Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou2b Structured version   Visualization version   GIF version

Theorem aaliou2b 24847
 Description: Liouville's approximation theorem extended to complex 𝐴. (Contributed by Stefan O'Rear, 20-Nov-2014.)
Assertion
Ref Expression
aaliou2b (𝐴 ∈ 𝔸 → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
Distinct variable group:   𝐴,𝑘,𝑥,𝑝,𝑞

Proof of Theorem aaliou2b
StepHypRef Expression
1 elin 4172 . . 3 (𝐴 ∈ (𝔸 ∩ ℝ) ↔ (𝐴 ∈ 𝔸 ∧ 𝐴 ∈ ℝ))
2 aaliou2 24846 . . 3 (𝐴 ∈ (𝔸 ∩ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
31, 2sylbir 236 . 2 ((𝐴 ∈ 𝔸 ∧ 𝐴 ∈ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
4 1nn 11641 . . 3 1 ∈ ℕ
5 aacn 24823 . . . . . . . 8 (𝐴 ∈ 𝔸 → 𝐴 ∈ ℂ)
65adantr 481 . . . . . . 7 ((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) → 𝐴 ∈ ℂ)
76imcld 14547 . . . . . 6 ((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) → (ℑ‘𝐴) ∈ ℝ)
87recnd 10661 . . . . 5 ((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) → (ℑ‘𝐴) ∈ ℂ)
9 reim0b 14471 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
105, 9syl 17 . . . . . . 7 (𝐴 ∈ 𝔸 → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
1110necon3bbid 3057 . . . . . 6 (𝐴 ∈ 𝔸 → (¬ 𝐴 ∈ ℝ ↔ (ℑ‘𝐴) ≠ 0))
1211biimpa 477 . . . . 5 ((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) → (ℑ‘𝐴) ≠ 0)
138, 12absrpcld 14801 . . . 4 ((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) → (abs‘(ℑ‘𝐴)) ∈ ℝ+)
1413rphalfcld 12436 . . 3 ((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) → ((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ+)
1514adantr 481 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ+)
16 1nn0 11905 . . . . . . . . . . 11 1 ∈ ℕ0
17 nnexpcl 13435 . . . . . . . . . . 11 ((𝑞 ∈ ℕ ∧ 1 ∈ ℕ0) → (𝑞↑1) ∈ ℕ)
1816, 17mpan2 687 . . . . . . . . . 10 (𝑞 ∈ ℕ → (𝑞↑1) ∈ ℕ)
1918ad2antll 725 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑞↑1) ∈ ℕ)
2019nnrpd 12422 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑞↑1) ∈ ℝ+)
2115, 20rpdivcld 12441 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) ∈ ℝ+)
2221rpred 12424 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) ∈ ℝ)
2315rpred 12424 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ)
246adantr 481 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝐴 ∈ ℂ)
25 znq 12344 . . . . . . . . . . 11 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℚ)
2625adantl 482 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℚ)
27 qre 12345 . . . . . . . . . 10 ((𝑝 / 𝑞) ∈ ℚ → (𝑝 / 𝑞) ∈ ℝ)
2826, 27syl 17 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℝ)
2928recnd 10661 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℂ)
3024, 29subcld 10989 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℂ)
3130abscld 14789 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ)
3219nnge1d 11677 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 1 ≤ (𝑞↑1))
33 1rp 12386 . . . . . . . . . 10 1 ∈ ℝ+
34 rpregt0 12396 . . . . . . . . . 10 (1 ∈ ℝ+ → (1 ∈ ℝ ∧ 0 < 1))
3533, 34mp1i 13 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (1 ∈ ℝ ∧ 0 < 1))
3620rpregt0d 12430 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑞↑1) ∈ ℝ ∧ 0 < (𝑞↑1)))
3715rpregt0d 12430 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ ∧ 0 < ((abs‘(ℑ‘𝐴)) / 2)))
38 lediv2 11522 . . . . . . . . 9 (((1 ∈ ℝ ∧ 0 < 1) ∧ ((𝑞↑1) ∈ ℝ ∧ 0 < (𝑞↑1)) ∧ (((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ ∧ 0 < ((abs‘(ℑ‘𝐴)) / 2))) → (1 ≤ (𝑞↑1) ↔ (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) ≤ (((abs‘(ℑ‘𝐴)) / 2) / 1)))
3935, 36, 37, 38syl3anc 1365 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (1 ≤ (𝑞↑1) ↔ (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) ≤ (((abs‘(ℑ‘𝐴)) / 2) / 1)))
4032, 39mpbid 233 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) ≤ (((abs‘(ℑ‘𝐴)) / 2) / 1))
4115rpcnd 12426 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((abs‘(ℑ‘𝐴)) / 2) ∈ ℂ)
4241div1d 11400 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((abs‘(ℑ‘𝐴)) / 2) / 1) = ((abs‘(ℑ‘𝐴)) / 2))
4340, 42breqtrd 5088 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) ≤ ((abs‘(ℑ‘𝐴)) / 2))
4413adantr 481 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(ℑ‘𝐴)) ∈ ℝ+)
4544rpred 12424 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(ℑ‘𝐴)) ∈ ℝ)
46 rphalflt 12411 . . . . . . . 8 ((abs‘(ℑ‘𝐴)) ∈ ℝ+ → ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(ℑ‘𝐴)))
4744, 46syl 17 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(ℑ‘𝐴)))
4824, 29imsubd 14569 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (ℑ‘(𝐴 − (𝑝 / 𝑞))) = ((ℑ‘𝐴) − (ℑ‘(𝑝 / 𝑞))))
4928reim0d 14577 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (ℑ‘(𝑝 / 𝑞)) = 0)
5049oveq2d 7167 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((ℑ‘𝐴) − (ℑ‘(𝑝 / 𝑞))) = ((ℑ‘𝐴) − 0))
518adantr 481 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (ℑ‘𝐴) ∈ ℂ)
5251subid1d 10978 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((ℑ‘𝐴) − 0) = (ℑ‘𝐴))
5348, 50, 523eqtrd 2864 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (ℑ‘(𝐴 − (𝑝 / 𝑞))) = (ℑ‘𝐴))
5453fveq2d 6670 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(ℑ‘(𝐴 − (𝑝 / 𝑞)))) = (abs‘(ℑ‘𝐴)))
55 absimle 14662 . . . . . . . . 9 ((𝐴 − (𝑝 / 𝑞)) ∈ ℂ → (abs‘(ℑ‘(𝐴 − (𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
5630, 55syl 17 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(ℑ‘(𝐴 − (𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
5754, 56eqbrtrrd 5086 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(ℑ‘𝐴)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
5823, 45, 31, 47, 57ltletrd 10792 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴 − (𝑝 / 𝑞))))
5922, 23, 31, 43, 58lelttrd 10790 . . . . 5 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞))))
6059olcd 872 . . . 4 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 = (𝑝 / 𝑞) ∨ (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
6160ralrimivva 3195 . . 3 ((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) → ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
62 oveq2 7159 . . . . . . . 8 (𝑘 = 1 → (𝑞𝑘) = (𝑞↑1))
6362oveq2d 7167 . . . . . . 7 (𝑘 = 1 → (𝑥 / (𝑞𝑘)) = (𝑥 / (𝑞↑1)))
6463breq1d 5072 . . . . . 6 (𝑘 = 1 → ((𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))) ↔ (𝑥 / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
6564orbi2d 911 . . . . 5 (𝑘 = 1 → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
66652ralbidv 3203 . . . 4 (𝑘 = 1 → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
67 oveq1 7158 . . . . . . 7 (𝑥 = ((abs‘(ℑ‘𝐴)) / 2) → (𝑥 / (𝑞↑1)) = (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)))
6867breq1d 5072 . . . . . 6 (𝑥 = ((abs‘(ℑ‘𝐴)) / 2) → ((𝑥 / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞))) ↔ (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
6968orbi2d 911 . . . . 5 (𝑥 = ((abs‘(ℑ‘𝐴)) / 2) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ (𝐴 = (𝑝 / 𝑞) ∨ (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
70692ralbidv 3203 . . . 4 (𝑥 = ((abs‘(ℑ‘𝐴)) / 2) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
7166, 70rspc2ev 3638 . . 3 ((1 ∈ ℕ ∧ ((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ+ ∧ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
724, 14, 61, 71mp3an2i 1459 . 2 ((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
733, 72pm2.61dan 809 1 (𝐴 ∈ 𝔸 → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 207   ∧ wa 396   ∨ wo 843   = wceq 1530   ∈ wcel 2107   ≠ wne 3020  ∀wral 3142  ∃wrex 3143   ∩ cin 3938   class class class wbr 5062  ‘cfv 6351  (class class class)co 7151  ℂcc 10527  ℝcr 10528  0cc0 10529  1c1 10530   < clt 10667   ≤ cle 10668   − cmin 10862   / cdiv 11289  ℕcn 11630  2c2 11684  ℕ0cn0 11889  ℤcz 11973  ℚcq 12340  ℝ+crp 12382  ↑cexp 13422  ℑcim 14450  abscabs 14586  𝔸caa 24820 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8282  df-map 8401  df-pm 8402  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-xnn0 11960  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12383  df-xneg 12500  df-xadd 12501  df-xmul 12502  df-ioo 12735  df-ico 12737  df-icc 12738  df-fz 12886  df-fzo 13027  df-fl 13155  df-seq 13363  df-exp 13423  df-hash 13684  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-rlim 14839  df-sum 15036  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-submnd 17947  df-grp 18038  df-minusg 18039  df-mulg 18157  df-subg 18208  df-cntz 18379  df-cmn 18830  df-mgp 19162  df-ur 19174  df-ring 19221  df-cring 19222  df-subrg 19455  df-psmet 20455  df-xmet 20456  df-met 20457  df-bl 20458  df-mopn 20459  df-fbas 20460  df-fg 20461  df-cnfld 20464  df-top 21420  df-topon 21437  df-topsp 21459  df-bases 21472  df-cld 21545  df-ntr 21546  df-cls 21547  df-nei 21624  df-lp 21662  df-perf 21663  df-cn 21753  df-cnp 21754  df-haus 21841  df-cmp 21913  df-tx 22088  df-hmeo 22281  df-fil 22372  df-fm 22464  df-flim 22465  df-flf 22466  df-xms 22847  df-ms 22848  df-tms 22849  df-cncf 23403  df-0p 24188  df-limc 24381  df-dv 24382  df-dvn 24383  df-cpn 24384  df-ply 24695  df-idp 24696  df-coe 24697  df-dgr 24698  df-quot 24797  df-aa 24821 This theorem is referenced by:  aaliou3lem9  24856
 Copyright terms: Public domain W3C validator