Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpne0 | Structured version Visualization version GIF version |
Description: A positive real is nonzero. (Contributed by NM, 18-Jul-2008.) |
Ref | Expression |
---|---|
rpne0 | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpregt0 12741 | . 2 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
2 | gt0ne0 11438 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2110 ≠ wne 2945 class class class wbr 5079 ℝcr 10869 0cc0 10870 < clt 11008 ℝ+crp 12727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-resscn 10927 ax-1cn 10928 ax-addrcl 10931 ax-rnegex 10941 ax-cnre 10943 ax-pre-lttri 10944 ax-pre-lttrn 10945 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-er 8479 df-en 8715 df-dom 8716 df-sdom 8717 df-pnf 11010 df-mnf 11011 df-ltxr 11013 df-rp 12728 |
This theorem is referenced by: rprene0 12744 rpcnne0 12745 rpne0d 12774 divge1 12795 xlemul1 13021 ltdifltdiv 13550 mulmod0 13593 negmod0 13594 moddiffl 13598 modid0 13613 modmuladd 13629 modmuladdnn0 13631 2txmodxeq0 13647 rpexpcl 13797 expnlbnd 13944 rennim 14946 sqrtdiv 14973 o1fsum 15521 divrcnv 15560 rpmsubg 20658 itg2const2 24902 reeff1o 25602 logne0 25731 advlog 25805 advlogexp 25806 logcxp 25820 cxprec 25837 cxpmul 25839 abscxp 25843 cxple2 25848 dvcxp1 25889 dvcxp2 25890 dvsqrt 25891 relogbreexp 25921 relogbzexp 25922 relogbmul 25923 relogbdiv 25925 relogbexp 25926 relogbcxp 25931 relogbcxpb 25933 relogbf 25937 logbgt0b 25939 rlimcnp 26111 efrlim 26115 cxplim 26117 cxp2limlem 26121 cxploglim 26123 logdifbnd 26139 logdiflbnd 26140 logfacrlim2 26370 bposlem8 26435 vmadivsum 26626 mudivsum 26674 mulogsumlem 26675 logdivsum 26677 log2sumbnd 26688 selberg2lem 26694 selberg2 26695 pntrmax 26708 selbergr 26712 pntrlog2bndlem4 26724 pntrlog2bndlem5 26725 pntlem3 26753 padicabvcxp 26776 blocnilem 29160 nmcexi 30382 probfinmeasb 32389 probfinmeasbALTV 32390 signsplypnf 32523 logdivsqrle 32624 poimirlem29 35800 areacirclem1 35859 areacirclem4 35862 areacirc 35864 heiborlem6 35968 heiborlem7 35969 dvrelog2 40067 dvrelog3 40068 aks4d1p1p6 40076 xralrple2 42862 recnnltrp 42885 rpgtrecnn 42888 ioodvbdlimc1lem2 43442 ioodvbdlimc2lem 43444 fldivmod 45831 relogbmulbexp 45874 relogbdivb 45875 blenre 45887 |
Copyright terms: Public domain | W3C validator |