| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rprmdvds | Structured version Visualization version GIF version | ||
| Description: If a ring prime 𝑄 divides a product 𝑋 · 𝑌, then it divides either 𝑋 or 𝑌. (Contributed by Thierry Arnoux, 18-May-2025.) |
| Ref | Expression |
|---|---|
| rprmdvds.b | ⊢ 𝐵 = (Base‘𝑅) |
| rprmdvds.p | ⊢ 𝑃 = (RPrime‘𝑅) |
| rprmdvds.d | ⊢ ∥ = (∥r‘𝑅) |
| rprmdvds.t | ⊢ · = (.r‘𝑅) |
| rprmdvds.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| rprmdvds.q | ⊢ (𝜑 → 𝑄 ∈ 𝑃) |
| rprmdvds.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| rprmdvds.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| rprmdvds.1 | ⊢ (𝜑 → 𝑄 ∥ (𝑋 · 𝑌)) |
| Ref | Expression |
|---|---|
| rprmdvds | ⊢ (𝜑 → (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rprmdvds.1 | . 2 ⊢ (𝜑 → 𝑄 ∥ (𝑋 · 𝑌)) | |
| 2 | oveq1 7397 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 · 𝑦) = (𝑋 · 𝑦)) | |
| 3 | 2 | breq2d 5122 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑄 ∥ (𝑥 · 𝑦) ↔ 𝑄 ∥ (𝑋 · 𝑦))) |
| 4 | breq2 5114 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑄 ∥ 𝑥 ↔ 𝑄 ∥ 𝑋)) | |
| 5 | 4 | orbi1d 916 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑄 ∥ 𝑥 ∨ 𝑄 ∥ 𝑦) ↔ (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑦))) |
| 6 | 3, 5 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑄 ∥ (𝑥 · 𝑦) → (𝑄 ∥ 𝑥 ∨ 𝑄 ∥ 𝑦)) ↔ (𝑄 ∥ (𝑋 · 𝑦) → (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑦)))) |
| 7 | oveq2 7398 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌)) | |
| 8 | 7 | breq2d 5122 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑄 ∥ (𝑋 · 𝑦) ↔ 𝑄 ∥ (𝑋 · 𝑌))) |
| 9 | breq2 5114 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑄 ∥ 𝑦 ↔ 𝑄 ∥ 𝑌)) | |
| 10 | 9 | orbi2d 915 | . . . 4 ⊢ (𝑦 = 𝑌 → ((𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑦) ↔ (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑌))) |
| 11 | 8, 10 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑄 ∥ (𝑋 · 𝑦) → (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑦)) ↔ (𝑄 ∥ (𝑋 · 𝑌) → (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑌)))) |
| 12 | rprmdvds.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 13 | rprmdvds.q | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝑃) | |
| 14 | rprmdvds.p | . . . . 5 ⊢ 𝑃 = (RPrime‘𝑅) | |
| 15 | 13, 14 | eleqtrdi 2839 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ (RPrime‘𝑅)) |
| 16 | rprmdvds.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 17 | eqid 2730 | . . . . . 6 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 18 | eqid 2730 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 19 | rprmdvds.d | . . . . . 6 ⊢ ∥ = (∥r‘𝑅) | |
| 20 | rprmdvds.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 21 | 16, 17, 18, 19, 20 | isrprm 33495 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (𝑄 ∈ (RPrime‘𝑅) ↔ (𝑄 ∈ (𝐵 ∖ ((Unit‘𝑅) ∪ {(0g‘𝑅)})) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑄 ∥ (𝑥 · 𝑦) → (𝑄 ∥ 𝑥 ∨ 𝑄 ∥ 𝑦))))) |
| 22 | 21 | simplbda 499 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑄 ∈ (RPrime‘𝑅)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑄 ∥ (𝑥 · 𝑦) → (𝑄 ∥ 𝑥 ∨ 𝑄 ∥ 𝑦))) |
| 23 | 12, 15, 22 | syl2anc 584 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑄 ∥ (𝑥 · 𝑦) → (𝑄 ∥ 𝑥 ∨ 𝑄 ∥ 𝑦))) |
| 24 | rprmdvds.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 25 | rprmdvds.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 26 | 6, 11, 23, 24, 25 | rspc2dv 3606 | . 2 ⊢ (𝜑 → (𝑄 ∥ (𝑋 · 𝑌) → (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑌))) |
| 27 | 1, 26 | mpd 15 | 1 ⊢ (𝜑 → (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∖ cdif 3914 ∪ cun 3915 {csn 4592 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 .rcmulr 17228 0gc0g 17409 ∥rcdsr 20270 Unitcui 20271 RPrimecrpm 20348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-rprm 20349 |
| This theorem is referenced by: rsprprmprmidl 33500 rprmasso2 33504 rprmirred 33509 rprmdvdspow 33511 rprmdvdsprod 33512 1arithidom 33515 1arithufdlem3 33524 |
| Copyright terms: Public domain | W3C validator |