MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnledivrp Structured version   Visualization version   GIF version

Theorem nnledivrp 13169
Description: Division of a positive integer by a positive number is less than or equal to the integer iff the number is greater than or equal to 1. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
nnledivrp ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐴))

Proof of Theorem nnledivrp
StepHypRef Expression
1 1re 11290 . . . 4 1 ∈ ℝ
2 0lt1 11812 . . . 4 0 < 1
31, 2pm3.2i 470 . . 3 (1 ∈ ℝ ∧ 0 < 1)
4 rpregt0 13071 . . . 4 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
54adantl 481 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
6 nnre 12300 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
7 nngt0 12324 . . . . 5 (𝐴 ∈ ℕ → 0 < 𝐴)
86, 7jca 511 . . . 4 (𝐴 ∈ ℕ → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
98adantr 480 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
10 lediv2 12185 . . 3 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ (𝐴 / 1)))
113, 5, 9, 10mp3an2i 1466 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ (𝐴 / 1)))
12 nncn 12301 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
1312div1d 12062 . . . 4 (𝐴 ∈ ℕ → (𝐴 / 1) = 𝐴)
1413adantr 480 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 1) = 𝐴)
1514breq2d 5178 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) ≤ (𝐴 / 1) ↔ (𝐴 / 𝐵) ≤ 𝐴))
1611, 15bitrd 279 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108   class class class wbr 5166  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   < clt 11324  cle 11325   / cdiv 11947  cn 12293  +crp 13057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-rp 13058
This theorem is referenced by:  nn0ledivnn  13170  aks4d1p1p7  42031  aks4d1p8  42044
  Copyright terms: Public domain W3C validator