MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chto1ub Structured version   Visualization version   GIF version

Theorem chto1ub 27403
Description: The θ function is upper bounded by a linear term. Corollary of chtub 27139. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
chto1ub (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1)

Proof of Theorem chto1ub
StepHypRef Expression
1 rpssre 12919 . . . 4 + ⊆ ℝ
21a1i 11 . . 3 (⊤ → ℝ+ ⊆ ℝ)
3 rpre 12920 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
4 chtcl 27035 . . . . . . 7 (𝑥 ∈ ℝ → (θ‘𝑥) ∈ ℝ)
53, 4syl 17 . . . . . 6 (𝑥 ∈ ℝ+ → (θ‘𝑥) ∈ ℝ)
6 rerpdivcl 12943 . . . . . 6 (((θ‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((θ‘𝑥) / 𝑥) ∈ ℝ)
75, 6mpancom 688 . . . . 5 (𝑥 ∈ ℝ+ → ((θ‘𝑥) / 𝑥) ∈ ℝ)
87recnd 11162 . . . 4 (𝑥 ∈ ℝ+ → ((θ‘𝑥) / 𝑥) ∈ ℂ)
98adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((θ‘𝑥) / 𝑥) ∈ ℂ)
10 3re 12226 . . . 4 3 ∈ ℝ
1110a1i 11 . . 3 (⊤ → 3 ∈ ℝ)
12 2rp 12916 . . . . . 6 2 ∈ ℝ+
13 relogcl 26500 . . . . . 6 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
1412, 13ax-mp 5 . . . . 5 (log‘2) ∈ ℝ
15 2re 12220 . . . . 5 2 ∈ ℝ
1614, 15remulcli 11150 . . . 4 ((log‘2) · 2) ∈ ℝ
1716a1i 11 . . 3 (⊤ → ((log‘2) · 2) ∈ ℝ)
18 chtge0 27038 . . . . . . . . 9 (𝑥 ∈ ℝ → 0 ≤ (θ‘𝑥))
193, 18syl 17 . . . . . . . 8 (𝑥 ∈ ℝ+ → 0 ≤ (θ‘𝑥))
20 rpregt0 12926 . . . . . . . 8 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
21 divge0 12012 . . . . . . . 8 ((((θ‘𝑥) ∈ ℝ ∧ 0 ≤ (θ‘𝑥)) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → 0 ≤ ((θ‘𝑥) / 𝑥))
225, 19, 20, 21syl21anc 837 . . . . . . 7 (𝑥 ∈ ℝ+ → 0 ≤ ((θ‘𝑥) / 𝑥))
237, 22absidd 15348 . . . . . 6 (𝑥 ∈ ℝ+ → (abs‘((θ‘𝑥) / 𝑥)) = ((θ‘𝑥) / 𝑥))
2423adantr 480 . . . . 5 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (abs‘((θ‘𝑥) / 𝑥)) = ((θ‘𝑥) / 𝑥))
257adantr 480 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((θ‘𝑥) / 𝑥) ∈ ℝ)
2616a1i 11 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((log‘2) · 2) ∈ ℝ)
275adantr 480 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (θ‘𝑥) ∈ ℝ)
283adantr 480 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 𝑥 ∈ ℝ)
29 remulcl 11113 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (2 · 𝑥) ∈ ℝ)
3015, 28, 29sylancr 587 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (2 · 𝑥) ∈ ℝ)
31 resubcl 11446 . . . . . . . . . . 11 (((2 · 𝑥) ∈ ℝ ∧ 3 ∈ ℝ) → ((2 · 𝑥) − 3) ∈ ℝ)
3230, 10, 31sylancl 586 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((2 · 𝑥) − 3) ∈ ℝ)
33 remulcl 11113 . . . . . . . . . 10 (((log‘2) ∈ ℝ ∧ ((2 · 𝑥) − 3) ∈ ℝ) → ((log‘2) · ((2 · 𝑥) − 3)) ∈ ℝ)
3414, 32, 33sylancr 587 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((log‘2) · ((2 · 𝑥) − 3)) ∈ ℝ)
35 remulcl 11113 . . . . . . . . . 10 (((log‘2) ∈ ℝ ∧ (2 · 𝑥) ∈ ℝ) → ((log‘2) · (2 · 𝑥)) ∈ ℝ)
3614, 30, 35sylancr 587 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((log‘2) · (2 · 𝑥)) ∈ ℝ)
3715a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 2 ∈ ℝ)
3810a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 3 ∈ ℝ)
39 2lt3 12313 . . . . . . . . . . . 12 2 < 3
4039a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 2 < 3)
41 simpr 484 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 3 ≤ 𝑥)
4237, 38, 28, 40, 41ltletrd 11294 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 2 < 𝑥)
43 chtub 27139 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 2 < 𝑥) → (θ‘𝑥) < ((log‘2) · ((2 · 𝑥) − 3)))
4428, 42, 43syl2anc 584 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (θ‘𝑥) < ((log‘2) · ((2 · 𝑥) − 3)))
45 3rp 12917 . . . . . . . . . . 11 3 ∈ ℝ+
46 ltsubrp 12949 . . . . . . . . . . 11 (((2 · 𝑥) ∈ ℝ ∧ 3 ∈ ℝ+) → ((2 · 𝑥) − 3) < (2 · 𝑥))
4730, 45, 46sylancl 586 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((2 · 𝑥) − 3) < (2 · 𝑥))
48 1lt2 12312 . . . . . . . . . . . . . 14 1 < 2
49 rplogcl 26529 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ 1 < 2) → (log‘2) ∈ ℝ+)
5015, 48, 49mp2an 692 . . . . . . . . . . . . 13 (log‘2) ∈ ℝ+
51 elrp 12913 . . . . . . . . . . . . 13 ((log‘2) ∈ ℝ+ ↔ ((log‘2) ∈ ℝ ∧ 0 < (log‘2)))
5250, 51mpbi 230 . . . . . . . . . . . 12 ((log‘2) ∈ ℝ ∧ 0 < (log‘2))
5352a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((log‘2) ∈ ℝ ∧ 0 < (log‘2)))
54 ltmul2 11993 . . . . . . . . . . 11 ((((2 · 𝑥) − 3) ∈ ℝ ∧ (2 · 𝑥) ∈ ℝ ∧ ((log‘2) ∈ ℝ ∧ 0 < (log‘2))) → (((2 · 𝑥) − 3) < (2 · 𝑥) ↔ ((log‘2) · ((2 · 𝑥) − 3)) < ((log‘2) · (2 · 𝑥))))
5532, 30, 53, 54syl3anc 1373 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (((2 · 𝑥) − 3) < (2 · 𝑥) ↔ ((log‘2) · ((2 · 𝑥) − 3)) < ((log‘2) · (2 · 𝑥))))
5647, 55mpbid 232 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((log‘2) · ((2 · 𝑥) − 3)) < ((log‘2) · (2 · 𝑥)))
5727, 34, 36, 44, 56lttrd 11295 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (θ‘𝑥) < ((log‘2) · (2 · 𝑥)))
5814recni 11148 . . . . . . . . . 10 (log‘2) ∈ ℂ
5958a1i 11 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (log‘2) ∈ ℂ)
60 2cnd 12224 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 2 ∈ ℂ)
613recnd 11162 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
6261adantr 480 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 𝑥 ∈ ℂ)
6359, 60, 62mulassd 11157 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (((log‘2) · 2) · 𝑥) = ((log‘2) · (2 · 𝑥)))
6457, 63breqtrrd 5123 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (θ‘𝑥) < (((log‘2) · 2) · 𝑥))
6520adantr 480 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
66 ltdivmul2 12020 . . . . . . . 8 (((θ‘𝑥) ∈ ℝ ∧ ((log‘2) · 2) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (((θ‘𝑥) / 𝑥) < ((log‘2) · 2) ↔ (θ‘𝑥) < (((log‘2) · 2) · 𝑥)))
6727, 26, 65, 66syl3anc 1373 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (((θ‘𝑥) / 𝑥) < ((log‘2) · 2) ↔ (θ‘𝑥) < (((log‘2) · 2) · 𝑥)))
6864, 67mpbird 257 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((θ‘𝑥) / 𝑥) < ((log‘2) · 2))
6925, 26, 68ltled 11282 . . . . 5 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((θ‘𝑥) / 𝑥) ≤ ((log‘2) · 2))
7024, 69eqbrtrd 5117 . . . 4 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (abs‘((θ‘𝑥) / 𝑥)) ≤ ((log‘2) · 2))
7170adantl 481 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥)) → (abs‘((θ‘𝑥) / 𝑥)) ≤ ((log‘2) · 2))
722, 9, 11, 17, 71elo1d 15461 . 2 (⊤ → (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1))
7372mptru 1547 1 (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  wss 3905   class class class wbr 5095  cmpt 5176  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   · cmul 11033   < clt 11168  cle 11169  cmin 11365   / cdiv 11795  2c2 12201  3c3 12202  +crp 12911  abscabs 15159  𝑂(1)co1 15411  logclog 26479  θccht 27017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-o1 15415  df-lo1 15416  df-sum 15612  df-ef 15992  df-sin 15994  df-cos 15995  df-pi 15997  df-dvds 16182  df-gcd 16424  df-prm 16601  df-pc 16767  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784  df-log 26481  df-cht 27023
This theorem is referenced by:  chebbnd2  27404  chpo1ub  27407
  Copyright terms: Public domain W3C validator