MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modid Structured version   Visualization version   GIF version

Theorem modid 13913
Description: Identity law for modulo. (Contributed by NM, 29-Dec-2008.)
Assertion
Ref Expression
modid (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴 mod 𝐵) = 𝐴)

Proof of Theorem modid
StepHypRef Expression
1 modval 13888 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
21adantr 480 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
3 rerpdivcl 13039 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
43adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴 / 𝐵) ∈ ℝ)
54recnd 11263 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴 / 𝐵) ∈ ℂ)
6 addlid 11418 . . . . . . . . 9 ((𝐴 / 𝐵) ∈ ℂ → (0 + (𝐴 / 𝐵)) = (𝐴 / 𝐵))
76fveq2d 6880 . . . . . . . 8 ((𝐴 / 𝐵) ∈ ℂ → (⌊‘(0 + (𝐴 / 𝐵))) = (⌊‘(𝐴 / 𝐵)))
85, 7syl 17 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (⌊‘(0 + (𝐴 / 𝐵))) = (⌊‘(𝐴 / 𝐵)))
9 rpregt0 13023 . . . . . . . . . . 11 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
10 divge0 12111 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵))
119, 10sylan2 593 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → 0 ≤ (𝐴 / 𝐵))
1211an32s 652 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴 / 𝐵))
1312adantrr 717 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → 0 ≤ (𝐴 / 𝐵))
14 simpr 484 . . . . . . . . . . 11 ((𝐵 ∈ ℝ+𝐴 < 𝐵) → 𝐴 < 𝐵)
15 rpcn 13019 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ+𝐵 ∈ ℂ)
1615mulridd 11252 . . . . . . . . . . . 12 (𝐵 ∈ ℝ+ → (𝐵 · 1) = 𝐵)
1716adantr 480 . . . . . . . . . . 11 ((𝐵 ∈ ℝ+𝐴 < 𝐵) → (𝐵 · 1) = 𝐵)
1814, 17breqtrrd 5147 . . . . . . . . . 10 ((𝐵 ∈ ℝ+𝐴 < 𝐵) → 𝐴 < (𝐵 · 1))
1918ad2ant2l 746 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → 𝐴 < (𝐵 · 1))
20 simpll 766 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → 𝐴 ∈ ℝ)
219ad2antlr 727 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
22 1re 11235 . . . . . . . . . . 11 1 ∈ ℝ
23 ltdivmul 12117 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) < 1 ↔ 𝐴 < (𝐵 · 1)))
2422, 23mp3an2 1451 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) < 1 ↔ 𝐴 < (𝐵 · 1)))
2520, 21, 24syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → ((𝐴 / 𝐵) < 1 ↔ 𝐴 < (𝐵 · 1)))
2619, 25mpbird 257 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴 / 𝐵) < 1)
27 0z 12599 . . . . . . . . 9 0 ∈ ℤ
28 flbi2 13834 . . . . . . . . 9 ((0 ∈ ℤ ∧ (𝐴 / 𝐵) ∈ ℝ) → ((⌊‘(0 + (𝐴 / 𝐵))) = 0 ↔ (0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) < 1)))
2927, 4, 28sylancr 587 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → ((⌊‘(0 + (𝐴 / 𝐵))) = 0 ↔ (0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) < 1)))
3013, 26, 29mpbir2and 713 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (⌊‘(0 + (𝐴 / 𝐵))) = 0)
318, 30eqtr3d 2772 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (⌊‘(𝐴 / 𝐵)) = 0)
3231oveq2d 7421 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐵 · (⌊‘(𝐴 / 𝐵))) = (𝐵 · 0))
3315mul01d 11434 . . . . . 6 (𝐵 ∈ ℝ+ → (𝐵 · 0) = 0)
3433ad2antlr 727 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐵 · 0) = 0)
3532, 34eqtrd 2770 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐵 · (⌊‘(𝐴 / 𝐵))) = 0)
3635oveq2d 7421 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))) = (𝐴 − 0))
37 recn 11219 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3837subid1d 11583 . . . 4 (𝐴 ∈ ℝ → (𝐴 − 0) = 𝐴)
3938ad2antrr 726 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴 − 0) = 𝐴)
4036, 39eqtrd 2770 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))) = 𝐴)
412, 40eqtrd 2770 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴 mod 𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108   class class class wbr 5119  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134   < clt 11269  cle 11270  cmin 11466   / cdiv 11894  cz 12588  +crp 13008  cfl 13807   mod cmo 13886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fl 13809  df-mod 13887
This theorem is referenced by:  modid2  13915  0mod  13919  1mod  13920  modabs  13921  muladdmodid  13928  m1modnnsub1  13935  modltm1p1mod  13941  2submod  13950  modifeq2int  13951  modaddmodlo  13953  modsubdir  13958  modsumfzodifsn  13962  digit1  14255  cshwidxm1  14825  bitsinv1  16461  sadaddlem  16485  sadasslem  16489  sadeq  16491  crth  16797  eulerthlem2  16801  prmdiveq  16805  modprm0  16825  4sqlem12  16976  dfod2  19545  znf1o  21512  wilthlem1  27030  ppiub  27167  lgslem1  27260  lgsdir2lem1  27288  lgsdirprm  27294  lgsqrlem2  27310  lgseisenlem1  27338  lgseisenlem2  27339  lgseisen  27342  m1lgs  27351  2lgslem1a1  27352  2lgslem4  27369  2sqlem11  27392  2sqreultlem  27410  2sqreunnltlem  27413  cshw1s2  32936  sqwvfoura  46257  sqwvfourb  46258  fourierswlem  46259  fouriersw  46260  addmodne  47373  submodlt  47379  2exp340mod341  47747  8exp8mod9  47750  fpprel2  47755  nfermltl8rev  47756  gpgedgvtx0  48065  gpgedgvtx1  48066  m1modmmod  48501  nnpw2pmod  48563
  Copyright terms: Public domain W3C validator