Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpne0 | Structured version Visualization version GIF version |
Description: A positive real is nonzero. (Contributed by NM, 18-Jul-2008.) |
Ref | Expression |
---|---|
rpne0 | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpregt0 12744 | . 2 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
2 | gt0ne0 11440 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 ℝcr 10870 0cc0 10871 < clt 11009 ℝ+crp 12730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-addrcl 10932 ax-rnegex 10942 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-rp 12731 |
This theorem is referenced by: rprene0 12747 rpcnne0 12748 rpne0d 12777 divge1 12798 xlemul1 13024 ltdifltdiv 13554 mulmod0 13597 negmod0 13598 moddiffl 13602 modid0 13617 modmuladd 13633 modmuladdnn0 13635 2txmodxeq0 13651 rpexpcl 13801 expnlbnd 13948 rennim 14950 sqrtdiv 14977 o1fsum 15525 divrcnv 15564 rpmsubg 20662 itg2const2 24906 reeff1o 25606 logne0 25735 advlog 25809 advlogexp 25810 logcxp 25824 cxprec 25841 cxpmul 25843 abscxp 25847 cxple2 25852 dvcxp1 25893 dvcxp2 25894 dvsqrt 25895 relogbreexp 25925 relogbzexp 25926 relogbmul 25927 relogbdiv 25929 relogbexp 25930 relogbcxp 25935 relogbcxpb 25937 relogbf 25941 logbgt0b 25943 rlimcnp 26115 efrlim 26119 cxplim 26121 cxp2limlem 26125 cxploglim 26127 logdifbnd 26143 logdiflbnd 26144 logfacrlim2 26374 bposlem8 26439 vmadivsum 26630 mudivsum 26678 mulogsumlem 26679 logdivsum 26681 log2sumbnd 26692 selberg2lem 26698 selberg2 26699 pntrmax 26712 selbergr 26716 pntrlog2bndlem4 26728 pntrlog2bndlem5 26729 pntlem3 26757 padicabvcxp 26780 blocnilem 29166 nmcexi 30388 probfinmeasb 32395 probfinmeasbALTV 32396 signsplypnf 32529 logdivsqrle 32630 poimirlem29 35806 areacirclem1 35865 areacirclem4 35868 areacirc 35870 heiborlem6 35974 heiborlem7 35975 dvrelog2 40072 dvrelog3 40073 aks4d1p1p6 40081 xralrple2 42893 recnnltrp 42916 rpgtrecnn 42919 ioodvbdlimc1lem2 43473 ioodvbdlimc2lem 43475 fldivmod 45864 relogbmulbexp 45907 relogbdivb 45908 blenre 45920 |
Copyright terms: Public domain | W3C validator |