| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpne0 | Structured version Visualization version GIF version | ||
| Description: A positive real is nonzero. (Contributed by NM, 18-Jul-2008.) |
| Ref | Expression |
|---|---|
| rpne0 | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpregt0 12905 | . 2 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 2 | gt0ne0 11582 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5089 ℝcr 11005 0cc0 11006 < clt 11146 ℝ+crp 12890 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-addrcl 11067 ax-rnegex 11077 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-rp 12891 |
| This theorem is referenced by: rprene0 12908 rpcnne0 12909 rpne0d 12939 divge1 12960 xlemul1 13189 ltdifltdiv 13738 mulmod0 13781 negmod0 13782 moddiffl 13786 modid0 13801 modmuladd 13820 modmuladdnn0 13822 2txmodxeq0 13838 rpexpcl 13987 expnlbnd 14140 rennim 15146 sqrtdiv 15172 o1fsum 15720 divrcnv 15759 rpmsubg 21368 itg2const2 25669 reeff1o 26384 logne0 26515 advlog 26590 advlogexp 26591 logcxp 26605 cxprec 26622 cxpmul 26624 abscxp 26628 cxple2 26633 dvcxp1 26676 dvcxp2 26677 dvsqrt 26678 relogbreexp 26712 relogbzexp 26713 relogbmul 26714 relogbdiv 26716 relogbexp 26717 relogbcxp 26722 relogbcxpb 26724 relogbf 26728 logbgt0b 26730 rlimcnp 26902 efrlim 26906 efrlimOLD 26907 cxplim 26909 cxp2limlem 26913 cxploglim 26915 logdifbnd 26931 logdiflbnd 26932 logfacrlim2 27164 bposlem8 27229 vmadivsum 27420 mudivsum 27468 mulogsumlem 27469 logdivsum 27471 log2sumbnd 27482 selberg2lem 27488 selberg2 27489 pntrmax 27502 selbergr 27506 pntrlog2bndlem4 27518 pntrlog2bndlem5 27519 pntlem3 27547 padicabvcxp 27570 blocnilem 30784 nmcexi 32006 probfinmeasb 34441 probfinmeasbALTV 34442 signsplypnf 34563 logdivsqrle 34663 poimirlem29 37688 areacirclem1 37747 areacirclem4 37750 areacirc 37752 heiborlem6 37855 heiborlem7 37856 dvrelog2 42156 dvrelog3 42157 aks4d1p1p6 42165 xralrple2 45452 recnnltrp 45474 rpgtrecnn 45477 ioodvbdlimc1lem2 46029 ioodvbdlimc2lem 46031 fldivmod 47437 ceildivmod 47438 relogbmulbexp 48661 relogbdivb 48662 blenre 48674 |
| Copyright terms: Public domain | W3C validator |