Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rprmdvds Structured version   Visualization version   GIF version

Theorem rprmdvds 33466
Description: If a ring prime 𝑄 divides a product 𝑋 · 𝑌, then it divides either 𝑋 or 𝑌. (Contributed by Thierry Arnoux, 18-May-2025.)
Hypotheses
Ref Expression
rprmdvds.b 𝐵 = (Base‘𝑅)
rprmdvds.p 𝑃 = (RPrime‘𝑅)
rprmdvds.d = (∥r𝑅)
rprmdvds.t · = (.r𝑅)
rprmdvds.r (𝜑𝑅𝑉)
rprmdvds.q (𝜑𝑄𝑃)
rprmdvds.x (𝜑𝑋𝐵)
rprmdvds.y (𝜑𝑌𝐵)
rprmdvds.1 (𝜑𝑄 (𝑋 · 𝑌))
Assertion
Ref Expression
rprmdvds (𝜑 → (𝑄 𝑋𝑄 𝑌))

Proof of Theorem rprmdvds
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rprmdvds.1 . 2 (𝜑𝑄 (𝑋 · 𝑌))
2 oveq1 7360 . . . . 5 (𝑥 = 𝑋 → (𝑥 · 𝑦) = (𝑋 · 𝑦))
32breq2d 5107 . . . 4 (𝑥 = 𝑋 → (𝑄 (𝑥 · 𝑦) ↔ 𝑄 (𝑋 · 𝑦)))
4 breq2 5099 . . . . 5 (𝑥 = 𝑋 → (𝑄 𝑥𝑄 𝑋))
54orbi1d 916 . . . 4 (𝑥 = 𝑋 → ((𝑄 𝑥𝑄 𝑦) ↔ (𝑄 𝑋𝑄 𝑦)))
63, 5imbi12d 344 . . 3 (𝑥 = 𝑋 → ((𝑄 (𝑥 · 𝑦) → (𝑄 𝑥𝑄 𝑦)) ↔ (𝑄 (𝑋 · 𝑦) → (𝑄 𝑋𝑄 𝑦))))
7 oveq2 7361 . . . . 5 (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌))
87breq2d 5107 . . . 4 (𝑦 = 𝑌 → (𝑄 (𝑋 · 𝑦) ↔ 𝑄 (𝑋 · 𝑌)))
9 breq2 5099 . . . . 5 (𝑦 = 𝑌 → (𝑄 𝑦𝑄 𝑌))
109orbi2d 915 . . . 4 (𝑦 = 𝑌 → ((𝑄 𝑋𝑄 𝑦) ↔ (𝑄 𝑋𝑄 𝑌)))
118, 10imbi12d 344 . . 3 (𝑦 = 𝑌 → ((𝑄 (𝑋 · 𝑦) → (𝑄 𝑋𝑄 𝑦)) ↔ (𝑄 (𝑋 · 𝑌) → (𝑄 𝑋𝑄 𝑌))))
12 rprmdvds.r . . . 4 (𝜑𝑅𝑉)
13 rprmdvds.q . . . . 5 (𝜑𝑄𝑃)
14 rprmdvds.p . . . . 5 𝑃 = (RPrime‘𝑅)
1513, 14eleqtrdi 2838 . . . 4 (𝜑𝑄 ∈ (RPrime‘𝑅))
16 rprmdvds.b . . . . . 6 𝐵 = (Base‘𝑅)
17 eqid 2729 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
18 eqid 2729 . . . . . 6 (0g𝑅) = (0g𝑅)
19 rprmdvds.d . . . . . 6 = (∥r𝑅)
20 rprmdvds.t . . . . . 6 · = (.r𝑅)
2116, 17, 18, 19, 20isrprm 33464 . . . . 5 (𝑅𝑉 → (𝑄 ∈ (RPrime‘𝑅) ↔ (𝑄 ∈ (𝐵 ∖ ((Unit‘𝑅) ∪ {(0g𝑅)})) ∧ ∀𝑥𝐵𝑦𝐵 (𝑄 (𝑥 · 𝑦) → (𝑄 𝑥𝑄 𝑦)))))
2221simplbda 499 . . . 4 ((𝑅𝑉𝑄 ∈ (RPrime‘𝑅)) → ∀𝑥𝐵𝑦𝐵 (𝑄 (𝑥 · 𝑦) → (𝑄 𝑥𝑄 𝑦)))
2312, 15, 22syl2anc 584 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑄 (𝑥 · 𝑦) → (𝑄 𝑥𝑄 𝑦)))
24 rprmdvds.x . . 3 (𝜑𝑋𝐵)
25 rprmdvds.y . . 3 (𝜑𝑌𝐵)
266, 11, 23, 24, 25rspc2dv 3594 . 2 (𝜑 → (𝑄 (𝑋 · 𝑌) → (𝑄 𝑋𝑄 𝑌)))
271, 26mpd 15 1 (𝜑 → (𝑄 𝑋𝑄 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wcel 2109  wral 3044  cdif 3902  cun 3903  {csn 4579   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17138  .rcmulr 17180  0gc0g 17361  rcdsr 20257  Unitcui 20258  RPrimecrpm 20335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-rprm 20336
This theorem is referenced by:  rsprprmprmidl  33469  rprmasso2  33473  rprmirred  33478  rprmdvdspow  33480  rprmdvdsprod  33481  1arithidom  33484  1arithufdlem3  33493
  Copyright terms: Public domain W3C validator