| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > modid | Structured version Visualization version GIF version | ||
| Description: Identity law for modulo. (Contributed by NM, 29-Dec-2008.) |
| Ref | Expression |
|---|---|
| modid | ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 mod 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modval 13793 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) | |
| 2 | 1 | adantr 480 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) |
| 3 | rerpdivcl 12943 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) | |
| 4 | 3 | adantr 480 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 / 𝐵) ∈ ℝ) |
| 5 | 4 | recnd 11162 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 / 𝐵) ∈ ℂ) |
| 6 | addlid 11317 | . . . . . . . . 9 ⊢ ((𝐴 / 𝐵) ∈ ℂ → (0 + (𝐴 / 𝐵)) = (𝐴 / 𝐵)) | |
| 7 | 6 | fveq2d 6830 | . . . . . . . 8 ⊢ ((𝐴 / 𝐵) ∈ ℂ → (⌊‘(0 + (𝐴 / 𝐵))) = (⌊‘(𝐴 / 𝐵))) |
| 8 | 5, 7 | syl 17 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (⌊‘(0 + (𝐴 / 𝐵))) = (⌊‘(𝐴 / 𝐵))) |
| 9 | rpregt0 12926 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 0 < 𝐵)) | |
| 10 | divge0 12012 | . . . . . . . . . . 11 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) | |
| 11 | 9, 10 | sylan2 593 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → 0 ≤ (𝐴 / 𝐵)) |
| 12 | 11 | an32s 652 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴 / 𝐵)) |
| 13 | 12 | adantrr 717 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) |
| 14 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
| 15 | rpcn 12922 | . . . . . . . . . . . . 13 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ) | |
| 16 | 15 | mulridd 11151 | . . . . . . . . . . . 12 ⊢ (𝐵 ∈ ℝ+ → (𝐵 · 1) = 𝐵) |
| 17 | 16 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵) → (𝐵 · 1) = 𝐵) |
| 18 | 14, 17 | breqtrrd 5123 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵) → 𝐴 < (𝐵 · 1)) |
| 19 | 18 | ad2ant2l 746 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → 𝐴 < (𝐵 · 1)) |
| 20 | simpll 766 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → 𝐴 ∈ ℝ) | |
| 21 | 9 | ad2antlr 727 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐵 ∈ ℝ ∧ 0 < 𝐵)) |
| 22 | 1re 11134 | . . . . . . . . . . 11 ⊢ 1 ∈ ℝ | |
| 23 | ltdivmul 12018 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) < 1 ↔ 𝐴 < (𝐵 · 1))) | |
| 24 | 22, 23 | mp3an2 1451 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) < 1 ↔ 𝐴 < (𝐵 · 1))) |
| 25 | 20, 21, 24 | syl2anc 584 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → ((𝐴 / 𝐵) < 1 ↔ 𝐴 < (𝐵 · 1))) |
| 26 | 19, 25 | mpbird 257 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 / 𝐵) < 1) |
| 27 | 0z 12500 | . . . . . . . . 9 ⊢ 0 ∈ ℤ | |
| 28 | flbi2 13739 | . . . . . . . . 9 ⊢ ((0 ∈ ℤ ∧ (𝐴 / 𝐵) ∈ ℝ) → ((⌊‘(0 + (𝐴 / 𝐵))) = 0 ↔ (0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) < 1))) | |
| 29 | 27, 4, 28 | sylancr 587 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → ((⌊‘(0 + (𝐴 / 𝐵))) = 0 ↔ (0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) < 1))) |
| 30 | 13, 26, 29 | mpbir2and 713 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (⌊‘(0 + (𝐴 / 𝐵))) = 0) |
| 31 | 8, 30 | eqtr3d 2766 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (⌊‘(𝐴 / 𝐵)) = 0) |
| 32 | 31 | oveq2d 7369 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐵 · (⌊‘(𝐴 / 𝐵))) = (𝐵 · 0)) |
| 33 | 15 | mul01d 11333 | . . . . . 6 ⊢ (𝐵 ∈ ℝ+ → (𝐵 · 0) = 0) |
| 34 | 33 | ad2antlr 727 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐵 · 0) = 0) |
| 35 | 32, 34 | eqtrd 2764 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐵 · (⌊‘(𝐴 / 𝐵))) = 0) |
| 36 | 35 | oveq2d 7369 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))) = (𝐴 − 0)) |
| 37 | recn 11118 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 38 | 37 | subid1d 11482 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 − 0) = 𝐴) |
| 39 | 38 | ad2antrr 726 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 − 0) = 𝐴) |
| 40 | 36, 39 | eqtrd 2764 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))) = 𝐴) |
| 41 | 2, 40 | eqtrd 2764 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 mod 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 ℝcr 11027 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 < clt 11168 ≤ cle 11169 − cmin 11365 / cdiv 11795 ℤcz 12489 ℝ+crp 12911 ⌊cfl 13712 mod cmo 13791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-fl 13714 df-mod 13792 |
| This theorem is referenced by: modid2 13820 0mod 13824 1mod 13825 modabs 13826 muladdmodid 13835 m1modnnsub1 13842 modltm1p1mod 13848 2submod 13857 modifeq2int 13858 modaddmodlo 13860 modsubdir 13865 modsumfzodifsn 13869 digit1 14162 cshwidxm1 14731 bitsinv1 16371 sadaddlem 16395 sadasslem 16399 sadeq 16401 crth 16707 eulerthlem2 16711 prmdiveq 16715 modprm0 16735 4sqlem12 16886 dfod2 19461 znf1o 21476 wilthlem1 26994 ppiub 27131 lgslem1 27224 lgsdir2lem1 27252 lgsdirprm 27258 lgsqrlem2 27274 lgseisenlem1 27302 lgseisenlem2 27303 lgseisen 27306 m1lgs 27315 2lgslem1a1 27316 2lgslem4 27333 2sqlem11 27356 2sqreultlem 27374 2sqreunnltlem 27377 cshw1s2 32915 sqwvfoura 46210 sqwvfourb 46211 fourierswlem 46212 fouriersw 46213 addmodne 47329 submodlt 47335 m1modmmod 47343 2exp340mod341 47718 8exp8mod9 47721 fpprel2 47726 nfermltl8rev 47727 gpgedgvtx0 48036 gpgedgvtx1 48037 pgnbgreunbgrlem2lem1 48088 pgnbgreunbgrlem2lem2 48089 pgnbgreunbgrlem2lem3 48090 nnpw2pmod 48556 |
| Copyright terms: Public domain | W3C validator |