| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpne0 | Structured version Visualization version GIF version | ||
| Description: A positive real is nonzero. (Contributed by NM, 18-Jul-2008.) |
| Ref | Expression |
|---|---|
| rpne0 | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpregt0 12942 | . 2 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 2 | gt0ne0 11619 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5102 ℝcr 11043 0cc0 11044 < clt 11184 ℝ+crp 12927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-addrcl 11105 ax-rnegex 11115 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-rp 12928 |
| This theorem is referenced by: rprene0 12945 rpcnne0 12946 rpne0d 12976 divge1 12997 xlemul1 13226 ltdifltdiv 13772 mulmod0 13815 negmod0 13816 moddiffl 13820 modid0 13835 modmuladd 13854 modmuladdnn0 13856 2txmodxeq0 13872 rpexpcl 14021 expnlbnd 14174 rennim 15181 sqrtdiv 15207 o1fsum 15755 divrcnv 15794 rpmsubg 21373 itg2const2 25675 reeff1o 26390 logne0 26521 advlog 26596 advlogexp 26597 logcxp 26611 cxprec 26628 cxpmul 26630 abscxp 26634 cxple2 26639 dvcxp1 26682 dvcxp2 26683 dvsqrt 26684 relogbreexp 26718 relogbzexp 26719 relogbmul 26720 relogbdiv 26722 relogbexp 26723 relogbcxp 26728 relogbcxpb 26730 relogbf 26734 logbgt0b 26736 rlimcnp 26908 efrlim 26912 efrlimOLD 26913 cxplim 26915 cxp2limlem 26919 cxploglim 26921 logdifbnd 26937 logdiflbnd 26938 logfacrlim2 27170 bposlem8 27235 vmadivsum 27426 mudivsum 27474 mulogsumlem 27475 logdivsum 27477 log2sumbnd 27488 selberg2lem 27494 selberg2 27495 pntrmax 27508 selbergr 27512 pntrlog2bndlem4 27524 pntrlog2bndlem5 27525 pntlem3 27553 padicabvcxp 27576 blocnilem 30783 nmcexi 32005 probfinmeasb 34412 probfinmeasbALTV 34413 signsplypnf 34534 logdivsqrle 34634 poimirlem29 37636 areacirclem1 37695 areacirclem4 37698 areacirc 37700 heiborlem6 37803 heiborlem7 37804 dvrelog2 42045 dvrelog3 42046 aks4d1p1p6 42054 xralrple2 45343 recnnltrp 45366 rpgtrecnn 45369 ioodvbdlimc1lem2 45923 ioodvbdlimc2lem 45925 fldivmod 47332 ceildivmod 47333 relogbmulbexp 48543 relogbdivb 48544 blenre 48556 |
| Copyright terms: Public domain | W3C validator |