Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rprmdvds Structured version   Visualization version   GIF version

Theorem rprmdvds 33490
Description: If a ring prime 𝑄 divides a product 𝑋 · 𝑌, then it divides either 𝑋 or 𝑌. (Contributed by Thierry Arnoux, 18-May-2025.)
Hypotheses
Ref Expression
rprmdvds.b 𝐵 = (Base‘𝑅)
rprmdvds.p 𝑃 = (RPrime‘𝑅)
rprmdvds.d = (∥r𝑅)
rprmdvds.t · = (.r𝑅)
rprmdvds.r (𝜑𝑅𝑉)
rprmdvds.q (𝜑𝑄𝑃)
rprmdvds.x (𝜑𝑋𝐵)
rprmdvds.y (𝜑𝑌𝐵)
rprmdvds.1 (𝜑𝑄 (𝑋 · 𝑌))
Assertion
Ref Expression
rprmdvds (𝜑 → (𝑄 𝑋𝑄 𝑌))

Proof of Theorem rprmdvds
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rprmdvds.1 . 2 (𝜑𝑄 (𝑋 · 𝑌))
2 oveq1 7394 . . . . 5 (𝑥 = 𝑋 → (𝑥 · 𝑦) = (𝑋 · 𝑦))
32breq2d 5119 . . . 4 (𝑥 = 𝑋 → (𝑄 (𝑥 · 𝑦) ↔ 𝑄 (𝑋 · 𝑦)))
4 breq2 5111 . . . . 5 (𝑥 = 𝑋 → (𝑄 𝑥𝑄 𝑋))
54orbi1d 916 . . . 4 (𝑥 = 𝑋 → ((𝑄 𝑥𝑄 𝑦) ↔ (𝑄 𝑋𝑄 𝑦)))
63, 5imbi12d 344 . . 3 (𝑥 = 𝑋 → ((𝑄 (𝑥 · 𝑦) → (𝑄 𝑥𝑄 𝑦)) ↔ (𝑄 (𝑋 · 𝑦) → (𝑄 𝑋𝑄 𝑦))))
7 oveq2 7395 . . . . 5 (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌))
87breq2d 5119 . . . 4 (𝑦 = 𝑌 → (𝑄 (𝑋 · 𝑦) ↔ 𝑄 (𝑋 · 𝑌)))
9 breq2 5111 . . . . 5 (𝑦 = 𝑌 → (𝑄 𝑦𝑄 𝑌))
109orbi2d 915 . . . 4 (𝑦 = 𝑌 → ((𝑄 𝑋𝑄 𝑦) ↔ (𝑄 𝑋𝑄 𝑌)))
118, 10imbi12d 344 . . 3 (𝑦 = 𝑌 → ((𝑄 (𝑋 · 𝑦) → (𝑄 𝑋𝑄 𝑦)) ↔ (𝑄 (𝑋 · 𝑌) → (𝑄 𝑋𝑄 𝑌))))
12 rprmdvds.r . . . 4 (𝜑𝑅𝑉)
13 rprmdvds.q . . . . 5 (𝜑𝑄𝑃)
14 rprmdvds.p . . . . 5 𝑃 = (RPrime‘𝑅)
1513, 14eleqtrdi 2838 . . . 4 (𝜑𝑄 ∈ (RPrime‘𝑅))
16 rprmdvds.b . . . . . 6 𝐵 = (Base‘𝑅)
17 eqid 2729 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
18 eqid 2729 . . . . . 6 (0g𝑅) = (0g𝑅)
19 rprmdvds.d . . . . . 6 = (∥r𝑅)
20 rprmdvds.t . . . . . 6 · = (.r𝑅)
2116, 17, 18, 19, 20isrprm 33488 . . . . 5 (𝑅𝑉 → (𝑄 ∈ (RPrime‘𝑅) ↔ (𝑄 ∈ (𝐵 ∖ ((Unit‘𝑅) ∪ {(0g𝑅)})) ∧ ∀𝑥𝐵𝑦𝐵 (𝑄 (𝑥 · 𝑦) → (𝑄 𝑥𝑄 𝑦)))))
2221simplbda 499 . . . 4 ((𝑅𝑉𝑄 ∈ (RPrime‘𝑅)) → ∀𝑥𝐵𝑦𝐵 (𝑄 (𝑥 · 𝑦) → (𝑄 𝑥𝑄 𝑦)))
2312, 15, 22syl2anc 584 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑄 (𝑥 · 𝑦) → (𝑄 𝑥𝑄 𝑦)))
24 rprmdvds.x . . 3 (𝜑𝑋𝐵)
25 rprmdvds.y . . 3 (𝜑𝑌𝐵)
266, 11, 23, 24, 25rspc2dv 3603 . 2 (𝜑 → (𝑄 (𝑋 · 𝑌) → (𝑄 𝑋𝑄 𝑌)))
271, 26mpd 15 1 (𝜑 → (𝑄 𝑋𝑄 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wcel 2109  wral 3044  cdif 3911  cun 3912  {csn 4589   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  .rcmulr 17221  0gc0g 17402  rcdsr 20263  Unitcui 20264  RPrimecrpm 20341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-rprm 20342
This theorem is referenced by:  rsprprmprmidl  33493  rprmasso2  33497  rprmirred  33502  rprmdvdspow  33504  rprmdvdsprod  33505  1arithidom  33508  1arithufdlem3  33517
  Copyright terms: Public domain W3C validator