![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rprmdvds | Structured version Visualization version GIF version |
Description: If a ring prime 𝑄 divides a product 𝑋 · 𝑌, then it divides either 𝑋 or 𝑌. (Contributed by Thierry Arnoux, 18-May-2025.) |
Ref | Expression |
---|---|
rprmdvds.b | ⊢ 𝐵 = (Base‘𝑅) |
rprmdvds.p | ⊢ 𝑃 = (RPrime‘𝑅) |
rprmdvds.d | ⊢ ∥ = (∥r‘𝑅) |
rprmdvds.t | ⊢ · = (.r‘𝑅) |
rprmdvds.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
rprmdvds.q | ⊢ (𝜑 → 𝑄 ∈ 𝑃) |
rprmdvds.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
rprmdvds.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
rprmdvds.1 | ⊢ (𝜑 → 𝑄 ∥ (𝑋 · 𝑌)) |
Ref | Expression |
---|---|
rprmdvds | ⊢ (𝜑 → (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rprmdvds.1 | . 2 ⊢ (𝜑 → 𝑄 ∥ (𝑋 · 𝑌)) | |
2 | oveq1 7455 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 · 𝑦) = (𝑋 · 𝑦)) | |
3 | 2 | breq2d 5178 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑄 ∥ (𝑥 · 𝑦) ↔ 𝑄 ∥ (𝑋 · 𝑦))) |
4 | breq2 5170 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑄 ∥ 𝑥 ↔ 𝑄 ∥ 𝑋)) | |
5 | 4 | orbi1d 915 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑄 ∥ 𝑥 ∨ 𝑄 ∥ 𝑦) ↔ (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑦))) |
6 | 3, 5 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑄 ∥ (𝑥 · 𝑦) → (𝑄 ∥ 𝑥 ∨ 𝑄 ∥ 𝑦)) ↔ (𝑄 ∥ (𝑋 · 𝑦) → (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑦)))) |
7 | oveq2 7456 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌)) | |
8 | 7 | breq2d 5178 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑄 ∥ (𝑋 · 𝑦) ↔ 𝑄 ∥ (𝑋 · 𝑌))) |
9 | breq2 5170 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑄 ∥ 𝑦 ↔ 𝑄 ∥ 𝑌)) | |
10 | 9 | orbi2d 914 | . . . 4 ⊢ (𝑦 = 𝑌 → ((𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑦) ↔ (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑌))) |
11 | 8, 10 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑄 ∥ (𝑋 · 𝑦) → (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑦)) ↔ (𝑄 ∥ (𝑋 · 𝑌) → (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑌)))) |
12 | rprmdvds.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
13 | rprmdvds.q | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝑃) | |
14 | rprmdvds.p | . . . . 5 ⊢ 𝑃 = (RPrime‘𝑅) | |
15 | 13, 14 | eleqtrdi 2854 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ (RPrime‘𝑅)) |
16 | rprmdvds.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
17 | eqid 2740 | . . . . . 6 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
18 | eqid 2740 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
19 | rprmdvds.d | . . . . . 6 ⊢ ∥ = (∥r‘𝑅) | |
20 | rprmdvds.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
21 | 16, 17, 18, 19, 20 | isrprm 33510 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (𝑄 ∈ (RPrime‘𝑅) ↔ (𝑄 ∈ (𝐵 ∖ ((Unit‘𝑅) ∪ {(0g‘𝑅)})) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑄 ∥ (𝑥 · 𝑦) → (𝑄 ∥ 𝑥 ∨ 𝑄 ∥ 𝑦))))) |
22 | 21 | simplbda 499 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑄 ∈ (RPrime‘𝑅)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑄 ∥ (𝑥 · 𝑦) → (𝑄 ∥ 𝑥 ∨ 𝑄 ∥ 𝑦))) |
23 | 12, 15, 22 | syl2anc 583 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑄 ∥ (𝑥 · 𝑦) → (𝑄 ∥ 𝑥 ∨ 𝑄 ∥ 𝑦))) |
24 | rprmdvds.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
25 | rprmdvds.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
26 | 6, 11, 23, 24, 25 | rspc2dv 3650 | . 2 ⊢ (𝜑 → (𝑄 ∥ (𝑋 · 𝑌) → (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑌))) |
27 | 1, 26 | mpd 15 | 1 ⊢ (𝜑 → (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∖ cdif 3973 ∪ cun 3974 {csn 4648 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 .rcmulr 17312 0gc0g 17499 ∥rcdsr 20380 Unitcui 20381 RPrimecrpm 20458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-rprm 20459 |
This theorem is referenced by: rsprprmprmidl 33515 rprmasso2 33519 rprmirred 33524 rprmdvdspow 33526 rprmdvdsprod 33527 1arithidom 33530 1arithufdlem3 33539 |
Copyright terms: Public domain | W3C validator |