![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smf2id | Structured version Visualization version GIF version |
Description: Twice the identity function is Borel sigma-measurable (just an example, to test previous general theorems). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smf2id.j | β’ π½ = (topGenβran (,)) |
smf2id.b | β’ π΅ = (SalGenβπ½) |
smf2id.a | β’ (π β π΄ β β) |
Ref | Expression |
---|---|
smf2id | β’ (π β (π₯ β π΄ β¦ (2 Β· π₯)) β (SMblFnβπ΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1916 | . 2 β’ β²π₯π | |
2 | smf2id.j | . . . . 5 β’ π½ = (topGenβran (,)) | |
3 | retop 24598 | . . . . 5 β’ (topGenβran (,)) β Top | |
4 | 2, 3 | eqeltri 2828 | . . . 4 β’ π½ β Top |
5 | 4 | a1i 11 | . . 3 β’ (π β π½ β Top) |
6 | smf2id.b | . . 3 β’ π΅ = (SalGenβπ½) | |
7 | 5, 6 | salgencld 45524 | . 2 β’ (π β π΅ β SAlg) |
8 | reex 11207 | . . . 4 β’ β β V | |
9 | 8 | a1i 11 | . . 3 β’ (π β β β V) |
10 | smf2id.a | . . 3 β’ (π β π΄ β β) | |
11 | 9, 10 | ssexd 5324 | . 2 β’ (π β π΄ β V) |
12 | 10 | adantr 480 | . . 3 β’ ((π β§ π₯ β π΄) β π΄ β β) |
13 | simpr 484 | . . 3 β’ ((π β§ π₯ β π΄) β π₯ β π΄) | |
14 | 12, 13 | sseldd 3983 | . 2 β’ ((π β§ π₯ β π΄) β π₯ β β) |
15 | 2re 12293 | . . 3 β’ 2 β β | |
16 | 15 | a1i 11 | . 2 β’ (π β 2 β β) |
17 | 2, 6, 10 | smfid 45927 | . 2 β’ (π β (π₯ β π΄ β¦ π₯) β (SMblFnβπ΅)) |
18 | 1, 7, 11, 14, 16, 17 | smfmulc1 45971 | 1 β’ (π β (π₯ β π΄ β¦ (2 Β· π₯)) β (SMblFnβπ΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 Vcvv 3473 β wss 3948 β¦ cmpt 5231 ran crn 5677 βcfv 6543 (class class class)co 7412 βcr 11115 Β· cmul 11121 2c2 12274 (,)cioo 13331 topGenctg 17390 Topctop 22715 SalGencsalgen 45487 SMblFncsmblfn 45870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 ax-cc 10436 ax-ac2 10464 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-oadd 8476 df-omul 8477 df-er 8709 df-map 8828 df-pm 8829 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-sup 9443 df-inf 9444 df-oi 9511 df-card 9940 df-acn 9943 df-ac 10117 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-n0 12480 df-z 12566 df-uz 12830 df-q 12940 df-rp 12982 df-ioo 13335 df-ioc 13336 df-ico 13337 df-icc 13338 df-fz 13492 df-fzo 13635 df-fl 13764 df-seq 13974 df-exp 14035 df-hash 14298 df-word 14472 df-concat 14528 df-s1 14553 df-s2 14806 df-s3 14807 df-s4 14808 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-rest 17375 df-topgen 17396 df-top 22716 df-bases 22769 df-salg 45484 df-salgen 45488 df-smblfn 45871 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |