| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > modid | Structured version Visualization version GIF version | ||
| Description: Identity law for modulo. (Contributed by NM, 29-Dec-2008.) |
| Ref | Expression |
|---|---|
| modid | ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 mod 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modval 13840 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) | |
| 2 | 1 | adantr 480 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) |
| 3 | rerpdivcl 12990 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) | |
| 4 | 3 | adantr 480 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 / 𝐵) ∈ ℝ) |
| 5 | 4 | recnd 11209 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 / 𝐵) ∈ ℂ) |
| 6 | addlid 11364 | . . . . . . . . 9 ⊢ ((𝐴 / 𝐵) ∈ ℂ → (0 + (𝐴 / 𝐵)) = (𝐴 / 𝐵)) | |
| 7 | 6 | fveq2d 6865 | . . . . . . . 8 ⊢ ((𝐴 / 𝐵) ∈ ℂ → (⌊‘(0 + (𝐴 / 𝐵))) = (⌊‘(𝐴 / 𝐵))) |
| 8 | 5, 7 | syl 17 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (⌊‘(0 + (𝐴 / 𝐵))) = (⌊‘(𝐴 / 𝐵))) |
| 9 | rpregt0 12973 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 0 < 𝐵)) | |
| 10 | divge0 12059 | . . . . . . . . . . 11 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) | |
| 11 | 9, 10 | sylan2 593 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → 0 ≤ (𝐴 / 𝐵)) |
| 12 | 11 | an32s 652 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴 / 𝐵)) |
| 13 | 12 | adantrr 717 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) |
| 14 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
| 15 | rpcn 12969 | . . . . . . . . . . . . 13 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ) | |
| 16 | 15 | mulridd 11198 | . . . . . . . . . . . 12 ⊢ (𝐵 ∈ ℝ+ → (𝐵 · 1) = 𝐵) |
| 17 | 16 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵) → (𝐵 · 1) = 𝐵) |
| 18 | 14, 17 | breqtrrd 5138 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵) → 𝐴 < (𝐵 · 1)) |
| 19 | 18 | ad2ant2l 746 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → 𝐴 < (𝐵 · 1)) |
| 20 | simpll 766 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → 𝐴 ∈ ℝ) | |
| 21 | 9 | ad2antlr 727 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐵 ∈ ℝ ∧ 0 < 𝐵)) |
| 22 | 1re 11181 | . . . . . . . . . . 11 ⊢ 1 ∈ ℝ | |
| 23 | ltdivmul 12065 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) < 1 ↔ 𝐴 < (𝐵 · 1))) | |
| 24 | 22, 23 | mp3an2 1451 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) < 1 ↔ 𝐴 < (𝐵 · 1))) |
| 25 | 20, 21, 24 | syl2anc 584 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → ((𝐴 / 𝐵) < 1 ↔ 𝐴 < (𝐵 · 1))) |
| 26 | 19, 25 | mpbird 257 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 / 𝐵) < 1) |
| 27 | 0z 12547 | . . . . . . . . 9 ⊢ 0 ∈ ℤ | |
| 28 | flbi2 13786 | . . . . . . . . 9 ⊢ ((0 ∈ ℤ ∧ (𝐴 / 𝐵) ∈ ℝ) → ((⌊‘(0 + (𝐴 / 𝐵))) = 0 ↔ (0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) < 1))) | |
| 29 | 27, 4, 28 | sylancr 587 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → ((⌊‘(0 + (𝐴 / 𝐵))) = 0 ↔ (0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) < 1))) |
| 30 | 13, 26, 29 | mpbir2and 713 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (⌊‘(0 + (𝐴 / 𝐵))) = 0) |
| 31 | 8, 30 | eqtr3d 2767 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (⌊‘(𝐴 / 𝐵)) = 0) |
| 32 | 31 | oveq2d 7406 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐵 · (⌊‘(𝐴 / 𝐵))) = (𝐵 · 0)) |
| 33 | 15 | mul01d 11380 | . . . . . 6 ⊢ (𝐵 ∈ ℝ+ → (𝐵 · 0) = 0) |
| 34 | 33 | ad2antlr 727 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐵 · 0) = 0) |
| 35 | 32, 34 | eqtrd 2765 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐵 · (⌊‘(𝐴 / 𝐵))) = 0) |
| 36 | 35 | oveq2d 7406 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))) = (𝐴 − 0)) |
| 37 | recn 11165 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 38 | 37 | subid1d 11529 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 − 0) = 𝐴) |
| 39 | 38 | ad2antrr 726 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 − 0) = 𝐴) |
| 40 | 36, 39 | eqtrd 2765 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))) = 𝐴) |
| 41 | 2, 40 | eqtrd 2765 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 mod 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 < clt 11215 ≤ cle 11216 − cmin 11412 / cdiv 11842 ℤcz 12536 ℝ+crp 12958 ⌊cfl 13759 mod cmo 13838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fl 13761 df-mod 13839 |
| This theorem is referenced by: modid2 13867 0mod 13871 1mod 13872 modabs 13873 muladdmodid 13882 m1modnnsub1 13889 modltm1p1mod 13895 2submod 13904 modifeq2int 13905 modaddmodlo 13907 modsubdir 13912 modsumfzodifsn 13916 digit1 14209 cshwidxm1 14779 bitsinv1 16419 sadaddlem 16443 sadasslem 16447 sadeq 16449 crth 16755 eulerthlem2 16759 prmdiveq 16763 modprm0 16783 4sqlem12 16934 dfod2 19501 znf1o 21468 wilthlem1 26985 ppiub 27122 lgslem1 27215 lgsdir2lem1 27243 lgsdirprm 27249 lgsqrlem2 27265 lgseisenlem1 27293 lgseisenlem2 27294 lgseisen 27297 m1lgs 27306 2lgslem1a1 27307 2lgslem4 27324 2sqlem11 27347 2sqreultlem 27365 2sqreunnltlem 27368 cshw1s2 32889 sqwvfoura 46233 sqwvfourb 46234 fourierswlem 46235 fouriersw 46236 addmodne 47349 submodlt 47355 m1modmmod 47363 2exp340mod341 47738 8exp8mod9 47741 fpprel2 47746 nfermltl8rev 47747 gpgedgvtx0 48056 gpgedgvtx1 48057 pgnbgreunbgrlem2lem1 48108 pgnbgreunbgrlem2lem2 48109 pgnbgreunbgrlem2lem3 48110 nnpw2pmod 48576 |
| Copyright terms: Public domain | W3C validator |