MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou2b Structured version   Visualization version   GIF version

Theorem aaliou2b 25738
Description: Liouville's approximation theorem extended to complex 𝐴. (Contributed by Stefan O'Rear, 20-Nov-2014.)
Assertion
Ref Expression
aaliou2b (𝐴 ∈ 𝔸 → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
Distinct variable group:   𝐴,𝑘,𝑥,𝑝,𝑞

Proof of Theorem aaliou2b
StepHypRef Expression
1 elin 3929 . . 3 (𝐴 ∈ (𝔸 ∩ ℝ) ↔ (𝐴 ∈ 𝔸 ∧ 𝐴 ∈ ℝ))
2 aaliou2 25737 . . 3 (𝐴 ∈ (𝔸 ∩ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
31, 2sylbir 234 . 2 ((𝐴 ∈ 𝔸 ∧ 𝐴 ∈ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
4 1nn 12173 . . 3 1 ∈ ℕ
5 aacn 25714 . . . . . . . 8 (𝐴 ∈ 𝔸 → 𝐴 ∈ ℂ)
65adantr 481 . . . . . . 7 ((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) → 𝐴 ∈ ℂ)
76imcld 15092 . . . . . 6 ((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) → (ℑ‘𝐴) ∈ ℝ)
87recnd 11192 . . . . 5 ((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) → (ℑ‘𝐴) ∈ ℂ)
9 reim0b 15016 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
105, 9syl 17 . . . . . . 7 (𝐴 ∈ 𝔸 → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
1110necon3bbid 2977 . . . . . 6 (𝐴 ∈ 𝔸 → (¬ 𝐴 ∈ ℝ ↔ (ℑ‘𝐴) ≠ 0))
1211biimpa 477 . . . . 5 ((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) → (ℑ‘𝐴) ≠ 0)
138, 12absrpcld 15345 . . . 4 ((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) → (abs‘(ℑ‘𝐴)) ∈ ℝ+)
1413rphalfcld 12978 . . 3 ((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) → ((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ+)
1514adantr 481 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ+)
16 1nn0 12438 . . . . . . . . . . 11 1 ∈ ℕ0
17 nnexpcl 13990 . . . . . . . . . . 11 ((𝑞 ∈ ℕ ∧ 1 ∈ ℕ0) → (𝑞↑1) ∈ ℕ)
1816, 17mpan2 689 . . . . . . . . . 10 (𝑞 ∈ ℕ → (𝑞↑1) ∈ ℕ)
1918ad2antll 727 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑞↑1) ∈ ℕ)
2019nnrpd 12964 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑞↑1) ∈ ℝ+)
2115, 20rpdivcld 12983 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) ∈ ℝ+)
2221rpred 12966 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) ∈ ℝ)
2315rpred 12966 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ)
246adantr 481 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝐴 ∈ ℂ)
25 znq 12886 . . . . . . . . . . 11 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℚ)
2625adantl 482 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℚ)
27 qre 12887 . . . . . . . . . 10 ((𝑝 / 𝑞) ∈ ℚ → (𝑝 / 𝑞) ∈ ℝ)
2826, 27syl 17 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℝ)
2928recnd 11192 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℂ)
3024, 29subcld 11521 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℂ)
3130abscld 15333 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ)
3219nnge1d 12210 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 1 ≤ (𝑞↑1))
33 1rp 12928 . . . . . . . . . 10 1 ∈ ℝ+
34 rpregt0 12938 . . . . . . . . . 10 (1 ∈ ℝ+ → (1 ∈ ℝ ∧ 0 < 1))
3533, 34mp1i 13 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (1 ∈ ℝ ∧ 0 < 1))
3620rpregt0d 12972 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑞↑1) ∈ ℝ ∧ 0 < (𝑞↑1)))
3715rpregt0d 12972 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ ∧ 0 < ((abs‘(ℑ‘𝐴)) / 2)))
38 lediv2 12054 . . . . . . . . 9 (((1 ∈ ℝ ∧ 0 < 1) ∧ ((𝑞↑1) ∈ ℝ ∧ 0 < (𝑞↑1)) ∧ (((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ ∧ 0 < ((abs‘(ℑ‘𝐴)) / 2))) → (1 ≤ (𝑞↑1) ↔ (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) ≤ (((abs‘(ℑ‘𝐴)) / 2) / 1)))
3935, 36, 37, 38syl3anc 1371 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (1 ≤ (𝑞↑1) ↔ (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) ≤ (((abs‘(ℑ‘𝐴)) / 2) / 1)))
4032, 39mpbid 231 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) ≤ (((abs‘(ℑ‘𝐴)) / 2) / 1))
4115rpcnd 12968 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((abs‘(ℑ‘𝐴)) / 2) ∈ ℂ)
4241div1d 11932 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((abs‘(ℑ‘𝐴)) / 2) / 1) = ((abs‘(ℑ‘𝐴)) / 2))
4340, 42breqtrd 5136 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) ≤ ((abs‘(ℑ‘𝐴)) / 2))
4413adantr 481 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(ℑ‘𝐴)) ∈ ℝ+)
4544rpred 12966 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(ℑ‘𝐴)) ∈ ℝ)
46 rphalflt 12953 . . . . . . . 8 ((abs‘(ℑ‘𝐴)) ∈ ℝ+ → ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(ℑ‘𝐴)))
4744, 46syl 17 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(ℑ‘𝐴)))
4824, 29imsubd 15114 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (ℑ‘(𝐴 − (𝑝 / 𝑞))) = ((ℑ‘𝐴) − (ℑ‘(𝑝 / 𝑞))))
4928reim0d 15122 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (ℑ‘(𝑝 / 𝑞)) = 0)
5049oveq2d 7378 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((ℑ‘𝐴) − (ℑ‘(𝑝 / 𝑞))) = ((ℑ‘𝐴) − 0))
518adantr 481 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (ℑ‘𝐴) ∈ ℂ)
5251subid1d 11510 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((ℑ‘𝐴) − 0) = (ℑ‘𝐴))
5348, 50, 523eqtrd 2775 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (ℑ‘(𝐴 − (𝑝 / 𝑞))) = (ℑ‘𝐴))
5453fveq2d 6851 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(ℑ‘(𝐴 − (𝑝 / 𝑞)))) = (abs‘(ℑ‘𝐴)))
55 absimle 15206 . . . . . . . . 9 ((𝐴 − (𝑝 / 𝑞)) ∈ ℂ → (abs‘(ℑ‘(𝐴 − (𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
5630, 55syl 17 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(ℑ‘(𝐴 − (𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
5754, 56eqbrtrrd 5134 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(ℑ‘𝐴)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
5823, 45, 31, 47, 57ltletrd 11324 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴 − (𝑝 / 𝑞))))
5922, 23, 31, 43, 58lelttrd 11322 . . . . 5 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞))))
6059olcd 872 . . . 4 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 = (𝑝 / 𝑞) ∨ (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
6160ralrimivva 3193 . . 3 ((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) → ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
62 oveq2 7370 . . . . . . . 8 (𝑘 = 1 → (𝑞𝑘) = (𝑞↑1))
6362oveq2d 7378 . . . . . . 7 (𝑘 = 1 → (𝑥 / (𝑞𝑘)) = (𝑥 / (𝑞↑1)))
6463breq1d 5120 . . . . . 6 (𝑘 = 1 → ((𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))) ↔ (𝑥 / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
6564orbi2d 914 . . . . 5 (𝑘 = 1 → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
66652ralbidv 3208 . . . 4 (𝑘 = 1 → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
67 oveq1 7369 . . . . . . 7 (𝑥 = ((abs‘(ℑ‘𝐴)) / 2) → (𝑥 / (𝑞↑1)) = (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)))
6867breq1d 5120 . . . . . 6 (𝑥 = ((abs‘(ℑ‘𝐴)) / 2) → ((𝑥 / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞))) ↔ (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
6968orbi2d 914 . . . . 5 (𝑥 = ((abs‘(ℑ‘𝐴)) / 2) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ (𝐴 = (𝑝 / 𝑞) ∨ (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
70692ralbidv 3208 . . . 4 (𝑥 = ((abs‘(ℑ‘𝐴)) / 2) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
7166, 70rspc2ev 3593 . . 3 ((1 ∈ ℕ ∧ ((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ+ ∧ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
724, 14, 61, 71mp3an2i 1466 . 2 ((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
733, 72pm2.61dan 811 1 (𝐴 ∈ 𝔸 → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2939  wral 3060  wrex 3069  cin 3912   class class class wbr 5110  cfv 6501  (class class class)co 7362  cc 11058  cr 11059  0cc0 11060  1c1 11061   < clt 11198  cle 11199  cmin 11394   / cdiv 11821  cn 12162  2c2 12217  0cn0 12422  cz 12508  cq 12882  +crp 12924  cexp 13977  cim 14995  abscabs 15131  𝔸caa 25711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9586  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137  ax-pre-sup 11138  ax-addf 11139  ax-mulf 11140
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-iin 4962  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-supp 8098  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-oadd 8421  df-er 8655  df-map 8774  df-pm 8775  df-ixp 8843  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fsupp 9313  df-fi 9356  df-sup 9387  df-inf 9388  df-oi 9455  df-dju 9846  df-card 9884  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12423  df-xnn0 12495  df-z 12509  df-dec 12628  df-uz 12773  df-q 12883  df-rp 12925  df-xneg 13042  df-xadd 13043  df-xmul 13044  df-ioo 13278  df-ico 13280  df-icc 13281  df-fz 13435  df-fzo 13578  df-fl 13707  df-seq 13917  df-exp 13978  df-hash 14241  df-cj 14996  df-re 14997  df-im 14998  df-sqrt 15132  df-abs 15133  df-clim 15382  df-rlim 15383  df-sum 15583  df-struct 17030  df-sets 17047  df-slot 17065  df-ndx 17077  df-base 17095  df-ress 17124  df-plusg 17160  df-mulr 17161  df-starv 17162  df-sca 17163  df-vsca 17164  df-ip 17165  df-tset 17166  df-ple 17167  df-ds 17169  df-unif 17170  df-hom 17171  df-cco 17172  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18511  df-sgrp 18560  df-mnd 18571  df-submnd 18616  df-grp 18765  df-minusg 18766  df-mulg 18887  df-subg 18939  df-cntz 19111  df-cmn 19578  df-mgp 19911  df-ur 19928  df-ring 19980  df-cring 19981  df-subrg 20268  df-psmet 20825  df-xmet 20826  df-met 20827  df-bl 20828  df-mopn 20829  df-fbas 20830  df-fg 20831  df-cnfld 20834  df-top 22280  df-topon 22297  df-topsp 22319  df-bases 22333  df-cld 22407  df-ntr 22408  df-cls 22409  df-nei 22486  df-lp 22524  df-perf 22525  df-cn 22615  df-cnp 22616  df-haus 22703  df-cmp 22775  df-tx 22950  df-hmeo 23143  df-fil 23234  df-fm 23326  df-flim 23327  df-flf 23328  df-xms 23710  df-ms 23711  df-tms 23712  df-cncf 24278  df-0p 25071  df-limc 25267  df-dv 25268  df-dvn 25269  df-cpn 25270  df-ply 25586  df-idp 25587  df-coe 25588  df-dgr 25589  df-quot 25688  df-aa 25712
This theorem is referenced by:  aaliou3lem9  25747
  Copyright terms: Public domain W3C validator