MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnledivrp Structured version   Visualization version   GIF version

Theorem nnledivrp 13126
Description: Division of a positive integer by a positive number is less than or equal to the integer iff the number is greater than or equal to 1. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
nnledivrp ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐴))

Proof of Theorem nnledivrp
StepHypRef Expression
1 1re 11251 . . . 4 1 ∈ ℝ
2 0lt1 11773 . . . 4 0 < 1
31, 2pm3.2i 469 . . 3 (1 ∈ ℝ ∧ 0 < 1)
4 rpregt0 13028 . . . 4 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
54adantl 480 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
6 nnre 12257 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
7 nngt0 12281 . . . . 5 (𝐴 ∈ ℕ → 0 < 𝐴)
86, 7jca 510 . . . 4 (𝐴 ∈ ℕ → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
98adantr 479 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
10 lediv2 12142 . . 3 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ (𝐴 / 1)))
113, 5, 9, 10mp3an2i 1462 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ (𝐴 / 1)))
12 nncn 12258 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
1312div1d 12020 . . . 4 (𝐴 ∈ ℕ → (𝐴 / 1) = 𝐴)
1413adantr 479 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 1) = 𝐴)
1514breq2d 5161 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) ≤ (𝐴 / 1) ↔ (𝐴 / 𝐵) ≤ 𝐴))
1611, 15bitrd 278 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098   class class class wbr 5149  (class class class)co 7419  cr 11144  0cc0 11145  1c1 11146   < clt 11285  cle 11286   / cdiv 11908  cn 12250  +crp 13014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-div 11909  df-nn 12251  df-rp 13015
This theorem is referenced by:  nn0ledivnn  13127  aks4d1p1p7  41697  aks4d1p8  41710
  Copyright terms: Public domain W3C validator