![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpne0 | Structured version Visualization version GIF version |
Description: A positive real is nonzero. (Contributed by NM, 18-Jul-2008.) |
Ref | Expression |
---|---|
rpne0 | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpregt0 13071 | . 2 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
2 | gt0ne0 11755 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2946 class class class wbr 5166 ℝcr 11183 0cc0 11184 < clt 11324 ℝ+crp 13057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-addrcl 11245 ax-rnegex 11255 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-rp 13058 |
This theorem is referenced by: rprene0 13074 rpcnne0 13075 rpne0d 13104 divge1 13125 xlemul1 13352 ltdifltdiv 13885 mulmod0 13928 negmod0 13929 moddiffl 13933 modid0 13948 modmuladd 13964 modmuladdnn0 13966 2txmodxeq0 13982 rpexpcl 14131 expnlbnd 14282 rennim 15288 sqrtdiv 15314 o1fsum 15861 divrcnv 15900 rpmsubg 21472 itg2const2 25796 reeff1o 26509 logne0 26639 advlog 26714 advlogexp 26715 logcxp 26729 cxprec 26746 cxpmul 26748 abscxp 26752 cxple2 26757 dvcxp1 26800 dvcxp2 26801 dvsqrt 26802 relogbreexp 26836 relogbzexp 26837 relogbmul 26838 relogbdiv 26840 relogbexp 26841 relogbcxp 26846 relogbcxpb 26848 relogbf 26852 logbgt0b 26854 rlimcnp 27026 efrlim 27030 efrlimOLD 27031 cxplim 27033 cxp2limlem 27037 cxploglim 27039 logdifbnd 27055 logdiflbnd 27056 logfacrlim2 27288 bposlem8 27353 vmadivsum 27544 mudivsum 27592 mulogsumlem 27593 logdivsum 27595 log2sumbnd 27606 selberg2lem 27612 selberg2 27613 pntrmax 27626 selbergr 27630 pntrlog2bndlem4 27642 pntrlog2bndlem5 27643 pntlem3 27671 padicabvcxp 27694 blocnilem 30836 nmcexi 32058 probfinmeasb 34393 probfinmeasbALTV 34394 signsplypnf 34527 logdivsqrle 34627 poimirlem29 37609 areacirclem1 37668 areacirclem4 37671 areacirc 37673 heiborlem6 37776 heiborlem7 37777 dvrelog2 42021 dvrelog3 42022 aks4d1p1p6 42030 xralrple2 45269 recnnltrp 45292 rpgtrecnn 45295 ioodvbdlimc1lem2 45853 ioodvbdlimc2lem 45855 fldivmod 48252 relogbmulbexp 48295 relogbdivb 48296 blenre 48308 |
Copyright terms: Public domain | W3C validator |