| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rprmdvds | Structured version Visualization version GIF version | ||
| Description: If a ring prime 𝑄 divides a product 𝑋 · 𝑌, then it divides either 𝑋 or 𝑌. (Contributed by Thierry Arnoux, 18-May-2025.) |
| Ref | Expression |
|---|---|
| rprmdvds.b | ⊢ 𝐵 = (Base‘𝑅) |
| rprmdvds.p | ⊢ 𝑃 = (RPrime‘𝑅) |
| rprmdvds.d | ⊢ ∥ = (∥r‘𝑅) |
| rprmdvds.t | ⊢ · = (.r‘𝑅) |
| rprmdvds.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| rprmdvds.q | ⊢ (𝜑 → 𝑄 ∈ 𝑃) |
| rprmdvds.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| rprmdvds.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| rprmdvds.1 | ⊢ (𝜑 → 𝑄 ∥ (𝑋 · 𝑌)) |
| Ref | Expression |
|---|---|
| rprmdvds | ⊢ (𝜑 → (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rprmdvds.1 | . 2 ⊢ (𝜑 → 𝑄 ∥ (𝑋 · 𝑌)) | |
| 2 | oveq1 7394 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 · 𝑦) = (𝑋 · 𝑦)) | |
| 3 | 2 | breq2d 5119 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑄 ∥ (𝑥 · 𝑦) ↔ 𝑄 ∥ (𝑋 · 𝑦))) |
| 4 | breq2 5111 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑄 ∥ 𝑥 ↔ 𝑄 ∥ 𝑋)) | |
| 5 | 4 | orbi1d 916 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑄 ∥ 𝑥 ∨ 𝑄 ∥ 𝑦) ↔ (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑦))) |
| 6 | 3, 5 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑄 ∥ (𝑥 · 𝑦) → (𝑄 ∥ 𝑥 ∨ 𝑄 ∥ 𝑦)) ↔ (𝑄 ∥ (𝑋 · 𝑦) → (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑦)))) |
| 7 | oveq2 7395 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌)) | |
| 8 | 7 | breq2d 5119 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑄 ∥ (𝑋 · 𝑦) ↔ 𝑄 ∥ (𝑋 · 𝑌))) |
| 9 | breq2 5111 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑄 ∥ 𝑦 ↔ 𝑄 ∥ 𝑌)) | |
| 10 | 9 | orbi2d 915 | . . . 4 ⊢ (𝑦 = 𝑌 → ((𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑦) ↔ (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑌))) |
| 11 | 8, 10 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑄 ∥ (𝑋 · 𝑦) → (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑦)) ↔ (𝑄 ∥ (𝑋 · 𝑌) → (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑌)))) |
| 12 | rprmdvds.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 13 | rprmdvds.q | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝑃) | |
| 14 | rprmdvds.p | . . . . 5 ⊢ 𝑃 = (RPrime‘𝑅) | |
| 15 | 13, 14 | eleqtrdi 2838 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ (RPrime‘𝑅)) |
| 16 | rprmdvds.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 17 | eqid 2729 | . . . . . 6 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 18 | eqid 2729 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 19 | rprmdvds.d | . . . . . 6 ⊢ ∥ = (∥r‘𝑅) | |
| 20 | rprmdvds.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 21 | 16, 17, 18, 19, 20 | isrprm 33488 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (𝑄 ∈ (RPrime‘𝑅) ↔ (𝑄 ∈ (𝐵 ∖ ((Unit‘𝑅) ∪ {(0g‘𝑅)})) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑄 ∥ (𝑥 · 𝑦) → (𝑄 ∥ 𝑥 ∨ 𝑄 ∥ 𝑦))))) |
| 22 | 21 | simplbda 499 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑄 ∈ (RPrime‘𝑅)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑄 ∥ (𝑥 · 𝑦) → (𝑄 ∥ 𝑥 ∨ 𝑄 ∥ 𝑦))) |
| 23 | 12, 15, 22 | syl2anc 584 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑄 ∥ (𝑥 · 𝑦) → (𝑄 ∥ 𝑥 ∨ 𝑄 ∥ 𝑦))) |
| 24 | rprmdvds.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 25 | rprmdvds.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 26 | 6, 11, 23, 24, 25 | rspc2dv 3603 | . 2 ⊢ (𝜑 → (𝑄 ∥ (𝑋 · 𝑌) → (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑌))) |
| 27 | 1, 26 | mpd 15 | 1 ⊢ (𝜑 → (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∖ cdif 3911 ∪ cun 3912 {csn 4589 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 .rcmulr 17221 0gc0g 17402 ∥rcdsr 20263 Unitcui 20264 RPrimecrpm 20341 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-rprm 20342 |
| This theorem is referenced by: rsprprmprmidl 33493 rprmasso2 33497 rprmirred 33502 rprmdvdspow 33504 rprmdvdsprod 33505 1arithidom 33508 1arithufdlem3 33517 |
| Copyright terms: Public domain | W3C validator |