Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > smf2id | Structured version Visualization version GIF version |
Description: Twice the identity function is Borel sigma-measurable (just an example, to test previous general theorems). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smf2id.j | ⊢ 𝐽 = (topGen‘ran (,)) |
smf2id.b | ⊢ 𝐵 = (SalGen‘𝐽) |
smf2id.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
Ref | Expression |
---|---|
smf2id | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (2 · 𝑥)) ∈ (SMblFn‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1921 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | smf2id.j | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
3 | retop 23915 | . . . . 5 ⊢ (topGen‘ran (,)) ∈ Top | |
4 | 2, 3 | eqeltri 2837 | . . . 4 ⊢ 𝐽 ∈ Top |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) |
6 | smf2id.b | . . 3 ⊢ 𝐵 = (SalGen‘𝐽) | |
7 | 5, 6 | salgencld 43851 | . 2 ⊢ (𝜑 → 𝐵 ∈ SAlg) |
8 | reex 10955 | . . . 4 ⊢ ℝ ∈ V | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → ℝ ∈ V) |
10 | smf2id.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
11 | 9, 10 | ssexd 5252 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
12 | 10 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ ℝ) |
13 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
14 | 12, 13 | sseldd 3927 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
15 | 2re 12039 | . . 3 ⊢ 2 ∈ ℝ | |
16 | 15 | a1i 11 | . 2 ⊢ (𝜑 → 2 ∈ ℝ) |
17 | 2, 6, 10 | smfid 44248 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑥) ∈ (SMblFn‘𝐵)) |
18 | 1, 7, 11, 14, 16, 17 | smfmulc1 44290 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (2 · 𝑥)) ∈ (SMblFn‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ⊆ wss 3892 ↦ cmpt 5162 ran crn 5590 ‘cfv 6431 (class class class)co 7269 ℝcr 10863 · cmul 10869 2c2 12020 (,)cioo 13070 topGenctg 17138 Topctop 22032 SalGencsalgen 43816 SMblFncsmblfn 44196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-inf2 9369 ax-cc 10184 ax-ac2 10212 ax-cnex 10920 ax-resscn 10921 ax-1cn 10922 ax-icn 10923 ax-addcl 10924 ax-addrcl 10925 ax-mulcl 10926 ax-mulrcl 10927 ax-mulcom 10928 ax-addass 10929 ax-mulass 10930 ax-distr 10931 ax-i2m1 10932 ax-1ne0 10933 ax-1rid 10934 ax-rnegex 10935 ax-rrecex 10936 ax-cnre 10937 ax-pre-lttri 10938 ax-pre-lttrn 10939 ax-pre-ltadd 10940 ax-pre-mulgt0 10941 ax-pre-sup 10942 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-isom 6440 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7702 df-1st 7818 df-2nd 7819 df-frecs 8082 df-wrecs 8113 df-recs 8187 df-rdg 8226 df-1o 8282 df-oadd 8286 df-omul 8287 df-er 8473 df-map 8592 df-pm 8593 df-en 8709 df-dom 8710 df-sdom 8711 df-fin 8712 df-sup 9171 df-inf 9172 df-oi 9239 df-card 9690 df-acn 9693 df-ac 9865 df-pnf 11004 df-mnf 11005 df-xr 11006 df-ltxr 11007 df-le 11008 df-sub 11199 df-neg 11200 df-div 11625 df-nn 11966 df-2 12028 df-3 12029 df-4 12030 df-n0 12226 df-z 12312 df-uz 12574 df-q 12680 df-rp 12722 df-ioo 13074 df-ioc 13075 df-ico 13076 df-icc 13077 df-fz 13231 df-fzo 13374 df-fl 13502 df-seq 13712 df-exp 13773 df-hash 14035 df-word 14208 df-concat 14264 df-s1 14291 df-s2 14551 df-s3 14552 df-s4 14553 df-cj 14800 df-re 14801 df-im 14802 df-sqrt 14936 df-abs 14937 df-rest 17123 df-topgen 17144 df-top 22033 df-bases 22086 df-salg 43813 df-salgen 43817 df-smblfn 44197 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |