Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rprmdvds Structured version   Visualization version   GIF version

Theorem rprmdvds 33479
Description: If a ring prime 𝑄 divides a product 𝑋 · 𝑌, then it divides either 𝑋 or 𝑌. (Contributed by Thierry Arnoux, 18-May-2025.)
Hypotheses
Ref Expression
rprmdvds.b 𝐵 = (Base‘𝑅)
rprmdvds.p 𝑃 = (RPrime‘𝑅)
rprmdvds.d = (∥r𝑅)
rprmdvds.t · = (.r𝑅)
rprmdvds.r (𝜑𝑅𝑉)
rprmdvds.q (𝜑𝑄𝑃)
rprmdvds.x (𝜑𝑋𝐵)
rprmdvds.y (𝜑𝑌𝐵)
rprmdvds.1 (𝜑𝑄 (𝑋 · 𝑌))
Assertion
Ref Expression
rprmdvds (𝜑 → (𝑄 𝑋𝑄 𝑌))

Proof of Theorem rprmdvds
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rprmdvds.1 . 2 (𝜑𝑄 (𝑋 · 𝑌))
2 oveq1 7353 . . . . 5 (𝑥 = 𝑋 → (𝑥 · 𝑦) = (𝑋 · 𝑦))
32breq2d 5103 . . . 4 (𝑥 = 𝑋 → (𝑄 (𝑥 · 𝑦) ↔ 𝑄 (𝑋 · 𝑦)))
4 breq2 5095 . . . . 5 (𝑥 = 𝑋 → (𝑄 𝑥𝑄 𝑋))
54orbi1d 916 . . . 4 (𝑥 = 𝑋 → ((𝑄 𝑥𝑄 𝑦) ↔ (𝑄 𝑋𝑄 𝑦)))
63, 5imbi12d 344 . . 3 (𝑥 = 𝑋 → ((𝑄 (𝑥 · 𝑦) → (𝑄 𝑥𝑄 𝑦)) ↔ (𝑄 (𝑋 · 𝑦) → (𝑄 𝑋𝑄 𝑦))))
7 oveq2 7354 . . . . 5 (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌))
87breq2d 5103 . . . 4 (𝑦 = 𝑌 → (𝑄 (𝑋 · 𝑦) ↔ 𝑄 (𝑋 · 𝑌)))
9 breq2 5095 . . . . 5 (𝑦 = 𝑌 → (𝑄 𝑦𝑄 𝑌))
109orbi2d 915 . . . 4 (𝑦 = 𝑌 → ((𝑄 𝑋𝑄 𝑦) ↔ (𝑄 𝑋𝑄 𝑌)))
118, 10imbi12d 344 . . 3 (𝑦 = 𝑌 → ((𝑄 (𝑋 · 𝑦) → (𝑄 𝑋𝑄 𝑦)) ↔ (𝑄 (𝑋 · 𝑌) → (𝑄 𝑋𝑄 𝑌))))
12 rprmdvds.r . . . 4 (𝜑𝑅𝑉)
13 rprmdvds.q . . . . 5 (𝜑𝑄𝑃)
14 rprmdvds.p . . . . 5 𝑃 = (RPrime‘𝑅)
1513, 14eleqtrdi 2841 . . . 4 (𝜑𝑄 ∈ (RPrime‘𝑅))
16 rprmdvds.b . . . . . 6 𝐵 = (Base‘𝑅)
17 eqid 2731 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
18 eqid 2731 . . . . . 6 (0g𝑅) = (0g𝑅)
19 rprmdvds.d . . . . . 6 = (∥r𝑅)
20 rprmdvds.t . . . . . 6 · = (.r𝑅)
2116, 17, 18, 19, 20isrprm 33477 . . . . 5 (𝑅𝑉 → (𝑄 ∈ (RPrime‘𝑅) ↔ (𝑄 ∈ (𝐵 ∖ ((Unit‘𝑅) ∪ {(0g𝑅)})) ∧ ∀𝑥𝐵𝑦𝐵 (𝑄 (𝑥 · 𝑦) → (𝑄 𝑥𝑄 𝑦)))))
2221simplbda 499 . . . 4 ((𝑅𝑉𝑄 ∈ (RPrime‘𝑅)) → ∀𝑥𝐵𝑦𝐵 (𝑄 (𝑥 · 𝑦) → (𝑄 𝑥𝑄 𝑦)))
2312, 15, 22syl2anc 584 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑄 (𝑥 · 𝑦) → (𝑄 𝑥𝑄 𝑦)))
24 rprmdvds.x . . 3 (𝜑𝑋𝐵)
25 rprmdvds.y . . 3 (𝜑𝑌𝐵)
266, 11, 23, 24, 25rspc2dv 3592 . 2 (𝜑 → (𝑄 (𝑋 · 𝑌) → (𝑄 𝑋𝑄 𝑌)))
271, 26mpd 15 1 (𝜑 → (𝑄 𝑋𝑄 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1541  wcel 2111  wral 3047  cdif 3899  cun 3900  {csn 4576   class class class wbr 5091  cfv 6481  (class class class)co 7346  Basecbs 17117  .rcmulr 17159  0gc0g 17340  rcdsr 20270  Unitcui 20271  RPrimecrpm 20348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-rprm 20349
This theorem is referenced by:  rsprprmprmidl  33482  rprmasso2  33486  rprmirred  33491  rprmdvdspow  33493  rprmdvdsprod  33494  1arithidom  33497  1arithufdlem3  33506
  Copyright terms: Public domain W3C validator