Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rprmdvds Structured version   Visualization version   GIF version

Theorem rprmdvds 33491
Description: If a ring prime 𝑄 divides a product 𝑋 · 𝑌, then it divides either 𝑋 or 𝑌. (Contributed by Thierry Arnoux, 18-May-2025.)
Hypotheses
Ref Expression
rprmdvds.b 𝐵 = (Base‘𝑅)
rprmdvds.p 𝑃 = (RPrime‘𝑅)
rprmdvds.d = (∥r𝑅)
rprmdvds.t · = (.r𝑅)
rprmdvds.r (𝜑𝑅𝑉)
rprmdvds.q (𝜑𝑄𝑃)
rprmdvds.x (𝜑𝑋𝐵)
rprmdvds.y (𝜑𝑌𝐵)
rprmdvds.1 (𝜑𝑄 (𝑋 · 𝑌))
Assertion
Ref Expression
rprmdvds (𝜑 → (𝑄 𝑋𝑄 𝑌))

Proof of Theorem rprmdvds
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rprmdvds.1 . 2 (𝜑𝑄 (𝑋 · 𝑌))
2 oveq1 7359 . . . . 5 (𝑥 = 𝑋 → (𝑥 · 𝑦) = (𝑋 · 𝑦))
32breq2d 5105 . . . 4 (𝑥 = 𝑋 → (𝑄 (𝑥 · 𝑦) ↔ 𝑄 (𝑋 · 𝑦)))
4 breq2 5097 . . . . 5 (𝑥 = 𝑋 → (𝑄 𝑥𝑄 𝑋))
54orbi1d 916 . . . 4 (𝑥 = 𝑋 → ((𝑄 𝑥𝑄 𝑦) ↔ (𝑄 𝑋𝑄 𝑦)))
63, 5imbi12d 344 . . 3 (𝑥 = 𝑋 → ((𝑄 (𝑥 · 𝑦) → (𝑄 𝑥𝑄 𝑦)) ↔ (𝑄 (𝑋 · 𝑦) → (𝑄 𝑋𝑄 𝑦))))
7 oveq2 7360 . . . . 5 (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌))
87breq2d 5105 . . . 4 (𝑦 = 𝑌 → (𝑄 (𝑋 · 𝑦) ↔ 𝑄 (𝑋 · 𝑌)))
9 breq2 5097 . . . . 5 (𝑦 = 𝑌 → (𝑄 𝑦𝑄 𝑌))
109orbi2d 915 . . . 4 (𝑦 = 𝑌 → ((𝑄 𝑋𝑄 𝑦) ↔ (𝑄 𝑋𝑄 𝑌)))
118, 10imbi12d 344 . . 3 (𝑦 = 𝑌 → ((𝑄 (𝑋 · 𝑦) → (𝑄 𝑋𝑄 𝑦)) ↔ (𝑄 (𝑋 · 𝑌) → (𝑄 𝑋𝑄 𝑌))))
12 rprmdvds.r . . . 4 (𝜑𝑅𝑉)
13 rprmdvds.q . . . . 5 (𝜑𝑄𝑃)
14 rprmdvds.p . . . . 5 𝑃 = (RPrime‘𝑅)
1513, 14eleqtrdi 2843 . . . 4 (𝜑𝑄 ∈ (RPrime‘𝑅))
16 rprmdvds.b . . . . . 6 𝐵 = (Base‘𝑅)
17 eqid 2733 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
18 eqid 2733 . . . . . 6 (0g𝑅) = (0g𝑅)
19 rprmdvds.d . . . . . 6 = (∥r𝑅)
20 rprmdvds.t . . . . . 6 · = (.r𝑅)
2116, 17, 18, 19, 20isrprm 33489 . . . . 5 (𝑅𝑉 → (𝑄 ∈ (RPrime‘𝑅) ↔ (𝑄 ∈ (𝐵 ∖ ((Unit‘𝑅) ∪ {(0g𝑅)})) ∧ ∀𝑥𝐵𝑦𝐵 (𝑄 (𝑥 · 𝑦) → (𝑄 𝑥𝑄 𝑦)))))
2221simplbda 499 . . . 4 ((𝑅𝑉𝑄 ∈ (RPrime‘𝑅)) → ∀𝑥𝐵𝑦𝐵 (𝑄 (𝑥 · 𝑦) → (𝑄 𝑥𝑄 𝑦)))
2312, 15, 22syl2anc 584 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑄 (𝑥 · 𝑦) → (𝑄 𝑥𝑄 𝑦)))
24 rprmdvds.x . . 3 (𝜑𝑋𝐵)
25 rprmdvds.y . . 3 (𝜑𝑌𝐵)
266, 11, 23, 24, 25rspc2dv 3588 . 2 (𝜑 → (𝑄 (𝑋 · 𝑌) → (𝑄 𝑋𝑄 𝑌)))
271, 26mpd 15 1 (𝜑 → (𝑄 𝑋𝑄 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1541  wcel 2113  wral 3048  cdif 3895  cun 3896  {csn 4575   class class class wbr 5093  cfv 6486  (class class class)co 7352  Basecbs 17122  .rcmulr 17164  0gc0g 17345  rcdsr 20274  Unitcui 20275  RPrimecrpm 20352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-rprm 20353
This theorem is referenced by:  rsprprmprmidl  33494  rprmasso2  33498  rprmirred  33503  rprmdvdspow  33505  rprmdvdsprod  33506  1arithidom  33509  1arithufdlem3  33518
  Copyright terms: Public domain W3C validator