ+ → 0 ≤ (θ‘𝑥))
20 rpregt0 12434 . . . . . . . 8 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
21 divge0 11537 . . . . . . . 8 ((((θ‘𝑥) ∈ ℝ ∧ 0 ≤ (θ‘𝑥)) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → 0 ≤ ((θ‘𝑥) / 𝑥))
225, 19, 20, 21syl21anc 837 . . . . . . 7 (𝑥 ∈ ℝ+ → 0 ≤ ((θ‘𝑥) / 𝑥))
237, 22absidd 14820 . . . . . 6 (𝑥 ∈ ℝ+ → (abs‘((θ‘𝑥) / 𝑥)) = ((θ‘𝑥) / 𝑥))
2423adantr 485 . . . . 5 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (abs‘((θ‘𝑥) / 𝑥)) = ((θ‘𝑥) / 𝑥))
257adantr 485 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((θ‘𝑥) / 𝑥) ∈ ℝ)
2616a1i 11 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((log‘2) · 2) ∈ ℝ)
275adantr 485 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (θ‘𝑥) ∈ ℝ)
283adantr 485 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 𝑥 ∈ ℝ)
29 remulcl 10650 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (2 · 𝑥) ∈ ℝ)
3015, 28, 29sylancr 591 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (2 · 𝑥) ∈ ℝ)
31 resubcl 10978 . . . . . . . . . . 11 (((2 · 𝑥) ∈ ℝ ∧ 3 ∈ ℝ) → ((2 · 𝑥) − 3) ∈ ℝ)
3230, 10, 31sylancl 590 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((2 · 𝑥) − 3) ∈ ℝ)
33 remulcl 10650 . . . . . . . . . 10 (((log‘2) ∈ ℝ ∧ ((2 · 𝑥) − 3) ∈ ℝ) → ((log‘2) · ((2 · 𝑥) − 3)) ∈ ℝ)
3414, 32, 33sylancr 591 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((log‘2) · ((2 · 𝑥) − 3)) ∈ ℝ)
35 remulcl 10650 . . . . . . . . . 10 (((log‘2) ∈ ℝ ∧ (2 · 𝑥) ∈ ℝ) → ((log‘2) · (2 · 𝑥)) ∈ ℝ)
3614, 30, 35sylancr 591 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((log‘2) · (2 · 𝑥)) ∈ ℝ)
3715a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 2 ∈ ℝ)
3810a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 3 ∈ ℝ)
39 2lt3 11836 . . . . . . . . . . . 12 2 < 3
4039a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 2 < 3)
41 simpr 489 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 3 ≤ 𝑥)
4237, 38, 28, 40, 41ltletrd 10828 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 2 < 𝑥)
43 chtub 25885 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 2 < 𝑥) → (θ‘𝑥) < ((log‘2) · ((2 · 𝑥) − 3)))
4428, 42, 43syl2anc 588 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (θ‘𝑥) < ((log‘2) · ((2 · 𝑥) − 3)))
45 3rp 12426 . . . . . . . . . . 11 3 ∈ ℝ+
46 ltsubrp 12456 . . . . . . . . . . 11 (((2 · 𝑥) ∈ ℝ ∧ 3 ∈ ℝ+) → ((2 · 𝑥) − 3) < (2 · 𝑥))
4730, 45, 46sylancl 590 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((2 · 𝑥) − 3) < (2 · 𝑥))
48 1lt2 11835 . . . . . . . . . . . . . 14 1 < 2
49 rplogcl 25284 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ 1 < 2) → (log‘2) ∈ ℝ+)
5015, 48, 49mp2an 692 . . . . . . . . . . . . 13 (log‘2) ∈ ℝ+
51 elrp 12422 . . . . . . . . . . . . 13 ((log‘2) ∈ ℝ+ ↔ ((log‘2) ∈ ℝ ∧ 0 < (log‘2)))
5250, 51mpbi 233 . . . . . . . . . . . 12 ((log‘2) ∈ ℝ ∧ 0 < (log‘2))
5352a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((log‘2) ∈ ℝ ∧ 0 < (log‘2)))
54 ltmul2 11519 . . . . . . . . . . 11 ((((2 · 𝑥) − 3) ∈ ℝ ∧ (2 · 𝑥) ∈ ℝ ∧ ((log‘2) ∈ ℝ ∧ 0 < (log‘2))) → (((2 · 𝑥) − 3) < (2 · 𝑥) ↔ ((log‘2) · ((2 · 𝑥) − 3)) < ((log‘2) · (2 · 𝑥))))
5532, 30, 53, 54syl3anc 1369 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (((2 · 𝑥) − 3) < (2 · 𝑥) ↔ ((log‘2) · ((2 · 𝑥) − 3)) < ((log‘2) · (2 · 𝑥))))
5647, 55mpbid 235 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((log‘2) · ((2 · 𝑥) − 3)) < ((log‘2) · (2 · 𝑥)))
5727, 34, 36, 44, 56lttrd 10829 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (θ‘𝑥) < ((log‘2) · (2 · 𝑥)))
5814recni 10683 . . . . . . . . . 10 (log‘2) ∈ ℂ
5958a1i 11 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (log‘2) ∈ ℂ)
60 2cnd 11742 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 2 ∈ ℂ)
613recnd 10697 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
6261adantr 485 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 𝑥 ∈ ℂ)
6359, 60, 62mulassd 10692 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (((log‘2) · 2) · 𝑥) = ((log‘2) · (2 · 𝑥)))
6457, 63breqtrrd 5058 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (θ‘𝑥) < (((log‘2) · 2) · 𝑥))
6520adantr 485 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
66 ltdivmul2 11545 . . . . . . . 8 (((θ‘𝑥) ∈ ℝ ∧ ((log‘2) · 2) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (((θ‘𝑥) / 𝑥) < ((log‘2) · 2) ↔ (θ‘𝑥) < (((log‘2) · 2) · 𝑥)))
6727, 26, 65, 66syl3anc 1369 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (((θ‘𝑥) / 𝑥) < ((log‘2) · 2) ↔ (θ‘𝑥) < (((log‘2) · 2) · 𝑥)))
6864, 67mpbird 260 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((θ‘𝑥) / 𝑥) < ((log‘2) · 2))
6925, 26, 68ltled 10816 . . . . 5 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((θ‘𝑥) / 𝑥) ≤ ((log‘2) · 2))
7024, 69eqbrtrd 5052 . . . 4 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (abs‘((θ‘𝑥) / 𝑥)) ≤ ((log‘2) · 2))
7170adantl 486 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥)) → (abs‘((θ‘𝑥) / 𝑥)) ≤ ((log‘2) · 2))
722, 9, 11, 17, 71elo1d 14931 . 2 (⊤ → (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1))
7372mptru 1546 1 (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 400   = wceq 1539  wtru 1540  wcel 2112  wss 3859   class class class wbr 5030  cmpt 5110  cfv 6333  (class class class)co 7148  cc 10563  cr 10564  0cc0 10565  1c1 10566   · cmul 10570   < clt 10703  cle 10704  cmin 10898   / cdiv 11325  2c2 11719  3c3 11720  +crp 12420  abscabs 14631  𝑂(1)co1 14881  logclog 25235  θccht 25765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7457  ax-inf2 9127  ax-cnex 10621  ax-resscn 10622  ax-1cn 10623  ax-icn 10624  ax-addcl 10625  ax-addrcl 10626  ax-mulcl 10627  ax-mulrcl 10628  ax-mulcom 10629  ax-addass 10630  ax-mulass 10631  ax-distr 10632  ax-i2m1 10633  ax-1ne0 10634  ax-1rid 10635  ax-rnegex 10636  ax-rrecex 10637  ax-cnre 10638  ax-pre-lttri 10639  ax-pre-lttrn 10640  ax-pre-ltadd 10641  ax-pre-mulgt0 10642  ax-pre-sup 10643  ax-addf 10644  ax-mulf 10645
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-tp 4525  df-op 4527  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-se 5482  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6292  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-isom 6342  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7403  df-om 7578  df-1st 7691  df-2nd 7692  df-supp 7834  df-wrecs 7955  df-recs 8016  df-rdg 8054  df-1o 8110  df-2o 8111  df-oadd 8114  df-er 8297  df-map 8416  df-pm 8417  df-ixp 8478  df-en 8526  df-dom 8527  df-sdom 8528  df-fin 8529  df-fsupp 8857  df-fi 8898  df-sup 8929  df-inf 8930  df-oi 8997  df-card 9391  df-pnf 10705  df-mnf 10706  df-xr 10707  df-ltxr 10708  df-le 10709  df-sub 10900  df-neg 10901  df-div 11326  df-nn 11665  df-2 11727  df-3 11728  df-4 11729  df-5 11730  df-6 11731  df-7 11732  df-8 11733  df-9 11734  df-n0 11925  df-z 12011  df-dec 12128  df-uz 12273  df-q 12379  df-rp 12421  df-xneg 12538  df-xadd 12539  df-xmul 12540  df-ioo 12773  df-ioc 12774  df-ico 12775  df-icc 12776  df-fz 12930  df-fzo 13073  df-fl 13201  df-mod 13277  df-seq 13409  df-exp 13470  df-fac 13674  df-bc 13703  df-hash 13731  df-shft 14464  df-cj 14496  df-re 14497  df-im 14498  df-sqrt 14632  df-abs 14633  df-limsup 14866  df-clim 14883  df-rlim 14884  df-o1 14885  df-lo1 14886  df-sum 15081  df-ef 15459  df-sin 15461  df-cos 15462  df-pi 15464  df-dvds 15646  df-gcd 15884  df-prm 16058  df-pc 16219  df-struct 16533  df-ndx 16534  df-slot 16535  df-base 16537  df-sets 16538  df-ress 16539  df-plusg 16626  df-mulr 16627  df-starv 16628  df-sca 16629  df-vsca 16630  df-ip 16631  df-tset 16632  df-ple 16633  df-ds 16635  df-unif 16636  df-hom 16637  df-cco 16638  df-rest 16744  df-topn 16745  df-0g 16763  df-gsum 16764  df-topgen 16765  df-pt 16766  df-prds 16769  df-xrs 16823  df-qtop 16828  df-imas 16829  df-xps 16831  df-mre 16905  df-mrc 16906  df-acs 16908  df-mgm 17908  df-sgrp 17957  df-mnd 17968  df-submnd 18013  df-mulg 18282  df-cntz 18504  df-cmn 18965  df-psmet 20148  df-xmet 20149  df-met 20150  df-bl 20151  df-mopn 20152  df-fbas 20153  df-fg 20154  df-cnfld 20157  df-top 21584  df-topon 21601  df-topsp 21623  df-bases 21636  df-cld 21709  df-ntr 21710  df-cls 21711  df-nei 21788  df-lp 21826  df-perf 21827  df-cn 21917  df-cnp 21918  df-haus 22005  df-tx 22252  df-hmeo 22445  df-fil 22536  df-fm 22628  df-flim 22629  df-flf 22630  df-xms 23012  df-ms 23013  df-tms 23014  df-cncf 23569  df-limc 24555  df-dv 24556  df-log 25237  df-cht 25771
This theorem is referenced by:  chebbnd2  26150  chpo1ub  26153
  Copyright terms: Public domain W3C validator