MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou2b Structured version   Visualization version   GIF version

Theorem aaliou2b 25854
Description: Liouville's approximation theorem extended to complex 𝐴. (Contributed by Stefan O'Rear, 20-Nov-2014.)
Assertion
Ref Expression
aaliou2b (𝐴 ∈ 𝔸 → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
Distinct variable group:   𝐴,𝑘,𝑥,𝑝,𝑞

Proof of Theorem aaliou2b
StepHypRef Expression
1 elin 3965 . . 3 (𝐴 ∈ (𝔸 ∩ ℝ) ↔ (𝐴 ∈ 𝔸 ∧ 𝐴 ∈ ℝ))
2 aaliou2 25853 . . 3 (𝐴 ∈ (𝔸 ∩ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
31, 2sylbir 234 . 2 ((𝐴 ∈ 𝔸 ∧ 𝐴 ∈ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
4 1nn 12223 . . 3 1 ∈ ℕ
5 aacn 25830 . . . . . . . 8 (𝐴 ∈ 𝔸 → 𝐴 ∈ ℂ)
65adantr 482 . . . . . . 7 ((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) → 𝐴 ∈ ℂ)
76imcld 15142 . . . . . 6 ((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) → (ℑ‘𝐴) ∈ ℝ)
87recnd 11242 . . . . 5 ((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) → (ℑ‘𝐴) ∈ ℂ)
9 reim0b 15066 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
105, 9syl 17 . . . . . . 7 (𝐴 ∈ 𝔸 → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
1110necon3bbid 2979 . . . . . 6 (𝐴 ∈ 𝔸 → (¬ 𝐴 ∈ ℝ ↔ (ℑ‘𝐴) ≠ 0))
1211biimpa 478 . . . . 5 ((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) → (ℑ‘𝐴) ≠ 0)
138, 12absrpcld 15395 . . . 4 ((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) → (abs‘(ℑ‘𝐴)) ∈ ℝ+)
1413rphalfcld 13028 . . 3 ((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) → ((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ+)
1514adantr 482 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ+)
16 1nn0 12488 . . . . . . . . . . 11 1 ∈ ℕ0
17 nnexpcl 14040 . . . . . . . . . . 11 ((𝑞 ∈ ℕ ∧ 1 ∈ ℕ0) → (𝑞↑1) ∈ ℕ)
1816, 17mpan2 690 . . . . . . . . . 10 (𝑞 ∈ ℕ → (𝑞↑1) ∈ ℕ)
1918ad2antll 728 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑞↑1) ∈ ℕ)
2019nnrpd 13014 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑞↑1) ∈ ℝ+)
2115, 20rpdivcld 13033 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) ∈ ℝ+)
2221rpred 13016 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) ∈ ℝ)
2315rpred 13016 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ)
246adantr 482 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝐴 ∈ ℂ)
25 znq 12936 . . . . . . . . . . 11 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℚ)
2625adantl 483 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℚ)
27 qre 12937 . . . . . . . . . 10 ((𝑝 / 𝑞) ∈ ℚ → (𝑝 / 𝑞) ∈ ℝ)
2826, 27syl 17 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℝ)
2928recnd 11242 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℂ)
3024, 29subcld 11571 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℂ)
3130abscld 15383 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ)
3219nnge1d 12260 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 1 ≤ (𝑞↑1))
33 1rp 12978 . . . . . . . . . 10 1 ∈ ℝ+
34 rpregt0 12988 . . . . . . . . . 10 (1 ∈ ℝ+ → (1 ∈ ℝ ∧ 0 < 1))
3533, 34mp1i 13 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (1 ∈ ℝ ∧ 0 < 1))
3620rpregt0d 13022 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑞↑1) ∈ ℝ ∧ 0 < (𝑞↑1)))
3715rpregt0d 13022 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ ∧ 0 < ((abs‘(ℑ‘𝐴)) / 2)))
38 lediv2 12104 . . . . . . . . 9 (((1 ∈ ℝ ∧ 0 < 1) ∧ ((𝑞↑1) ∈ ℝ ∧ 0 < (𝑞↑1)) ∧ (((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ ∧ 0 < ((abs‘(ℑ‘𝐴)) / 2))) → (1 ≤ (𝑞↑1) ↔ (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) ≤ (((abs‘(ℑ‘𝐴)) / 2) / 1)))
3935, 36, 37, 38syl3anc 1372 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (1 ≤ (𝑞↑1) ↔ (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) ≤ (((abs‘(ℑ‘𝐴)) / 2) / 1)))
4032, 39mpbid 231 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) ≤ (((abs‘(ℑ‘𝐴)) / 2) / 1))
4115rpcnd 13018 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((abs‘(ℑ‘𝐴)) / 2) ∈ ℂ)
4241div1d 11982 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((abs‘(ℑ‘𝐴)) / 2) / 1) = ((abs‘(ℑ‘𝐴)) / 2))
4340, 42breqtrd 5175 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) ≤ ((abs‘(ℑ‘𝐴)) / 2))
4413adantr 482 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(ℑ‘𝐴)) ∈ ℝ+)
4544rpred 13016 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(ℑ‘𝐴)) ∈ ℝ)
46 rphalflt 13003 . . . . . . . 8 ((abs‘(ℑ‘𝐴)) ∈ ℝ+ → ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(ℑ‘𝐴)))
4744, 46syl 17 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(ℑ‘𝐴)))
4824, 29imsubd 15164 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (ℑ‘(𝐴 − (𝑝 / 𝑞))) = ((ℑ‘𝐴) − (ℑ‘(𝑝 / 𝑞))))
4928reim0d 15172 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (ℑ‘(𝑝 / 𝑞)) = 0)
5049oveq2d 7425 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((ℑ‘𝐴) − (ℑ‘(𝑝 / 𝑞))) = ((ℑ‘𝐴) − 0))
518adantr 482 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (ℑ‘𝐴) ∈ ℂ)
5251subid1d 11560 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((ℑ‘𝐴) − 0) = (ℑ‘𝐴))
5348, 50, 523eqtrd 2777 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (ℑ‘(𝐴 − (𝑝 / 𝑞))) = (ℑ‘𝐴))
5453fveq2d 6896 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(ℑ‘(𝐴 − (𝑝 / 𝑞)))) = (abs‘(ℑ‘𝐴)))
55 absimle 15256 . . . . . . . . 9 ((𝐴 − (𝑝 / 𝑞)) ∈ ℂ → (abs‘(ℑ‘(𝐴 − (𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
5630, 55syl 17 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(ℑ‘(𝐴 − (𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
5754, 56eqbrtrrd 5173 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(ℑ‘𝐴)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
5823, 45, 31, 47, 57ltletrd 11374 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴 − (𝑝 / 𝑞))))
5922, 23, 31, 43, 58lelttrd 11372 . . . . 5 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞))))
6059olcd 873 . . . 4 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 = (𝑝 / 𝑞) ∨ (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
6160ralrimivva 3201 . . 3 ((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) → ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
62 oveq2 7417 . . . . . . . 8 (𝑘 = 1 → (𝑞𝑘) = (𝑞↑1))
6362oveq2d 7425 . . . . . . 7 (𝑘 = 1 → (𝑥 / (𝑞𝑘)) = (𝑥 / (𝑞↑1)))
6463breq1d 5159 . . . . . 6 (𝑘 = 1 → ((𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))) ↔ (𝑥 / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
6564orbi2d 915 . . . . 5 (𝑘 = 1 → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
66652ralbidv 3219 . . . 4 (𝑘 = 1 → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
67 oveq1 7416 . . . . . . 7 (𝑥 = ((abs‘(ℑ‘𝐴)) / 2) → (𝑥 / (𝑞↑1)) = (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)))
6867breq1d 5159 . . . . . 6 (𝑥 = ((abs‘(ℑ‘𝐴)) / 2) → ((𝑥 / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞))) ↔ (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
6968orbi2d 915 . . . . 5 (𝑥 = ((abs‘(ℑ‘𝐴)) / 2) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ (𝐴 = (𝑝 / 𝑞) ∨ (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
70692ralbidv 3219 . . . 4 (𝑥 = ((abs‘(ℑ‘𝐴)) / 2) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
7166, 70rspc2ev 3625 . . 3 ((1 ∈ ℕ ∧ ((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ+ ∧ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
724, 14, 61, 71mp3an2i 1467 . 2 ((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
733, 72pm2.61dan 812 1 (𝐴 ∈ 𝔸 → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wcel 2107  wne 2941  wral 3062  wrex 3071  cin 3948   class class class wbr 5149  cfv 6544  (class class class)co 7409  cc 11108  cr 11109  0cc0 11110  1c1 11111   < clt 11248  cle 11249  cmin 11444   / cdiv 11871  cn 12212  2c2 12267  0cn0 12472  cz 12558  cq 12932  +crp 12974  cexp 14027  cim 15045  abscabs 15181  𝔸caa 25827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188  ax-addf 11189  ax-mulf 11190
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-supp 8147  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-oadd 8470  df-er 8703  df-map 8822  df-pm 8823  df-ixp 8892  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-fsupp 9362  df-fi 9406  df-sup 9437  df-inf 9438  df-oi 9505  df-dju 9896  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-xnn0 12545  df-z 12559  df-dec 12678  df-uz 12823  df-q 12933  df-rp 12975  df-xneg 13092  df-xadd 13093  df-xmul 13094  df-ioo 13328  df-ico 13330  df-icc 13331  df-fz 13485  df-fzo 13628  df-fl 13757  df-seq 13967  df-exp 14028  df-hash 14291  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-clim 15432  df-rlim 15433  df-sum 15633  df-struct 17080  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mulr 17211  df-starv 17212  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-hom 17221  df-cco 17222  df-rest 17368  df-topn 17369  df-0g 17387  df-gsum 17388  df-topgen 17389  df-pt 17390  df-prds 17393  df-xrs 17448  df-qtop 17453  df-imas 17454  df-xps 17456  df-mre 17530  df-mrc 17531  df-acs 17533  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-submnd 18672  df-grp 18822  df-minusg 18823  df-mulg 18951  df-subg 19003  df-cntz 19181  df-cmn 19650  df-mgp 19988  df-ur 20005  df-ring 20058  df-cring 20059  df-subrg 20317  df-psmet 20936  df-xmet 20937  df-met 20938  df-bl 20939  df-mopn 20940  df-fbas 20941  df-fg 20942  df-cnfld 20945  df-top 22396  df-topon 22413  df-topsp 22435  df-bases 22449  df-cld 22523  df-ntr 22524  df-cls 22525  df-nei 22602  df-lp 22640  df-perf 22641  df-cn 22731  df-cnp 22732  df-haus 22819  df-cmp 22891  df-tx 23066  df-hmeo 23259  df-fil 23350  df-fm 23442  df-flim 23443  df-flf 23444  df-xms 23826  df-ms 23827  df-tms 23828  df-cncf 24394  df-0p 25187  df-limc 25383  df-dv 25384  df-dvn 25385  df-cpn 25386  df-ply 25702  df-idp 25703  df-coe 25704  df-dgr 25705  df-quot 25804  df-aa 25828
This theorem is referenced by:  aaliou3lem9  25863
  Copyright terms: Public domain W3C validator