Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∧ wa 397
∈ wcel 2107 ≠
wne 2941 class class class wbr 5149
ℝcr 11109 0cc0 11110
< clt 11248 ℝ+crp 12974 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-addrcl 11171 ax-rnegex 11181 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-ltxr 11253 df-rp 12975 |
This theorem is referenced by: rprene0
12991 rpcnne0
12992 rpne0d
13021 divge1
13042 xlemul1
13269 ltdifltdiv
13799 mulmod0
13842 negmod0
13843 moddiffl
13847 modid0
13862 modmuladd
13878 modmuladdnn0
13880 2txmodxeq0
13896 rpexpcl
14046 expnlbnd
14196 rennim
15186 sqrtdiv
15212 o1fsum
15759 divrcnv
15798 rpmsubg
21009 itg2const2
25259 reeff1o
25959 logne0
26088 advlog
26162 advlogexp
26163 logcxp
26177 cxprec
26194 cxpmul
26196 abscxp
26200 cxple2
26205 dvcxp1
26248 dvcxp2
26249 dvsqrt
26250 relogbreexp
26280 relogbzexp
26281 relogbmul
26282 relogbdiv
26284 relogbexp
26285 relogbcxp
26290 relogbcxpb
26292 relogbf
26296 logbgt0b
26298 rlimcnp
26470 efrlim
26474 cxplim
26476 cxp2limlem
26480 cxploglim
26482 logdifbnd
26498 logdiflbnd
26499 logfacrlim2
26729 bposlem8
26794 vmadivsum
26985 mudivsum
27033 mulogsumlem
27034 logdivsum
27036 log2sumbnd
27047 selberg2lem
27053 selberg2
27054 pntrmax
27067 selbergr
27071 pntrlog2bndlem4
27083 pntrlog2bndlem5
27084 pntlem3
27112 padicabvcxp
27135 blocnilem
30057 nmcexi
31279 probfinmeasb
33427 probfinmeasbALTV
33428 signsplypnf
33561 logdivsqrle
33662 poimirlem29
36517 areacirclem1
36576 areacirclem4
36579 areacirc
36581 heiborlem6
36684 heiborlem7
36685 dvrelog2
40929 dvrelog3
40930 aks4d1p1p6
40938 xralrple2
44064 recnnltrp
44087 rpgtrecnn
44090 ioodvbdlimc1lem2
44648 ioodvbdlimc2lem
44650 fldivmod
47204 relogbmulbexp
47247 relogbdivb
47248 blenre
47260 |