| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > modid | Structured version Visualization version GIF version | ||
| Description: Identity law for modulo. (Contributed by NM, 29-Dec-2008.) |
| Ref | Expression |
|---|---|
| modid | ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 mod 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modval 13785 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) | |
| 2 | 1 | adantr 480 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) |
| 3 | rerpdivcl 12932 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) | |
| 4 | 3 | adantr 480 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 / 𝐵) ∈ ℝ) |
| 5 | 4 | recnd 11150 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 / 𝐵) ∈ ℂ) |
| 6 | addlid 11306 | . . . . . . . . 9 ⊢ ((𝐴 / 𝐵) ∈ ℂ → (0 + (𝐴 / 𝐵)) = (𝐴 / 𝐵)) | |
| 7 | 6 | fveq2d 6835 | . . . . . . . 8 ⊢ ((𝐴 / 𝐵) ∈ ℂ → (⌊‘(0 + (𝐴 / 𝐵))) = (⌊‘(𝐴 / 𝐵))) |
| 8 | 5, 7 | syl 17 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (⌊‘(0 + (𝐴 / 𝐵))) = (⌊‘(𝐴 / 𝐵))) |
| 9 | rpregt0 12915 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 0 < 𝐵)) | |
| 10 | divge0 12001 | . . . . . . . . . . 11 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) | |
| 11 | 9, 10 | sylan2 593 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → 0 ≤ (𝐴 / 𝐵)) |
| 12 | 11 | an32s 652 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴 / 𝐵)) |
| 13 | 12 | adantrr 717 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) |
| 14 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
| 15 | rpcn 12911 | . . . . . . . . . . . . 13 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ) | |
| 16 | 15 | mulridd 11139 | . . . . . . . . . . . 12 ⊢ (𝐵 ∈ ℝ+ → (𝐵 · 1) = 𝐵) |
| 17 | 16 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵) → (𝐵 · 1) = 𝐵) |
| 18 | 14, 17 | breqtrrd 5123 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵) → 𝐴 < (𝐵 · 1)) |
| 19 | 18 | ad2ant2l 746 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → 𝐴 < (𝐵 · 1)) |
| 20 | simpll 766 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → 𝐴 ∈ ℝ) | |
| 21 | 9 | ad2antlr 727 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐵 ∈ ℝ ∧ 0 < 𝐵)) |
| 22 | 1re 11122 | . . . . . . . . . . 11 ⊢ 1 ∈ ℝ | |
| 23 | ltdivmul 12007 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) < 1 ↔ 𝐴 < (𝐵 · 1))) | |
| 24 | 22, 23 | mp3an2 1451 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) < 1 ↔ 𝐴 < (𝐵 · 1))) |
| 25 | 20, 21, 24 | syl2anc 584 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → ((𝐴 / 𝐵) < 1 ↔ 𝐴 < (𝐵 · 1))) |
| 26 | 19, 25 | mpbird 257 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 / 𝐵) < 1) |
| 27 | 0z 12489 | . . . . . . . . 9 ⊢ 0 ∈ ℤ | |
| 28 | flbi2 13731 | . . . . . . . . 9 ⊢ ((0 ∈ ℤ ∧ (𝐴 / 𝐵) ∈ ℝ) → ((⌊‘(0 + (𝐴 / 𝐵))) = 0 ↔ (0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) < 1))) | |
| 29 | 27, 4, 28 | sylancr 587 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → ((⌊‘(0 + (𝐴 / 𝐵))) = 0 ↔ (0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) < 1))) |
| 30 | 13, 26, 29 | mpbir2and 713 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (⌊‘(0 + (𝐴 / 𝐵))) = 0) |
| 31 | 8, 30 | eqtr3d 2770 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (⌊‘(𝐴 / 𝐵)) = 0) |
| 32 | 31 | oveq2d 7371 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐵 · (⌊‘(𝐴 / 𝐵))) = (𝐵 · 0)) |
| 33 | 15 | mul01d 11322 | . . . . . 6 ⊢ (𝐵 ∈ ℝ+ → (𝐵 · 0) = 0) |
| 34 | 33 | ad2antlr 727 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐵 · 0) = 0) |
| 35 | 32, 34 | eqtrd 2768 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐵 · (⌊‘(𝐴 / 𝐵))) = 0) |
| 36 | 35 | oveq2d 7371 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))) = (𝐴 − 0)) |
| 37 | recn 11106 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 38 | 37 | subid1d 11471 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 − 0) = 𝐴) |
| 39 | 38 | ad2antrr 726 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 − 0) = 𝐴) |
| 40 | 36, 39 | eqtrd 2768 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))) = 𝐴) |
| 41 | 2, 40 | eqtrd 2768 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 mod 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 ℂcc 11014 ℝcr 11015 0cc0 11016 1c1 11017 + caddc 11019 · cmul 11021 < clt 11156 ≤ cle 11157 − cmin 11354 / cdiv 11784 ℤcz 12478 ℝ+crp 12900 ⌊cfl 13704 mod cmo 13783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-pre-sup 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-sup 9336 df-inf 9337 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-n0 12392 df-z 12479 df-uz 12743 df-rp 12901 df-fl 13706 df-mod 13784 |
| This theorem is referenced by: modid2 13812 0mod 13816 1mod 13817 modabs 13818 muladdmodid 13827 m1modnnsub1 13834 modltm1p1mod 13840 2submod 13849 modifeq2int 13850 modaddmodlo 13852 modsubdir 13857 modsumfzodifsn 13861 digit1 14154 cshwidxm1 14724 bitsinv1 16363 sadaddlem 16387 sadasslem 16391 sadeq 16393 crth 16699 eulerthlem2 16703 prmdiveq 16707 modprm0 16727 4sqlem12 16878 dfod2 19486 znf1o 21498 wilthlem1 27015 ppiub 27152 lgslem1 27245 lgsdir2lem1 27273 lgsdirprm 27279 lgsqrlem2 27295 lgseisenlem1 27323 lgseisenlem2 27324 lgseisen 27327 m1lgs 27336 2lgslem1a1 27337 2lgslem4 27354 2sqlem11 27377 2sqreultlem 27395 2sqreunnltlem 27398 cshw1s2 32952 sqwvfoura 46340 sqwvfourb 46341 fourierswlem 46342 fouriersw 46343 addmodne 47458 submodlt 47464 m1modmmod 47472 2exp340mod341 47847 8exp8mod9 47850 fpprel2 47855 nfermltl8rev 47856 gpgedgvtx0 48175 gpgedgvtx1 48176 pgnbgreunbgrlem2lem1 48228 pgnbgreunbgrlem2lem2 48229 pgnbgreunbgrlem2lem3 48230 nnpw2pmod 48698 |
| Copyright terms: Public domain | W3C validator |