![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpne0 | Structured version Visualization version GIF version |
Description: A positive real is nonzero. (Contributed by NM, 18-Jul-2008.) |
Ref | Expression |
---|---|
rpne0 | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpregt0 13047 | . 2 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
2 | gt0ne0 11726 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 ≠ wne 2938 class class class wbr 5148 ℝcr 11152 0cc0 11153 < clt 11293 ℝ+crp 13032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-addrcl 11214 ax-rnegex 11224 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 df-rp 13033 |
This theorem is referenced by: rprene0 13050 rpcnne0 13051 rpne0d 13080 divge1 13101 xlemul1 13329 ltdifltdiv 13871 mulmod0 13914 negmod0 13915 moddiffl 13919 modid0 13934 modmuladd 13951 modmuladdnn0 13953 2txmodxeq0 13969 rpexpcl 14118 expnlbnd 14269 rennim 15275 sqrtdiv 15301 o1fsum 15846 divrcnv 15885 rpmsubg 21467 itg2const2 25791 reeff1o 26506 logne0 26636 advlog 26711 advlogexp 26712 logcxp 26726 cxprec 26743 cxpmul 26745 abscxp 26749 cxple2 26754 dvcxp1 26797 dvcxp2 26798 dvsqrt 26799 relogbreexp 26833 relogbzexp 26834 relogbmul 26835 relogbdiv 26837 relogbexp 26838 relogbcxp 26843 relogbcxpb 26845 relogbf 26849 logbgt0b 26851 rlimcnp 27023 efrlim 27027 efrlimOLD 27028 cxplim 27030 cxp2limlem 27034 cxploglim 27036 logdifbnd 27052 logdiflbnd 27053 logfacrlim2 27285 bposlem8 27350 vmadivsum 27541 mudivsum 27589 mulogsumlem 27590 logdivsum 27592 log2sumbnd 27603 selberg2lem 27609 selberg2 27610 pntrmax 27623 selbergr 27627 pntrlog2bndlem4 27639 pntrlog2bndlem5 27640 pntlem3 27668 padicabvcxp 27691 blocnilem 30833 nmcexi 32055 probfinmeasb 34410 probfinmeasbALTV 34411 signsplypnf 34544 logdivsqrle 34644 poimirlem29 37636 areacirclem1 37695 areacirclem4 37698 areacirc 37700 heiborlem6 37803 heiborlem7 37804 dvrelog2 42046 dvrelog3 42047 aks4d1p1p6 42055 xralrple2 45304 recnnltrp 45327 rpgtrecnn 45330 ioodvbdlimc1lem2 45888 ioodvbdlimc2lem 45890 fldivmod 47278 ceildivmod 47279 relogbmulbexp 48411 relogbdivb 48412 blenre 48424 |
Copyright terms: Public domain | W3C validator |