| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpne0 | Structured version Visualization version GIF version | ||
| Description: A positive real is nonzero. (Contributed by NM, 18-Jul-2008.) |
| Ref | Expression |
|---|---|
| rpne0 | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpregt0 13016 | . 2 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 2 | gt0ne0 11695 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ≠ wne 2931 class class class wbr 5117 ℝcr 11121 0cc0 11122 < clt 11262 ℝ+crp 13001 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-resscn 11179 ax-1cn 11180 ax-addrcl 11183 ax-rnegex 11193 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-po 5559 df-so 5560 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-pnf 11264 df-mnf 11265 df-ltxr 11267 df-rp 13002 |
| This theorem is referenced by: rprene0 13019 rpcnne0 13020 rpne0d 13049 divge1 13070 xlemul1 13299 ltdifltdiv 13841 mulmod0 13884 negmod0 13885 moddiffl 13889 modid0 13904 modmuladd 13921 modmuladdnn0 13923 2txmodxeq0 13939 rpexpcl 14088 expnlbnd 14241 rennim 15247 sqrtdiv 15273 o1fsum 15818 divrcnv 15857 rpmsubg 21386 itg2const2 25681 reeff1o 26396 logne0 26526 advlog 26601 advlogexp 26602 logcxp 26616 cxprec 26633 cxpmul 26635 abscxp 26639 cxple2 26644 dvcxp1 26687 dvcxp2 26688 dvsqrt 26689 relogbreexp 26723 relogbzexp 26724 relogbmul 26725 relogbdiv 26727 relogbexp 26728 relogbcxp 26733 relogbcxpb 26735 relogbf 26739 logbgt0b 26741 rlimcnp 26913 efrlim 26917 efrlimOLD 26918 cxplim 26920 cxp2limlem 26924 cxploglim 26926 logdifbnd 26942 logdiflbnd 26943 logfacrlim2 27175 bposlem8 27240 vmadivsum 27431 mudivsum 27479 mulogsumlem 27480 logdivsum 27482 log2sumbnd 27493 selberg2lem 27499 selberg2 27500 pntrmax 27513 selbergr 27517 pntrlog2bndlem4 27529 pntrlog2bndlem5 27530 pntlem3 27558 padicabvcxp 27581 blocnilem 30719 nmcexi 31941 probfinmeasb 34389 probfinmeasbALTV 34390 signsplypnf 34511 logdivsqrle 34611 poimirlem29 37602 areacirclem1 37661 areacirclem4 37664 areacirc 37666 heiborlem6 37769 heiborlem7 37770 dvrelog2 42006 dvrelog3 42007 aks4d1p1p6 42015 xralrple2 45315 recnnltrp 45338 rpgtrecnn 45341 ioodvbdlimc1lem2 45897 ioodvbdlimc2lem 45899 fldivmod 47293 ceildivmod 47294 relogbmulbexp 48435 relogbdivb 48436 blenre 48448 |
| Copyright terms: Public domain | W3C validator |