| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpne0 | Structured version Visualization version GIF version | ||
| Description: A positive real is nonzero. (Contributed by NM, 18-Jul-2008.) |
| Ref | Expression |
|---|---|
| rpne0 | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpregt0 12908 | . 2 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 2 | gt0ne0 11585 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5092 ℝcr 11008 0cc0 11009 < clt 11149 ℝ+crp 12893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-addrcl 11070 ax-rnegex 11080 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 df-rp 12894 |
| This theorem is referenced by: rprene0 12911 rpcnne0 12912 rpne0d 12942 divge1 12963 xlemul1 13192 ltdifltdiv 13738 mulmod0 13781 negmod0 13782 moddiffl 13786 modid0 13801 modmuladd 13820 modmuladdnn0 13822 2txmodxeq0 13838 rpexpcl 13987 expnlbnd 14140 rennim 15146 sqrtdiv 15172 o1fsum 15720 divrcnv 15759 rpmsubg 21338 itg2const2 25640 reeff1o 26355 logne0 26486 advlog 26561 advlogexp 26562 logcxp 26576 cxprec 26593 cxpmul 26595 abscxp 26599 cxple2 26604 dvcxp1 26647 dvcxp2 26648 dvsqrt 26649 relogbreexp 26683 relogbzexp 26684 relogbmul 26685 relogbdiv 26687 relogbexp 26688 relogbcxp 26693 relogbcxpb 26695 relogbf 26699 logbgt0b 26701 rlimcnp 26873 efrlim 26877 efrlimOLD 26878 cxplim 26880 cxp2limlem 26884 cxploglim 26886 logdifbnd 26902 logdiflbnd 26903 logfacrlim2 27135 bposlem8 27200 vmadivsum 27391 mudivsum 27439 mulogsumlem 27440 logdivsum 27442 log2sumbnd 27453 selberg2lem 27459 selberg2 27460 pntrmax 27473 selbergr 27477 pntrlog2bndlem4 27489 pntrlog2bndlem5 27490 pntlem3 27518 padicabvcxp 27541 blocnilem 30752 nmcexi 31974 probfinmeasb 34412 probfinmeasbALTV 34413 signsplypnf 34534 logdivsqrle 34634 poimirlem29 37649 areacirclem1 37708 areacirclem4 37711 areacirc 37713 heiborlem6 37816 heiborlem7 37817 dvrelog2 42057 dvrelog3 42058 aks4d1p1p6 42066 xralrple2 45354 recnnltrp 45376 rpgtrecnn 45379 ioodvbdlimc1lem2 45933 ioodvbdlimc2lem 45935 fldivmod 47342 ceildivmod 47343 relogbmulbexp 48566 relogbdivb 48567 blenre 48579 |
| Copyright terms: Public domain | W3C validator |