| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpne0 | Structured version Visualization version GIF version | ||
| Description: A positive real is nonzero. (Contributed by NM, 18-Jul-2008.) |
| Ref | Expression |
|---|---|
| rpne0 | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpregt0 12966 | . 2 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 2 | gt0ne0 11643 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5107 ℝcr 11067 0cc0 11068 < clt 11208 ℝ+crp 12951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-addrcl 11129 ax-rnegex 11139 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-rp 12952 |
| This theorem is referenced by: rprene0 12969 rpcnne0 12970 rpne0d 13000 divge1 13021 xlemul1 13250 ltdifltdiv 13796 mulmod0 13839 negmod0 13840 moddiffl 13844 modid0 13859 modmuladd 13878 modmuladdnn0 13880 2txmodxeq0 13896 rpexpcl 14045 expnlbnd 14198 rennim 15205 sqrtdiv 15231 o1fsum 15779 divrcnv 15818 rpmsubg 21348 itg2const2 25642 reeff1o 26357 logne0 26488 advlog 26563 advlogexp 26564 logcxp 26578 cxprec 26595 cxpmul 26597 abscxp 26601 cxple2 26606 dvcxp1 26649 dvcxp2 26650 dvsqrt 26651 relogbreexp 26685 relogbzexp 26686 relogbmul 26687 relogbdiv 26689 relogbexp 26690 relogbcxp 26695 relogbcxpb 26697 relogbf 26701 logbgt0b 26703 rlimcnp 26875 efrlim 26879 efrlimOLD 26880 cxplim 26882 cxp2limlem 26886 cxploglim 26888 logdifbnd 26904 logdiflbnd 26905 logfacrlim2 27137 bposlem8 27202 vmadivsum 27393 mudivsum 27441 mulogsumlem 27442 logdivsum 27444 log2sumbnd 27455 selberg2lem 27461 selberg2 27462 pntrmax 27475 selbergr 27479 pntrlog2bndlem4 27491 pntrlog2bndlem5 27492 pntlem3 27520 padicabvcxp 27543 blocnilem 30733 nmcexi 31955 probfinmeasb 34419 probfinmeasbALTV 34420 signsplypnf 34541 logdivsqrle 34641 poimirlem29 37643 areacirclem1 37702 areacirclem4 37705 areacirc 37707 heiborlem6 37810 heiborlem7 37811 dvrelog2 42052 dvrelog3 42053 aks4d1p1p6 42061 xralrple2 45350 recnnltrp 45373 rpgtrecnn 45376 ioodvbdlimc1lem2 45930 ioodvbdlimc2lem 45932 fldivmod 47339 ceildivmod 47340 relogbmulbexp 48550 relogbdivb 48551 blenre 48563 |
| Copyright terms: Public domain | W3C validator |