Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smf2id Structured version   Visualization version   GIF version

Theorem smf2id 44335
Description: Twice the identity function is Borel sigma-measurable (just an example, to test previous general theorems). (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smf2id.j 𝐽 = (topGen‘ran (,))
smf2id.b 𝐵 = (SalGen‘𝐽)
smf2id.a (𝜑𝐴 ⊆ ℝ)
Assertion
Ref Expression
smf2id (𝜑 → (𝑥𝐴 ↦ (2 · 𝑥)) ∈ (SMblFn‘𝐵))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐽(𝑥)

Proof of Theorem smf2id
StepHypRef Expression
1 nfv 1917 . 2 𝑥𝜑
2 smf2id.j . . . . 5 𝐽 = (topGen‘ran (,))
3 retop 23925 . . . . 5 (topGen‘ran (,)) ∈ Top
42, 3eqeltri 2835 . . . 4 𝐽 ∈ Top
54a1i 11 . . 3 (𝜑𝐽 ∈ Top)
6 smf2id.b . . 3 𝐵 = (SalGen‘𝐽)
75, 6salgencld 43888 . 2 (𝜑𝐵 ∈ SAlg)
8 reex 10962 . . . 4 ℝ ∈ V
98a1i 11 . . 3 (𝜑 → ℝ ∈ V)
10 smf2id.a . . 3 (𝜑𝐴 ⊆ ℝ)
119, 10ssexd 5248 . 2 (𝜑𝐴 ∈ V)
1210adantr 481 . . 3 ((𝜑𝑥𝐴) → 𝐴 ⊆ ℝ)
13 simpr 485 . . 3 ((𝜑𝑥𝐴) → 𝑥𝐴)
1412, 13sseldd 3922 . 2 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
15 2re 12047 . . 3 2 ∈ ℝ
1615a1i 11 . 2 (𝜑 → 2 ∈ ℝ)
172, 6, 10smfid 44288 . 2 (𝜑 → (𝑥𝐴𝑥) ∈ (SMblFn‘𝐵))
181, 7, 11, 14, 16, 17smfmulc1 44330 1 (𝜑 → (𝑥𝐴 ↦ (2 · 𝑥)) ∈ (SMblFn‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887  cmpt 5157  ran crn 5590  cfv 6433  (class class class)co 7275  cr 10870   · cmul 10876  2c2 12028  (,)cioo 13079  topGenctg 17148  Topctop 22042  SalGencsalgen 43853  SMblFncsmblfn 44233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-ac2 10219  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-acn 9700  df-ac 9872  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-s2 14561  df-s3 14562  df-s4 14563  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-rest 17133  df-topgen 17154  df-top 22043  df-bases 22096  df-salg 43850  df-salgen 43854  df-smblfn 44234
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator