| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpne0 | Structured version Visualization version GIF version | ||
| Description: A positive real is nonzero. (Contributed by NM, 18-Jul-2008.) |
| Ref | Expression |
|---|---|
| rpne0 | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpregt0 13050 | . 2 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 2 | gt0ne0 11729 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ≠ wne 2939 class class class wbr 5142 ℝcr 11155 0cc0 11156 < clt 11296 ℝ+crp 13035 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-resscn 11213 ax-1cn 11214 ax-addrcl 11217 ax-rnegex 11227 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-ltxr 11301 df-rp 13036 |
| This theorem is referenced by: rprene0 13053 rpcnne0 13054 rpne0d 13083 divge1 13104 xlemul1 13333 ltdifltdiv 13875 mulmod0 13918 negmod0 13919 moddiffl 13923 modid0 13938 modmuladd 13955 modmuladdnn0 13957 2txmodxeq0 13973 rpexpcl 14122 expnlbnd 14273 rennim 15279 sqrtdiv 15305 o1fsum 15850 divrcnv 15889 rpmsubg 21450 itg2const2 25777 reeff1o 26492 logne0 26622 advlog 26697 advlogexp 26698 logcxp 26712 cxprec 26729 cxpmul 26731 abscxp 26735 cxple2 26740 dvcxp1 26783 dvcxp2 26784 dvsqrt 26785 relogbreexp 26819 relogbzexp 26820 relogbmul 26821 relogbdiv 26823 relogbexp 26824 relogbcxp 26829 relogbcxpb 26831 relogbf 26835 logbgt0b 26837 rlimcnp 27009 efrlim 27013 efrlimOLD 27014 cxplim 27016 cxp2limlem 27020 cxploglim 27022 logdifbnd 27038 logdiflbnd 27039 logfacrlim2 27271 bposlem8 27336 vmadivsum 27527 mudivsum 27575 mulogsumlem 27576 logdivsum 27578 log2sumbnd 27589 selberg2lem 27595 selberg2 27596 pntrmax 27609 selbergr 27613 pntrlog2bndlem4 27625 pntrlog2bndlem5 27626 pntlem3 27654 padicabvcxp 27677 blocnilem 30824 nmcexi 32046 probfinmeasb 34431 probfinmeasbALTV 34432 signsplypnf 34566 logdivsqrle 34666 poimirlem29 37657 areacirclem1 37716 areacirclem4 37719 areacirc 37721 heiborlem6 37824 heiborlem7 37825 dvrelog2 42066 dvrelog3 42067 aks4d1p1p6 42075 xralrple2 45370 recnnltrp 45393 rpgtrecnn 45396 ioodvbdlimc1lem2 45952 ioodvbdlimc2lem 45954 fldivmod 47345 ceildivmod 47346 relogbmulbexp 48487 relogbdivb 48488 blenre 48500 |
| Copyright terms: Public domain | W3C validator |