Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpne0 | Structured version Visualization version GIF version |
Description: A positive real is nonzero. (Contributed by NM, 18-Jul-2008.) |
Ref | Expression |
---|---|
rpne0 | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpregt0 12673 | . 2 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
2 | gt0ne0 11370 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 ℝcr 10801 0cc0 10802 < clt 10940 ℝ+crp 12659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-addrcl 10863 ax-rnegex 10873 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-rp 12660 |
This theorem is referenced by: rprene0 12676 rpcnne0 12677 rpne0d 12706 divge1 12727 xlemul1 12953 ltdifltdiv 13482 mulmod0 13525 negmod0 13526 moddiffl 13530 modid0 13545 modmuladd 13561 modmuladdnn0 13563 2txmodxeq0 13579 rpexpcl 13729 expnlbnd 13876 rennim 14878 sqrtdiv 14905 o1fsum 15453 divrcnv 15492 rpmsubg 20574 itg2const2 24811 reeff1o 25511 logne0 25640 advlog 25714 advlogexp 25715 logcxp 25729 cxprec 25746 cxpmul 25748 abscxp 25752 cxple2 25757 dvcxp1 25798 dvcxp2 25799 dvsqrt 25800 relogbreexp 25830 relogbzexp 25831 relogbmul 25832 relogbdiv 25834 relogbexp 25835 relogbcxp 25840 relogbcxpb 25842 relogbf 25846 logbgt0b 25848 rlimcnp 26020 efrlim 26024 cxplim 26026 cxp2limlem 26030 cxploglim 26032 logdifbnd 26048 logdiflbnd 26049 logfacrlim2 26279 bposlem8 26344 vmadivsum 26535 mudivsum 26583 mulogsumlem 26584 logdivsum 26586 log2sumbnd 26597 selberg2lem 26603 selberg2 26604 pntrmax 26617 selbergr 26621 pntrlog2bndlem4 26633 pntrlog2bndlem5 26634 pntlem3 26662 padicabvcxp 26685 blocnilem 29067 nmcexi 30289 probfinmeasb 32295 probfinmeasbALTV 32296 signsplypnf 32429 logdivsqrle 32530 poimirlem29 35733 areacirclem1 35792 areacirclem4 35795 areacirc 35797 heiborlem6 35901 heiborlem7 35902 dvrelog2 40000 dvrelog3 40001 aks4d1p1p6 40009 xralrple2 42783 recnnltrp 42806 rpgtrecnn 42809 ioodvbdlimc1lem2 43363 ioodvbdlimc2lem 43365 fldivmod 45752 relogbmulbexp 45795 relogbdivb 45796 blenre 45808 |
Copyright terms: Public domain | W3C validator |