| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpne0 | Structured version Visualization version GIF version | ||
| Description: A positive real is nonzero. (Contributed by NM, 18-Jul-2008.) |
| Ref | Expression |
|---|---|
| rpne0 | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpregt0 13028 | . 2 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 2 | gt0ne0 11707 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2933 class class class wbr 5124 ℝcr 11133 0cc0 11134 < clt 11274 ℝ+crp 13013 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-addrcl 11195 ax-rnegex 11205 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 df-rp 13014 |
| This theorem is referenced by: rprene0 13031 rpcnne0 13032 rpne0d 13061 divge1 13082 xlemul1 13311 ltdifltdiv 13856 mulmod0 13899 negmod0 13900 moddiffl 13904 modid0 13919 modmuladd 13936 modmuladdnn0 13938 2txmodxeq0 13954 rpexpcl 14103 expnlbnd 14256 rennim 15263 sqrtdiv 15289 o1fsum 15834 divrcnv 15873 rpmsubg 21404 itg2const2 25699 reeff1o 26414 logne0 26545 advlog 26620 advlogexp 26621 logcxp 26635 cxprec 26652 cxpmul 26654 abscxp 26658 cxple2 26663 dvcxp1 26706 dvcxp2 26707 dvsqrt 26708 relogbreexp 26742 relogbzexp 26743 relogbmul 26744 relogbdiv 26746 relogbexp 26747 relogbcxp 26752 relogbcxpb 26754 relogbf 26758 logbgt0b 26760 rlimcnp 26932 efrlim 26936 efrlimOLD 26937 cxplim 26939 cxp2limlem 26943 cxploglim 26945 logdifbnd 26961 logdiflbnd 26962 logfacrlim2 27194 bposlem8 27259 vmadivsum 27450 mudivsum 27498 mulogsumlem 27499 logdivsum 27501 log2sumbnd 27512 selberg2lem 27518 selberg2 27519 pntrmax 27532 selbergr 27536 pntrlog2bndlem4 27548 pntrlog2bndlem5 27549 pntlem3 27577 padicabvcxp 27600 blocnilem 30790 nmcexi 32012 probfinmeasb 34465 probfinmeasbALTV 34466 signsplypnf 34587 logdivsqrle 34687 poimirlem29 37678 areacirclem1 37737 areacirclem4 37740 areacirc 37742 heiborlem6 37845 heiborlem7 37846 dvrelog2 42082 dvrelog3 42083 aks4d1p1p6 42091 xralrple2 45361 recnnltrp 45384 rpgtrecnn 45387 ioodvbdlimc1lem2 45941 ioodvbdlimc2lem 45943 fldivmod 47347 ceildivmod 47348 relogbmulbexp 48521 relogbdivb 48522 blenre 48534 |
| Copyright terms: Public domain | W3C validator |