![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rprmdvds | Structured version Visualization version GIF version |
Description: If a ring prime 𝑄 divides a product 𝑋 · 𝑌, then it divides either 𝑋 or 𝑌. (Contributed by Thierry Arnoux, 18-May-2025.) |
Ref | Expression |
---|---|
rprmdvds.b | ⊢ 𝐵 = (Base‘𝑅) |
rprmdvds.p | ⊢ 𝑃 = (RPrime‘𝑅) |
rprmdvds.d | ⊢ ∥ = (∥r‘𝑅) |
rprmdvds.t | ⊢ · = (.r‘𝑅) |
rprmdvds.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
rprmdvds.q | ⊢ (𝜑 → 𝑄 ∈ 𝑃) |
rprmdvds.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
rprmdvds.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
rprmdvds.1 | ⊢ (𝜑 → 𝑄 ∥ (𝑋 · 𝑌)) |
Ref | Expression |
---|---|
rprmdvds | ⊢ (𝜑 → (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rprmdvds.1 | . 2 ⊢ (𝜑 → 𝑄 ∥ (𝑋 · 𝑌)) | |
2 | oveq1 7423 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 · 𝑦) = (𝑋 · 𝑦)) | |
3 | 2 | breq2d 5157 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑄 ∥ (𝑥 · 𝑦) ↔ 𝑄 ∥ (𝑋 · 𝑦))) |
4 | breq2 5149 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑄 ∥ 𝑥 ↔ 𝑄 ∥ 𝑋)) | |
5 | 4 | orbi1d 914 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑄 ∥ 𝑥 ∨ 𝑄 ∥ 𝑦) ↔ (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑦))) |
6 | 3, 5 | imbi12d 343 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑄 ∥ (𝑥 · 𝑦) → (𝑄 ∥ 𝑥 ∨ 𝑄 ∥ 𝑦)) ↔ (𝑄 ∥ (𝑋 · 𝑦) → (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑦)))) |
7 | oveq2 7424 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌)) | |
8 | 7 | breq2d 5157 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑄 ∥ (𝑋 · 𝑦) ↔ 𝑄 ∥ (𝑋 · 𝑌))) |
9 | breq2 5149 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑄 ∥ 𝑦 ↔ 𝑄 ∥ 𝑌)) | |
10 | 9 | orbi2d 913 | . . . 4 ⊢ (𝑦 = 𝑌 → ((𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑦) ↔ (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑌))) |
11 | 8, 10 | imbi12d 343 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑄 ∥ (𝑋 · 𝑦) → (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑦)) ↔ (𝑄 ∥ (𝑋 · 𝑌) → (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑌)))) |
12 | rprmdvds.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
13 | rprmdvds.q | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝑃) | |
14 | rprmdvds.p | . . . . 5 ⊢ 𝑃 = (RPrime‘𝑅) | |
15 | 13, 14 | eleqtrdi 2836 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ (RPrime‘𝑅)) |
16 | rprmdvds.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
17 | eqid 2726 | . . . . . 6 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
18 | eqid 2726 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
19 | rprmdvds.d | . . . . . 6 ⊢ ∥ = (∥r‘𝑅) | |
20 | rprmdvds.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
21 | 16, 17, 18, 19, 20 | isrprm 33398 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (𝑄 ∈ (RPrime‘𝑅) ↔ (𝑄 ∈ (𝐵 ∖ ((Unit‘𝑅) ∪ {(0g‘𝑅)})) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑄 ∥ (𝑥 · 𝑦) → (𝑄 ∥ 𝑥 ∨ 𝑄 ∥ 𝑦))))) |
22 | 21 | simplbda 498 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑄 ∈ (RPrime‘𝑅)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑄 ∥ (𝑥 · 𝑦) → (𝑄 ∥ 𝑥 ∨ 𝑄 ∥ 𝑦))) |
23 | 12, 15, 22 | syl2anc 582 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑄 ∥ (𝑥 · 𝑦) → (𝑄 ∥ 𝑥 ∨ 𝑄 ∥ 𝑦))) |
24 | rprmdvds.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
25 | rprmdvds.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
26 | 6, 11, 23, 24, 25 | rspc2dv 3622 | . 2 ⊢ (𝜑 → (𝑄 ∥ (𝑋 · 𝑌) → (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑌))) |
27 | 1, 26 | mpd 15 | 1 ⊢ (𝜑 → (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 845 = wceq 1534 ∈ wcel 2099 ∀wral 3051 ∖ cdif 3943 ∪ cun 3944 {csn 4623 class class class wbr 5145 ‘cfv 6546 (class class class)co 7416 Basecbs 17208 .rcmulr 17262 0gc0g 17449 ∥rcdsr 20332 Unitcui 20333 RPrimecrpm 20410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-iota 6498 df-fun 6548 df-fv 6554 df-ov 7419 df-rprm 20411 |
This theorem is referenced by: rsprprmprmidl 33403 rprmasso2 33407 rprmirred 33412 rprmdvdspow 33414 rprmdvdsprod 33415 1arithidom 33418 1arithufdlem3 33427 |
Copyright terms: Public domain | W3C validator |