| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpne0 | Structured version Visualization version GIF version | ||
| Description: A positive real is nonzero. (Contributed by NM, 18-Jul-2008.) |
| Ref | Expression |
|---|---|
| rpne0 | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpregt0 12944 | . 2 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 2 | gt0ne0 11621 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5102 ℝcr 11045 0cc0 11046 < clt 11186 ℝ+crp 12929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11103 ax-1cn 11104 ax-addrcl 11107 ax-rnegex 11117 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11188 df-mnf 11189 df-ltxr 11191 df-rp 12930 |
| This theorem is referenced by: rprene0 12947 rpcnne0 12948 rpne0d 12978 divge1 12999 xlemul1 13228 ltdifltdiv 13774 mulmod0 13817 negmod0 13818 moddiffl 13822 modid0 13837 modmuladd 13856 modmuladdnn0 13858 2txmodxeq0 13874 rpexpcl 14023 expnlbnd 14176 rennim 15182 sqrtdiv 15208 o1fsum 15756 divrcnv 15795 rpmsubg 21374 itg2const2 25676 reeff1o 26391 logne0 26522 advlog 26597 advlogexp 26598 logcxp 26612 cxprec 26629 cxpmul 26631 abscxp 26635 cxple2 26640 dvcxp1 26683 dvcxp2 26684 dvsqrt 26685 relogbreexp 26719 relogbzexp 26720 relogbmul 26721 relogbdiv 26723 relogbexp 26724 relogbcxp 26729 relogbcxpb 26731 relogbf 26735 logbgt0b 26737 rlimcnp 26909 efrlim 26913 efrlimOLD 26914 cxplim 26916 cxp2limlem 26920 cxploglim 26922 logdifbnd 26938 logdiflbnd 26939 logfacrlim2 27171 bposlem8 27236 vmadivsum 27427 mudivsum 27475 mulogsumlem 27476 logdivsum 27478 log2sumbnd 27489 selberg2lem 27495 selberg2 27496 pntrmax 27509 selbergr 27513 pntrlog2bndlem4 27525 pntrlog2bndlem5 27526 pntlem3 27554 padicabvcxp 27577 blocnilem 30784 nmcexi 32006 probfinmeasb 34413 probfinmeasbALTV 34414 signsplypnf 34535 logdivsqrle 34635 poimirlem29 37637 areacirclem1 37696 areacirclem4 37699 areacirc 37701 heiborlem6 37804 heiborlem7 37805 dvrelog2 42046 dvrelog3 42047 aks4d1p1p6 42055 xralrple2 45344 recnnltrp 45367 rpgtrecnn 45370 ioodvbdlimc1lem2 45924 ioodvbdlimc2lem 45926 fldivmod 47333 ceildivmod 47334 relogbmulbexp 48544 relogbdivb 48545 blenre 48557 |
| Copyright terms: Public domain | W3C validator |