Step | Hyp | Ref
| Expression |
1 | | gexexlem.3 |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
2 | | gexex.1 |
. . . 4
⊢ 𝑋 = (Base‘𝐺) |
3 | | gexex.3 |
. . . 4
⊢ 𝑂 = (od‘𝐺) |
4 | 2, 3 | odcl 19059 |
. . 3
⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) ∈
ℕ0) |
5 | 1, 4 | syl 17 |
. 2
⊢ (𝜑 → (𝑂‘𝐴) ∈
ℕ0) |
6 | | gexexlem.2 |
. . 3
⊢ (𝜑 → 𝐸 ∈ ℕ) |
7 | 6 | nnnn0d 12223 |
. 2
⊢ (𝜑 → 𝐸 ∈
ℕ0) |
8 | | gexexlem.1 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ Abel) |
9 | | ablgrp 19306 |
. . . 4
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
10 | 8, 9 | syl 17 |
. . 3
⊢ (𝜑 → 𝐺 ∈ Grp) |
11 | | gexex.2 |
. . . 4
⊢ 𝐸 = (gEx‘𝐺) |
12 | 2, 11, 3 | gexod 19106 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∥ 𝐸) |
13 | 10, 1, 12 | syl2anc 583 |
. 2
⊢ (𝜑 → (𝑂‘𝐴) ∥ 𝐸) |
14 | 8 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → 𝐺 ∈ Abel) |
15 | 10 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → 𝐺 ∈ Grp) |
16 | | prmnn 16307 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℕ) |
17 | 16 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℕ) |
18 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ) |
19 | 6 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → 𝐸 ∈ ℕ) |
20 | 1 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ 𝑋) |
21 | 2, 11, 3 | gexnnod 19108 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∈ ℕ) |
22 | 15, 19, 20, 21 | syl3anc 1369 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘𝐴) ∈ ℕ) |
23 | 18, 22 | pccld 16479 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝑂‘𝐴)) ∈
ℕ0) |
24 | 17, 23 | nnexpcld 13888 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∈ ℕ) |
25 | 24 | nnzd 12354 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∈ ℤ) |
26 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(.g‘𝐺) = (.g‘𝐺) |
27 | 2, 26 | mulgcl 18636 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∈ ℤ ∧ 𝐴 ∈ 𝑋) → ((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴) ∈ 𝑋) |
28 | 15, 25, 20, 27 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴) ∈ 𝑋) |
29 | | simplr 765 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → 𝑥 ∈ 𝑋) |
30 | 2, 11, 3 | gexnnod 19108 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝑥 ∈ 𝑋) → (𝑂‘𝑥) ∈ ℕ) |
31 | 15, 19, 29, 30 | syl3anc 1369 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘𝑥) ∈ ℕ) |
32 | | pcdvds 16493 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑝 ∈ ℙ ∧ (𝑂‘𝑥) ∈ ℕ) → (𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∥ (𝑂‘𝑥)) |
33 | 18, 31, 32 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∥ (𝑂‘𝑥)) |
34 | 18, 31 | pccld 16479 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝑂‘𝑥)) ∈
ℕ0) |
35 | 17, 34 | nnexpcld 13888 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∈ ℕ) |
36 | | nndivdvds 15900 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑂‘𝑥) ∈ ℕ ∧ (𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∈ ℕ) → ((𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∥ (𝑂‘𝑥) ↔ ((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ∈ ℕ)) |
37 | 31, 35, 36 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∥ (𝑂‘𝑥) ↔ ((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ∈ ℕ)) |
38 | 33, 37 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ∈ ℕ) |
39 | 38 | nnzd 12354 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ∈ ℤ) |
40 | 2, 26 | mulgcl 18636 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ ((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ∈ ℤ ∧ 𝑥 ∈ 𝑋) → (((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥) ∈ 𝑋) |
41 | 15, 39, 29, 40 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥) ∈ 𝑋) |
42 | 2, 3, 26 | odmulg 19078 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∈ ℤ) → (𝑂‘𝐴) = (((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) gcd (𝑂‘𝐴)) · (𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)))) |
43 | 15, 20, 25, 42 | syl3anc 1369 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘𝐴) = (((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) gcd (𝑂‘𝐴)) · (𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)))) |
44 | | pcdvds 16493 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑝 ∈ ℙ ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∥ (𝑂‘𝐴)) |
45 | 18, 22, 44 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∥ (𝑂‘𝐴)) |
46 | | gcdeq 16191 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∈ ℕ ∧ (𝑂‘𝐴) ∈ ℕ) → (((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) gcd (𝑂‘𝐴)) = (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ↔ (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∥ (𝑂‘𝐴))) |
47 | 24, 22, 46 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) gcd (𝑂‘𝐴)) = (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ↔ (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∥ (𝑂‘𝐴))) |
48 | 45, 47 | mpbird 256 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) gcd (𝑂‘𝐴)) = (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) |
49 | 48 | oveq1d 7270 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) gcd (𝑂‘𝐴)) · (𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴))) = ((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) · (𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)))) |
50 | 43, 49 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘𝐴) = ((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) · (𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)))) |
51 | 50 | oveq1d 7270 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) = (((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) · (𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴))) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴))))) |
52 | 2, 11, 3 | gexnnod 19108 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ ((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴) ∈ 𝑋) → (𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)) ∈ ℕ) |
53 | 15, 19, 28, 52 | syl3anc 1369 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)) ∈ ℕ) |
54 | 53 | nncnd 11919 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)) ∈ ℂ) |
55 | 24 | nncnd 11919 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∈ ℂ) |
56 | 24 | nnne0d 11953 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ≠ 0) |
57 | 54, 55, 56 | divcan3d 11686 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) · (𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴))) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) = (𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴))) |
58 | 51, 57 | eqtr2d 2779 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)) = ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴))))) |
59 | 2, 11, 3 | gexnnod 19108 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ (((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥) ∈ 𝑋) → (𝑂‘(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥)) ∈ ℕ) |
60 | 15, 19, 41, 59 | syl3anc 1369 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥)) ∈ ℕ) |
61 | 60 | nncnd 11919 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥)) ∈ ℂ) |
62 | 35 | nncnd 11919 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∈ ℂ) |
63 | 38 | nncnd 11919 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ∈ ℂ) |
64 | 38 | nnne0d 11953 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ≠ 0) |
65 | 31 | nncnd 11919 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘𝑥) ∈ ℂ) |
66 | 35 | nnne0d 11953 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ≠ 0) |
67 | 65, 62, 66 | divcan1d 11682 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) · (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) = (𝑂‘𝑥)) |
68 | 2, 3, 26 | odmulg 19078 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ ((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ∈ ℤ) → (𝑂‘𝑥) = ((((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) gcd (𝑂‘𝑥)) · (𝑂‘(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥)))) |
69 | 15, 29, 39, 68 | syl3anc 1369 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘𝑥) = ((((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) gcd (𝑂‘𝑥)) · (𝑂‘(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥)))) |
70 | 35 | nnzd 12354 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∈ ℤ) |
71 | | dvdsmul1 15915 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ∈ ℤ ∧ (𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∈ ℤ) → ((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ∥ (((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) · (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))) |
72 | 39, 70, 71 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ∥ (((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) · (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))) |
73 | 72, 67 | breqtrd 5096 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ∥ (𝑂‘𝑥)) |
74 | | gcdeq 16191 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ∈ ℕ ∧ (𝑂‘𝑥) ∈ ℕ) → ((((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) gcd (𝑂‘𝑥)) = ((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ↔ ((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ∥ (𝑂‘𝑥))) |
75 | 38, 31, 74 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) gcd (𝑂‘𝑥)) = ((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ↔ ((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ∥ (𝑂‘𝑥))) |
76 | 73, 75 | mpbird 256 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) gcd (𝑂‘𝑥)) = ((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))) |
77 | 76 | oveq1d 7270 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) gcd (𝑂‘𝑥)) · (𝑂‘(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥))) = (((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) · (𝑂‘(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥)))) |
78 | 67, 69, 77 | 3eqtrrd 2783 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) · (𝑂‘(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥))) = (((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) · (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))) |
79 | 61, 62, 63, 64, 78 | mulcanad 11540 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥)) = (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) |
80 | 58, 79 | oveq12d 7273 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)) gcd (𝑂‘(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥))) = (((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) gcd (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))) |
81 | | nndivdvds 15900 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑂‘𝐴) ∈ ℕ ∧ (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∈ ℕ) → ((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∥ (𝑂‘𝐴) ↔ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) ∈ ℕ)) |
82 | 22, 24, 81 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∥ (𝑂‘𝐴) ↔ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) ∈ ℕ)) |
83 | 45, 82 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) ∈ ℕ) |
84 | 83 | nnzd 12354 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) ∈ ℤ) |
85 | 84, 70 | gcdcomd 16149 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) gcd (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) = ((𝑝↑(𝑝 pCnt (𝑂‘𝑥))) gcd ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))))) |
86 | | pcndvds2 16497 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑝 ∈ ℙ ∧ (𝑂‘𝐴) ∈ ℕ) → ¬ 𝑝 ∥ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴))))) |
87 | 18, 22, 86 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ¬ 𝑝 ∥ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴))))) |
88 | | coprm 16344 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑝 ∈ ℙ ∧ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) ∈ ℤ) → (¬ 𝑝 ∥ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) ↔ (𝑝 gcd ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴))))) = 1)) |
89 | 18, 84, 88 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (¬ 𝑝 ∥ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) ↔ (𝑝 gcd ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴))))) = 1)) |
90 | 87, 89 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝 gcd ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴))))) = 1) |
91 | | prmz 16308 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℤ) |
92 | 91 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ) |
93 | | rpexp1i 16356 |
. . . . . . . . . . . . . . 15
⊢ ((𝑝 ∈ ℤ ∧ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) ∈ ℤ ∧ (𝑝 pCnt (𝑂‘𝑥)) ∈ ℕ0) → ((𝑝 gcd ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴))))) = 1 → ((𝑝↑(𝑝 pCnt (𝑂‘𝑥))) gcd ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴))))) = 1)) |
94 | 92, 84, 34, 93 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑝 gcd ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴))))) = 1 → ((𝑝↑(𝑝 pCnt (𝑂‘𝑥))) gcd ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴))))) = 1)) |
95 | 90, 94 | mpd 15 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑝↑(𝑝 pCnt (𝑂‘𝑥))) gcd ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴))))) = 1) |
96 | 80, 85, 95 | 3eqtrd 2782 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)) gcd (𝑂‘(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥))) = 1) |
97 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(+g‘𝐺) = (+g‘𝐺) |
98 | 3, 2, 97 | odadd 19366 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Abel ∧ ((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴) ∈ 𝑋 ∧ (((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥) ∈ 𝑋) ∧ ((𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)) gcd (𝑂‘(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥))) = 1) → (𝑂‘(((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)(+g‘𝐺)(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥))) = ((𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)) · (𝑂‘(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥)))) |
99 | 14, 28, 41, 96, 98 | syl31anc 1371 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘(((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)(+g‘𝐺)(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥))) = ((𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)) · (𝑂‘(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥)))) |
100 | 58, 79 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂‘((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)) · (𝑂‘(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥))) = (((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) · (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))) |
101 | 99, 100 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘(((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)(+g‘𝐺)(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥))) = (((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) · (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))) |
102 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑦 = (((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)(+g‘𝐺)(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥)) → (𝑂‘𝑦) = (𝑂‘(((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)(+g‘𝐺)(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥)))) |
103 | 102 | breq1d 5080 |
. . . . . . . . . . 11
⊢ (𝑦 = (((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)(+g‘𝐺)(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥)) → ((𝑂‘𝑦) ≤ (𝑂‘𝐴) ↔ (𝑂‘(((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)(+g‘𝐺)(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥))) ≤ (𝑂‘𝐴))) |
104 | | gexexlem.4 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → (𝑂‘𝑦) ≤ (𝑂‘𝐴)) |
105 | 104 | ralrimiva 3107 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑦 ∈ 𝑋 (𝑂‘𝑦) ≤ (𝑂‘𝐴)) |
106 | 105 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ∀𝑦 ∈ 𝑋 (𝑂‘𝑦) ≤ (𝑂‘𝐴)) |
107 | 2, 97 | grpcl 18500 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ ((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴) ∈ 𝑋 ∧ (((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥) ∈ 𝑋) → (((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)(+g‘𝐺)(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥)) ∈ 𝑋) |
108 | 15, 28, 41, 107 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)(+g‘𝐺)(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥)) ∈ 𝑋) |
109 | 103, 106,
108 | rspcdva 3554 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘(((𝑝↑(𝑝 pCnt (𝑂‘𝐴)))(.g‘𝐺)𝐴)(+g‘𝐺)(((𝑂‘𝑥) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))(.g‘𝐺)𝑥))) ≤ (𝑂‘𝐴)) |
110 | 101, 109 | eqbrtrrd 5094 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) · (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ≤ (𝑂‘𝐴)) |
111 | 83 | nnred 11918 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) ∈ ℝ) |
112 | 22 | nnred 11918 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘𝐴) ∈ ℝ) |
113 | 35 | nnrpd 12699 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∈
ℝ+) |
114 | 111, 112,
113 | lemuldivd 12750 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) · (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ≤ (𝑂‘𝐴) ↔ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) ≤ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))))) |
115 | 110, 114 | mpbid 231 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) ≤ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))) |
116 | | nnrp 12670 |
. . . . . . . . . 10
⊢ ((𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∈ ℕ → (𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∈
ℝ+) |
117 | | nnrp 12670 |
. . . . . . . . . 10
⊢ ((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∈ ℕ → (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∈
ℝ+) |
118 | | nnrp 12670 |
. . . . . . . . . 10
⊢ ((𝑂‘𝐴) ∈ ℕ → (𝑂‘𝐴) ∈
ℝ+) |
119 | | rpregt0 12673 |
. . . . . . . . . . 11
⊢ ((𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∈ ℝ+ → ((𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∈ ℝ ∧ 0 < (𝑝↑(𝑝 pCnt (𝑂‘𝑥))))) |
120 | | rpregt0 12673 |
. . . . . . . . . . 11
⊢ ((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∈ ℝ+ →
((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∈ ℝ ∧ 0 < (𝑝↑(𝑝 pCnt (𝑂‘𝐴))))) |
121 | | rpregt0 12673 |
. . . . . . . . . . 11
⊢ ((𝑂‘𝐴) ∈ ℝ+ → ((𝑂‘𝐴) ∈ ℝ ∧ 0 < (𝑂‘𝐴))) |
122 | | lediv2 11795 |
. . . . . . . . . . 11
⊢ ((((𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∈ ℝ ∧ 0 < (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))) ∧ ((𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∈ ℝ ∧ 0 < (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) ∧ ((𝑂‘𝐴) ∈ ℝ ∧ 0 < (𝑂‘𝐴))) → ((𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ≤ (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ↔ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) ≤ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))))) |
123 | 119, 120,
121, 122 | syl3an 1158 |
. . . . . . . . . 10
⊢ (((𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∈ ℝ+ ∧ (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∈ ℝ+ ∧ (𝑂‘𝐴) ∈ ℝ+) → ((𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ≤ (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ↔ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) ≤ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))))) |
124 | 116, 117,
118, 123 | syl3an 1158 |
. . . . . . . . 9
⊢ (((𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ∈ ℕ ∧ (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ∈ ℕ ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ≤ (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ↔ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) ≤ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))))) |
125 | 35, 24, 22, 124 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ≤ (𝑝↑(𝑝 pCnt (𝑂‘𝐴))) ↔ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) ≤ ((𝑂‘𝐴) / (𝑝↑(𝑝 pCnt (𝑂‘𝑥)))))) |
126 | 115, 125 | mpbird 256 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ≤ (𝑝↑(𝑝 pCnt (𝑂‘𝐴)))) |
127 | 17 | nnred 11918 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℝ) |
128 | 34 | nn0zd 12353 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝑂‘𝑥)) ∈ ℤ) |
129 | 23 | nn0zd 12353 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝑂‘𝐴)) ∈ ℤ) |
130 | | prmuz2 16329 |
. . . . . . . . . 10
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
(ℤ≥‘2)) |
131 | 130 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈
(ℤ≥‘2)) |
132 | | eluz2gt1 12589 |
. . . . . . . . 9
⊢ (𝑝 ∈
(ℤ≥‘2) → 1 < 𝑝) |
133 | 131, 132 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → 1 < 𝑝) |
134 | 127, 128,
129, 133 | leexp2d 13897 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (𝑂‘𝑥)) ≤ (𝑝 pCnt (𝑂‘𝐴)) ↔ (𝑝↑(𝑝 pCnt (𝑂‘𝑥))) ≤ (𝑝↑(𝑝 pCnt (𝑂‘𝐴))))) |
135 | 126, 134 | mpbird 256 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝑂‘𝑥)) ≤ (𝑝 pCnt (𝑂‘𝐴))) |
136 | 135 | ralrimiva 3107 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑝 ∈ ℙ (𝑝 pCnt (𝑂‘𝑥)) ≤ (𝑝 pCnt (𝑂‘𝐴))) |
137 | 2, 3 | odcl 19059 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑋 → (𝑂‘𝑥) ∈
ℕ0) |
138 | 137 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑂‘𝑥) ∈
ℕ0) |
139 | 138 | nn0zd 12353 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑂‘𝑥) ∈ ℤ) |
140 | 5 | nn0zd 12353 |
. . . . . . 7
⊢ (𝜑 → (𝑂‘𝐴) ∈ ℤ) |
141 | 140 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑂‘𝐴) ∈ ℤ) |
142 | | pc2dvds 16508 |
. . . . . 6
⊢ (((𝑂‘𝑥) ∈ ℤ ∧ (𝑂‘𝐴) ∈ ℤ) → ((𝑂‘𝑥) ∥ (𝑂‘𝐴) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (𝑂‘𝑥)) ≤ (𝑝 pCnt (𝑂‘𝐴)))) |
143 | 139, 141,
142 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑂‘𝑥) ∥ (𝑂‘𝐴) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (𝑂‘𝑥)) ≤ (𝑝 pCnt (𝑂‘𝐴)))) |
144 | 136, 143 | mpbird 256 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑂‘𝑥) ∥ (𝑂‘𝐴)) |
145 | 144 | ralrimiva 3107 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∥ (𝑂‘𝐴)) |
146 | 2, 11, 3 | gexdvds2 19105 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ (𝑂‘𝐴) ∈ ℤ) → (𝐸 ∥ (𝑂‘𝐴) ↔ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∥ (𝑂‘𝐴))) |
147 | 10, 140, 146 | syl2anc 583 |
. . 3
⊢ (𝜑 → (𝐸 ∥ (𝑂‘𝐴) ↔ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∥ (𝑂‘𝐴))) |
148 | 145, 147 | mpbird 256 |
. 2
⊢ (𝜑 → 𝐸 ∥ (𝑂‘𝐴)) |
149 | | dvdseq 15951 |
. 2
⊢ ((((𝑂‘𝐴) ∈ ℕ0 ∧ 𝐸 ∈ ℕ0)
∧ ((𝑂‘𝐴) ∥ 𝐸 ∧ 𝐸 ∥ (𝑂‘𝐴))) → (𝑂‘𝐴) = 𝐸) |
150 | 5, 7, 13, 148, 149 | syl22anc 835 |
1
⊢ (𝜑 → (𝑂‘𝐴) = 𝐸) |