MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexexlem Structured version   Visualization version   GIF version

Theorem gexexlem 19453
Description: Lemma for gexex 19454. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexex.1 𝑋 = (Base‘𝐺)
gexex.2 𝐸 = (gEx‘𝐺)
gexex.3 𝑂 = (od‘𝐺)
gexexlem.1 (𝜑𝐺 ∈ Abel)
gexexlem.2 (𝜑𝐸 ∈ ℕ)
gexexlem.3 (𝜑𝐴𝑋)
gexexlem.4 ((𝜑𝑦𝑋) → (𝑂𝑦) ≤ (𝑂𝐴))
Assertion
Ref Expression
gexexlem (𝜑 → (𝑂𝐴) = 𝐸)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐸   𝑦,𝐺   𝑦,𝑂   𝜑,𝑦   𝑦,𝑋

Proof of Theorem gexexlem
Dummy variables 𝑥 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gexexlem.3 . . 3 (𝜑𝐴𝑋)
2 gexex.1 . . . 4 𝑋 = (Base‘𝐺)
3 gexex.3 . . . 4 𝑂 = (od‘𝐺)
42, 3odcl 19144 . . 3 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
51, 4syl 17 . 2 (𝜑 → (𝑂𝐴) ∈ ℕ0)
6 gexexlem.2 . . 3 (𝜑𝐸 ∈ ℕ)
76nnnn0d 12293 . 2 (𝜑𝐸 ∈ ℕ0)
8 gexexlem.1 . . . 4 (𝜑𝐺 ∈ Abel)
9 ablgrp 19391 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
108, 9syl 17 . . 3 (𝜑𝐺 ∈ Grp)
11 gexex.2 . . . 4 𝐸 = (gEx‘𝐺)
122, 11, 3gexod 19191 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂𝐴) ∥ 𝐸)
1310, 1, 12syl2anc 584 . 2 (𝜑 → (𝑂𝐴) ∥ 𝐸)
148ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → 𝐺 ∈ Abel)
1510ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → 𝐺 ∈ Grp)
16 prmnn 16379 . . . . . . . . . . . . . . . 16 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
1716adantl 482 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℕ)
18 simpr 485 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
196ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → 𝐸 ∈ ℕ)
201ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → 𝐴𝑋)
212, 11, 3gexnnod 19193 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴𝑋) → (𝑂𝐴) ∈ ℕ)
2215, 19, 20, 21syl3anc 1370 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂𝐴) ∈ ℕ)
2318, 22pccld 16551 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝑂𝐴)) ∈ ℕ0)
2417, 23nnexpcld 13960 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂𝐴))) ∈ ℕ)
2524nnzd 12425 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂𝐴))) ∈ ℤ)
26 eqid 2738 . . . . . . . . . . . . . 14 (.g𝐺) = (.g𝐺)
272, 26mulgcl 18721 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝑝↑(𝑝 pCnt (𝑂𝐴))) ∈ ℤ ∧ 𝐴𝑋) → ((𝑝↑(𝑝 pCnt (𝑂𝐴)))(.g𝐺)𝐴) ∈ 𝑋)
2815, 25, 20, 27syl3anc 1370 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑝↑(𝑝 pCnt (𝑂𝐴)))(.g𝐺)𝐴) ∈ 𝑋)
29 simplr 766 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → 𝑥𝑋)
302, 11, 3gexnnod 19193 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝑥𝑋) → (𝑂𝑥) ∈ ℕ)
3115, 19, 29, 30syl3anc 1370 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂𝑥) ∈ ℕ)
32 pcdvds 16565 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℙ ∧ (𝑂𝑥) ∈ ℕ) → (𝑝↑(𝑝 pCnt (𝑂𝑥))) ∥ (𝑂𝑥))
3318, 31, 32syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂𝑥))) ∥ (𝑂𝑥))
3418, 31pccld 16551 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝑂𝑥)) ∈ ℕ0)
3517, 34nnexpcld 13960 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂𝑥))) ∈ ℕ)
36 nndivdvds 15972 . . . . . . . . . . . . . . . 16 (((𝑂𝑥) ∈ ℕ ∧ (𝑝↑(𝑝 pCnt (𝑂𝑥))) ∈ ℕ) → ((𝑝↑(𝑝 pCnt (𝑂𝑥))) ∥ (𝑂𝑥) ↔ ((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥)))) ∈ ℕ))
3731, 35, 36syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑝↑(𝑝 pCnt (𝑂𝑥))) ∥ (𝑂𝑥) ↔ ((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥)))) ∈ ℕ))
3833, 37mpbid 231 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥)))) ∈ ℕ)
3938nnzd 12425 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥)))) ∈ ℤ)
402, 26mulgcl 18721 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ ((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥)))) ∈ ℤ ∧ 𝑥𝑋) → (((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))(.g𝐺)𝑥) ∈ 𝑋)
4115, 39, 29, 40syl3anc 1370 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))(.g𝐺)𝑥) ∈ 𝑋)
422, 3, 26odmulg 19163 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑝↑(𝑝 pCnt (𝑂𝐴))) ∈ ℤ) → (𝑂𝐴) = (((𝑝↑(𝑝 pCnt (𝑂𝐴))) gcd (𝑂𝐴)) · (𝑂‘((𝑝↑(𝑝 pCnt (𝑂𝐴)))(.g𝐺)𝐴))))
4315, 20, 25, 42syl3anc 1370 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂𝐴) = (((𝑝↑(𝑝 pCnt (𝑂𝐴))) gcd (𝑂𝐴)) · (𝑂‘((𝑝↑(𝑝 pCnt (𝑂𝐴)))(.g𝐺)𝐴))))
44 pcdvds 16565 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℙ ∧ (𝑂𝐴) ∈ ℕ) → (𝑝↑(𝑝 pCnt (𝑂𝐴))) ∥ (𝑂𝐴))
4518, 22, 44syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂𝐴))) ∥ (𝑂𝐴))
46 gcdeq 16263 . . . . . . . . . . . . . . . . . . . 20 (((𝑝↑(𝑝 pCnt (𝑂𝐴))) ∈ ℕ ∧ (𝑂𝐴) ∈ ℕ) → (((𝑝↑(𝑝 pCnt (𝑂𝐴))) gcd (𝑂𝐴)) = (𝑝↑(𝑝 pCnt (𝑂𝐴))) ↔ (𝑝↑(𝑝 pCnt (𝑂𝐴))) ∥ (𝑂𝐴)))
4724, 22, 46syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (((𝑝↑(𝑝 pCnt (𝑂𝐴))) gcd (𝑂𝐴)) = (𝑝↑(𝑝 pCnt (𝑂𝐴))) ↔ (𝑝↑(𝑝 pCnt (𝑂𝐴))) ∥ (𝑂𝐴)))
4845, 47mpbird 256 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑝↑(𝑝 pCnt (𝑂𝐴))) gcd (𝑂𝐴)) = (𝑝↑(𝑝 pCnt (𝑂𝐴))))
4948oveq1d 7290 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (((𝑝↑(𝑝 pCnt (𝑂𝐴))) gcd (𝑂𝐴)) · (𝑂‘((𝑝↑(𝑝 pCnt (𝑂𝐴)))(.g𝐺)𝐴))) = ((𝑝↑(𝑝 pCnt (𝑂𝐴))) · (𝑂‘((𝑝↑(𝑝 pCnt (𝑂𝐴)))(.g𝐺)𝐴))))
5043, 49eqtrd 2778 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂𝐴) = ((𝑝↑(𝑝 pCnt (𝑂𝐴))) · (𝑂‘((𝑝↑(𝑝 pCnt (𝑂𝐴)))(.g𝐺)𝐴))))
5150oveq1d 7290 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴)))) = (((𝑝↑(𝑝 pCnt (𝑂𝐴))) · (𝑂‘((𝑝↑(𝑝 pCnt (𝑂𝐴)))(.g𝐺)𝐴))) / (𝑝↑(𝑝 pCnt (𝑂𝐴)))))
522, 11, 3gexnnod 19193 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ ((𝑝↑(𝑝 pCnt (𝑂𝐴)))(.g𝐺)𝐴) ∈ 𝑋) → (𝑂‘((𝑝↑(𝑝 pCnt (𝑂𝐴)))(.g𝐺)𝐴)) ∈ ℕ)
5315, 19, 28, 52syl3anc 1370 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘((𝑝↑(𝑝 pCnt (𝑂𝐴)))(.g𝐺)𝐴)) ∈ ℕ)
5453nncnd 11989 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘((𝑝↑(𝑝 pCnt (𝑂𝐴)))(.g𝐺)𝐴)) ∈ ℂ)
5524nncnd 11989 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂𝐴))) ∈ ℂ)
5624nnne0d 12023 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂𝐴))) ≠ 0)
5754, 55, 56divcan3d 11756 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (((𝑝↑(𝑝 pCnt (𝑂𝐴))) · (𝑂‘((𝑝↑(𝑝 pCnt (𝑂𝐴)))(.g𝐺)𝐴))) / (𝑝↑(𝑝 pCnt (𝑂𝐴)))) = (𝑂‘((𝑝↑(𝑝 pCnt (𝑂𝐴)))(.g𝐺)𝐴)))
5851, 57eqtr2d 2779 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘((𝑝↑(𝑝 pCnt (𝑂𝐴)))(.g𝐺)𝐴)) = ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴)))))
592, 11, 3gexnnod 19193 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ (((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))(.g𝐺)𝑥) ∈ 𝑋) → (𝑂‘(((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))(.g𝐺)𝑥)) ∈ ℕ)
6015, 19, 41, 59syl3anc 1370 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘(((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))(.g𝐺)𝑥)) ∈ ℕ)
6160nncnd 11989 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘(((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))(.g𝐺)𝑥)) ∈ ℂ)
6235nncnd 11989 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂𝑥))) ∈ ℂ)
6338nncnd 11989 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥)))) ∈ ℂ)
6438nnne0d 12023 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥)))) ≠ 0)
6531nncnd 11989 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂𝑥) ∈ ℂ)
6635nnne0d 12023 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂𝑥))) ≠ 0)
6765, 62, 66divcan1d 11752 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥)))) · (𝑝↑(𝑝 pCnt (𝑂𝑥)))) = (𝑂𝑥))
682, 3, 26odmulg 19163 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝑥𝑋 ∧ ((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥)))) ∈ ℤ) → (𝑂𝑥) = ((((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥)))) gcd (𝑂𝑥)) · (𝑂‘(((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))(.g𝐺)𝑥))))
6915, 29, 39, 68syl3anc 1370 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂𝑥) = ((((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥)))) gcd (𝑂𝑥)) · (𝑂‘(((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))(.g𝐺)𝑥))))
7035nnzd 12425 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂𝑥))) ∈ ℤ)
71 dvdsmul1 15987 . . . . . . . . . . . . . . . . . . . 20 ((((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥)))) ∈ ℤ ∧ (𝑝↑(𝑝 pCnt (𝑂𝑥))) ∈ ℤ) → ((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥)))) ∥ (((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥)))) · (𝑝↑(𝑝 pCnt (𝑂𝑥)))))
7239, 70, 71syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥)))) ∥ (((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥)))) · (𝑝↑(𝑝 pCnt (𝑂𝑥)))))
7372, 67breqtrd 5100 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥)))) ∥ (𝑂𝑥))
74 gcdeq 16263 . . . . . . . . . . . . . . . . . . 19 ((((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥)))) ∈ ℕ ∧ (𝑂𝑥) ∈ ℕ) → ((((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥)))) gcd (𝑂𝑥)) = ((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥)))) ↔ ((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥)))) ∥ (𝑂𝑥)))
7538, 31, 74syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → ((((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥)))) gcd (𝑂𝑥)) = ((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥)))) ↔ ((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥)))) ∥ (𝑂𝑥)))
7673, 75mpbird 256 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥)))) gcd (𝑂𝑥)) = ((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥)))))
7776oveq1d 7290 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → ((((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥)))) gcd (𝑂𝑥)) · (𝑂‘(((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))(.g𝐺)𝑥))) = (((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥)))) · (𝑂‘(((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))(.g𝐺)𝑥))))
7867, 69, 773eqtrrd 2783 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥)))) · (𝑂‘(((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))(.g𝐺)𝑥))) = (((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥)))) · (𝑝↑(𝑝 pCnt (𝑂𝑥)))))
7961, 62, 63, 64, 78mulcanad 11610 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘(((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))(.g𝐺)𝑥)) = (𝑝↑(𝑝 pCnt (𝑂𝑥))))
8058, 79oveq12d 7293 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂‘((𝑝↑(𝑝 pCnt (𝑂𝐴)))(.g𝐺)𝐴)) gcd (𝑂‘(((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))(.g𝐺)𝑥))) = (((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴)))) gcd (𝑝↑(𝑝 pCnt (𝑂𝑥)))))
81 nndivdvds 15972 . . . . . . . . . . . . . . . . 17 (((𝑂𝐴) ∈ ℕ ∧ (𝑝↑(𝑝 pCnt (𝑂𝐴))) ∈ ℕ) → ((𝑝↑(𝑝 pCnt (𝑂𝐴))) ∥ (𝑂𝐴) ↔ ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴)))) ∈ ℕ))
8222, 24, 81syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑝↑(𝑝 pCnt (𝑂𝐴))) ∥ (𝑂𝐴) ↔ ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴)))) ∈ ℕ))
8345, 82mpbid 231 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴)))) ∈ ℕ)
8483nnzd 12425 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴)))) ∈ ℤ)
8584, 70gcdcomd 16221 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴)))) gcd (𝑝↑(𝑝 pCnt (𝑂𝑥)))) = ((𝑝↑(𝑝 pCnt (𝑂𝑥))) gcd ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴))))))
86 pcndvds2 16569 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℙ ∧ (𝑂𝐴) ∈ ℕ) → ¬ 𝑝 ∥ ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴)))))
8718, 22, 86syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → ¬ 𝑝 ∥ ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴)))))
88 coprm 16416 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℙ ∧ ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴)))) ∈ ℤ) → (¬ 𝑝 ∥ ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴)))) ↔ (𝑝 gcd ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴))))) = 1))
8918, 84, 88syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (¬ 𝑝 ∥ ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴)))) ↔ (𝑝 gcd ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴))))) = 1))
9087, 89mpbid 231 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝 gcd ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴))))) = 1)
91 prmz 16380 . . . . . . . . . . . . . . . 16 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
9291adantl 482 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
93 rpexp1i 16428 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℤ ∧ ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴)))) ∈ ℤ ∧ (𝑝 pCnt (𝑂𝑥)) ∈ ℕ0) → ((𝑝 gcd ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴))))) = 1 → ((𝑝↑(𝑝 pCnt (𝑂𝑥))) gcd ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴))))) = 1))
9492, 84, 34, 93syl3anc 1370 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑝 gcd ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴))))) = 1 → ((𝑝↑(𝑝 pCnt (𝑂𝑥))) gcd ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴))))) = 1))
9590, 94mpd 15 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑝↑(𝑝 pCnt (𝑂𝑥))) gcd ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴))))) = 1)
9680, 85, 953eqtrd 2782 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂‘((𝑝↑(𝑝 pCnt (𝑂𝐴)))(.g𝐺)𝐴)) gcd (𝑂‘(((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))(.g𝐺)𝑥))) = 1)
97 eqid 2738 . . . . . . . . . . . . 13 (+g𝐺) = (+g𝐺)
983, 2, 97odadd 19451 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ ((𝑝↑(𝑝 pCnt (𝑂𝐴)))(.g𝐺)𝐴) ∈ 𝑋 ∧ (((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))(.g𝐺)𝑥) ∈ 𝑋) ∧ ((𝑂‘((𝑝↑(𝑝 pCnt (𝑂𝐴)))(.g𝐺)𝐴)) gcd (𝑂‘(((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))(.g𝐺)𝑥))) = 1) → (𝑂‘(((𝑝↑(𝑝 pCnt (𝑂𝐴)))(.g𝐺)𝐴)(+g𝐺)(((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))(.g𝐺)𝑥))) = ((𝑂‘((𝑝↑(𝑝 pCnt (𝑂𝐴)))(.g𝐺)𝐴)) · (𝑂‘(((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))(.g𝐺)𝑥))))
9914, 28, 41, 96, 98syl31anc 1372 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘(((𝑝↑(𝑝 pCnt (𝑂𝐴)))(.g𝐺)𝐴)(+g𝐺)(((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))(.g𝐺)𝑥))) = ((𝑂‘((𝑝↑(𝑝 pCnt (𝑂𝐴)))(.g𝐺)𝐴)) · (𝑂‘(((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))(.g𝐺)𝑥))))
10058, 79oveq12d 7293 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂‘((𝑝↑(𝑝 pCnt (𝑂𝐴)))(.g𝐺)𝐴)) · (𝑂‘(((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))(.g𝐺)𝑥))) = (((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴)))) · (𝑝↑(𝑝 pCnt (𝑂𝑥)))))
10199, 100eqtrd 2778 . . . . . . . . . 10 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘(((𝑝↑(𝑝 pCnt (𝑂𝐴)))(.g𝐺)𝐴)(+g𝐺)(((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))(.g𝐺)𝑥))) = (((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴)))) · (𝑝↑(𝑝 pCnt (𝑂𝑥)))))
102 fveq2 6774 . . . . . . . . . . . 12 (𝑦 = (((𝑝↑(𝑝 pCnt (𝑂𝐴)))(.g𝐺)𝐴)(+g𝐺)(((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))(.g𝐺)𝑥)) → (𝑂𝑦) = (𝑂‘(((𝑝↑(𝑝 pCnt (𝑂𝐴)))(.g𝐺)𝐴)(+g𝐺)(((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))(.g𝐺)𝑥))))
103102breq1d 5084 . . . . . . . . . . 11 (𝑦 = (((𝑝↑(𝑝 pCnt (𝑂𝐴)))(.g𝐺)𝐴)(+g𝐺)(((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))(.g𝐺)𝑥)) → ((𝑂𝑦) ≤ (𝑂𝐴) ↔ (𝑂‘(((𝑝↑(𝑝 pCnt (𝑂𝐴)))(.g𝐺)𝐴)(+g𝐺)(((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))(.g𝐺)𝑥))) ≤ (𝑂𝐴)))
104 gexexlem.4 . . . . . . . . . . . . 13 ((𝜑𝑦𝑋) → (𝑂𝑦) ≤ (𝑂𝐴))
105104ralrimiva 3103 . . . . . . . . . . . 12 (𝜑 → ∀𝑦𝑋 (𝑂𝑦) ≤ (𝑂𝐴))
106105ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → ∀𝑦𝑋 (𝑂𝑦) ≤ (𝑂𝐴))
1072, 97grpcl 18585 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ ((𝑝↑(𝑝 pCnt (𝑂𝐴)))(.g𝐺)𝐴) ∈ 𝑋 ∧ (((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))(.g𝐺)𝑥) ∈ 𝑋) → (((𝑝↑(𝑝 pCnt (𝑂𝐴)))(.g𝐺)𝐴)(+g𝐺)(((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))(.g𝐺)𝑥)) ∈ 𝑋)
10815, 28, 41, 107syl3anc 1370 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (((𝑝↑(𝑝 pCnt (𝑂𝐴)))(.g𝐺)𝐴)(+g𝐺)(((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))(.g𝐺)𝑥)) ∈ 𝑋)
109103, 106, 108rspcdva 3562 . . . . . . . . . 10 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂‘(((𝑝↑(𝑝 pCnt (𝑂𝐴)))(.g𝐺)𝐴)(+g𝐺)(((𝑂𝑥) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))(.g𝐺)𝑥))) ≤ (𝑂𝐴))
110101, 109eqbrtrrd 5098 . . . . . . . . 9 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴)))) · (𝑝↑(𝑝 pCnt (𝑂𝑥)))) ≤ (𝑂𝐴))
11183nnred 11988 . . . . . . . . . 10 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴)))) ∈ ℝ)
11222nnred 11988 . . . . . . . . . 10 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑂𝐴) ∈ ℝ)
11335nnrpd 12770 . . . . . . . . . 10 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂𝑥))) ∈ ℝ+)
114111, 112, 113lemuldivd 12821 . . . . . . . . 9 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → ((((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴)))) · (𝑝↑(𝑝 pCnt (𝑂𝑥)))) ≤ (𝑂𝐴) ↔ ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴)))) ≤ ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))))
115110, 114mpbid 231 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴)))) ≤ ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝑥)))))
116 nnrp 12741 . . . . . . . . . 10 ((𝑝↑(𝑝 pCnt (𝑂𝑥))) ∈ ℕ → (𝑝↑(𝑝 pCnt (𝑂𝑥))) ∈ ℝ+)
117 nnrp 12741 . . . . . . . . . 10 ((𝑝↑(𝑝 pCnt (𝑂𝐴))) ∈ ℕ → (𝑝↑(𝑝 pCnt (𝑂𝐴))) ∈ ℝ+)
118 nnrp 12741 . . . . . . . . . 10 ((𝑂𝐴) ∈ ℕ → (𝑂𝐴) ∈ ℝ+)
119 rpregt0 12744 . . . . . . . . . . 11 ((𝑝↑(𝑝 pCnt (𝑂𝑥))) ∈ ℝ+ → ((𝑝↑(𝑝 pCnt (𝑂𝑥))) ∈ ℝ ∧ 0 < (𝑝↑(𝑝 pCnt (𝑂𝑥)))))
120 rpregt0 12744 . . . . . . . . . . 11 ((𝑝↑(𝑝 pCnt (𝑂𝐴))) ∈ ℝ+ → ((𝑝↑(𝑝 pCnt (𝑂𝐴))) ∈ ℝ ∧ 0 < (𝑝↑(𝑝 pCnt (𝑂𝐴)))))
121 rpregt0 12744 . . . . . . . . . . 11 ((𝑂𝐴) ∈ ℝ+ → ((𝑂𝐴) ∈ ℝ ∧ 0 < (𝑂𝐴)))
122 lediv2 11865 . . . . . . . . . . 11 ((((𝑝↑(𝑝 pCnt (𝑂𝑥))) ∈ ℝ ∧ 0 < (𝑝↑(𝑝 pCnt (𝑂𝑥)))) ∧ ((𝑝↑(𝑝 pCnt (𝑂𝐴))) ∈ ℝ ∧ 0 < (𝑝↑(𝑝 pCnt (𝑂𝐴)))) ∧ ((𝑂𝐴) ∈ ℝ ∧ 0 < (𝑂𝐴))) → ((𝑝↑(𝑝 pCnt (𝑂𝑥))) ≤ (𝑝↑(𝑝 pCnt (𝑂𝐴))) ↔ ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴)))) ≤ ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))))
123119, 120, 121, 122syl3an 1159 . . . . . . . . . 10 (((𝑝↑(𝑝 pCnt (𝑂𝑥))) ∈ ℝ+ ∧ (𝑝↑(𝑝 pCnt (𝑂𝐴))) ∈ ℝ+ ∧ (𝑂𝐴) ∈ ℝ+) → ((𝑝↑(𝑝 pCnt (𝑂𝑥))) ≤ (𝑝↑(𝑝 pCnt (𝑂𝐴))) ↔ ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴)))) ≤ ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))))
124116, 117, 118, 123syl3an 1159 . . . . . . . . 9 (((𝑝↑(𝑝 pCnt (𝑂𝑥))) ∈ ℕ ∧ (𝑝↑(𝑝 pCnt (𝑂𝐴))) ∈ ℕ ∧ (𝑂𝐴) ∈ ℕ) → ((𝑝↑(𝑝 pCnt (𝑂𝑥))) ≤ (𝑝↑(𝑝 pCnt (𝑂𝐴))) ↔ ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴)))) ≤ ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))))
12535, 24, 22, 124syl3anc 1370 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑝↑(𝑝 pCnt (𝑂𝑥))) ≤ (𝑝↑(𝑝 pCnt (𝑂𝐴))) ↔ ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝐴)))) ≤ ((𝑂𝐴) / (𝑝↑(𝑝 pCnt (𝑂𝑥))))))
126115, 125mpbird 256 . . . . . . 7 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt (𝑂𝑥))) ≤ (𝑝↑(𝑝 pCnt (𝑂𝐴))))
12717nnred 11988 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℝ)
12834nn0zd 12424 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝑂𝑥)) ∈ ℤ)
12923nn0zd 12424 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝑂𝐴)) ∈ ℤ)
130 prmuz2 16401 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
131130adantl 482 . . . . . . . . 9 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ (ℤ‘2))
132 eluz2gt1 12660 . . . . . . . . 9 (𝑝 ∈ (ℤ‘2) → 1 < 𝑝)
133131, 132syl 17 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → 1 < 𝑝)
134127, 128, 129, 133leexp2d 13969 . . . . . . 7 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (𝑂𝑥)) ≤ (𝑝 pCnt (𝑂𝐴)) ↔ (𝑝↑(𝑝 pCnt (𝑂𝑥))) ≤ (𝑝↑(𝑝 pCnt (𝑂𝐴)))))
135126, 134mpbird 256 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝑂𝑥)) ≤ (𝑝 pCnt (𝑂𝐴)))
136135ralrimiva 3103 . . . . 5 ((𝜑𝑥𝑋) → ∀𝑝 ∈ ℙ (𝑝 pCnt (𝑂𝑥)) ≤ (𝑝 pCnt (𝑂𝐴)))
1372, 3odcl 19144 . . . . . . . 8 (𝑥𝑋 → (𝑂𝑥) ∈ ℕ0)
138137adantl 482 . . . . . . 7 ((𝜑𝑥𝑋) → (𝑂𝑥) ∈ ℕ0)
139138nn0zd 12424 . . . . . 6 ((𝜑𝑥𝑋) → (𝑂𝑥) ∈ ℤ)
1405nn0zd 12424 . . . . . . 7 (𝜑 → (𝑂𝐴) ∈ ℤ)
141140adantr 481 . . . . . 6 ((𝜑𝑥𝑋) → (𝑂𝐴) ∈ ℤ)
142 pc2dvds 16580 . . . . . 6 (((𝑂𝑥) ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → ((𝑂𝑥) ∥ (𝑂𝐴) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (𝑂𝑥)) ≤ (𝑝 pCnt (𝑂𝐴))))
143139, 141, 142syl2anc 584 . . . . 5 ((𝜑𝑥𝑋) → ((𝑂𝑥) ∥ (𝑂𝐴) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (𝑂𝑥)) ≤ (𝑝 pCnt (𝑂𝐴))))
144136, 143mpbird 256 . . . 4 ((𝜑𝑥𝑋) → (𝑂𝑥) ∥ (𝑂𝐴))
145144ralrimiva 3103 . . 3 (𝜑 → ∀𝑥𝑋 (𝑂𝑥) ∥ (𝑂𝐴))
1462, 11, 3gexdvds2 19190 . . . 4 ((𝐺 ∈ Grp ∧ (𝑂𝐴) ∈ ℤ) → (𝐸 ∥ (𝑂𝐴) ↔ ∀𝑥𝑋 (𝑂𝑥) ∥ (𝑂𝐴)))
14710, 140, 146syl2anc 584 . . 3 (𝜑 → (𝐸 ∥ (𝑂𝐴) ↔ ∀𝑥𝑋 (𝑂𝑥) ∥ (𝑂𝐴)))
148145, 147mpbird 256 . 2 (𝜑𝐸 ∥ (𝑂𝐴))
149 dvdseq 16023 . 2 ((((𝑂𝐴) ∈ ℕ0𝐸 ∈ ℕ0) ∧ ((𝑂𝐴) ∥ 𝐸𝐸 ∥ (𝑂𝐴))) → (𝑂𝐴) = 𝐸)
1505, 7, 13, 148, 149syl22anc 836 1 (𝜑 → (𝑂𝐴) = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   · cmul 10876   < clt 11009  cle 11010   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  cz 12319  cuz 12582  +crp 12730  cexp 13782  cdvds 15963   gcd cgcd 16201  cprime 16376   pCnt cpc 16537  Basecbs 16912  +gcplusg 16962  Grpcgrp 18577  .gcmg 18700  odcod 19132  gExcgex 19133  Abelcabl 19387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-gcd 16202  df-prm 16377  df-pc 16538  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-od 19136  df-gex 19137  df-cmn 19388  df-abl 19389
This theorem is referenced by:  gexex  19454
  Copyright terms: Public domain W3C validator