![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bormflebmf | Structured version Visualization version GIF version |
Description: A Borel measurable function is Lebesgue measurable. Proposition 121D (a) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
bormflebmf.x | β’ (π β π β Fin) |
bormflebmf.b | β’ π΅ = (SalGenβ(TopOpenβ(β^βπ))) |
bormflebmf.l | β’ πΏ = dom (volnβπ) |
bormflebmf.f | β’ (π β πΉ β (SMblFnβπ΅)) |
Ref | Expression |
---|---|
bormflebmf | β’ (π β πΉ β (SMblFnβπΏ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6896 | . . 3 β’ (π β (TopOpenβ(β^βπ)) β V) | |
2 | bormflebmf.b | . . 3 β’ π΅ = (SalGenβ(TopOpenβ(β^βπ))) | |
3 | 1, 2 | salgencld 45550 | . 2 β’ (π β π΅ β SAlg) |
4 | bormflebmf.x | . . 3 β’ (π β π β Fin) | |
5 | bormflebmf.l | . . 3 β’ πΏ = dom (volnβπ) | |
6 | 4, 5 | dmovnsal 45813 | . 2 β’ (π β πΏ β SAlg) |
7 | 4, 5, 2 | borelmbl 45837 | . 2 β’ (π β π΅ β πΏ) |
8 | bormflebmf.f | . 2 β’ (π β πΉ β (SMblFnβπ΅)) | |
9 | 3, 6, 7, 8 | smfsssmf 45944 | 1 β’ (π β πΉ β (SMblFnβπΏ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 Vcvv 3466 dom cdm 5666 βcfv 6533 Fincfn 8935 TopOpenctopn 17366 β^crrx 25233 SalGencsalgen 45513 volncvoln 45739 SMblFncsmblfn 45896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9632 ax-cc 10426 ax-ac2 10454 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-disj 5104 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-om 7849 df-1st 7968 df-2nd 7969 df-supp 8141 df-tpos 8206 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-oadd 8465 df-omul 8466 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-dju 9892 df-card 9930 df-acn 9933 df-ac 10107 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-z 12556 df-dec 12675 df-uz 12820 df-q 12930 df-rp 12972 df-xneg 13089 df-xadd 13090 df-xmul 13091 df-ioo 13325 df-ico 13327 df-icc 13328 df-fz 13482 df-fzo 13625 df-fl 13754 df-seq 13964 df-exp 14025 df-hash 14288 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-clim 15429 df-rlim 15430 df-sum 15630 df-prod 15847 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17367 df-topn 17368 df-0g 17386 df-gsum 17387 df-topgen 17388 df-prds 17392 df-pws 17394 df-mgm 18563 df-sgrp 18642 df-mnd 18658 df-mhm 18703 df-submnd 18704 df-grp 18856 df-minusg 18857 df-sbg 18858 df-subg 19040 df-ghm 19129 df-cntz 19223 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-cring 20131 df-oppr 20226 df-dvdsr 20249 df-unit 20250 df-invr 20280 df-dvr 20293 df-rhm 20364 df-subrng 20436 df-subrg 20461 df-drng 20579 df-field 20580 df-abv 20650 df-staf 20678 df-srng 20679 df-lmod 20698 df-lss 20769 df-lmhm 20860 df-lvec 20941 df-sra 21011 df-rgmod 21012 df-psmet 21220 df-xmet 21221 df-met 21222 df-bl 21223 df-mopn 21224 df-cnfld 21229 df-refld 21466 df-phl 21487 df-dsmm 21595 df-frlm 21610 df-top 22718 df-topon 22735 df-topsp 22757 df-bases 22771 df-cmp 23213 df-xms 24148 df-ms 24149 df-nm 24413 df-ngp 24414 df-tng 24415 df-nrg 24416 df-nlm 24417 df-clm 24912 df-cph 25018 df-tcph 25019 df-rrx 25235 df-ovol 25315 df-vol 25316 df-salg 45510 df-salgen 45514 df-sumge0 45564 df-mea 45651 df-ome 45691 df-caragen 45693 df-ovoln 45738 df-voln 45740 df-smblfn 45897 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |