![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > scmatmats | Structured version Visualization version GIF version |
Description: The set of an 𝑁 x 𝑁 scalar matrices over the ring 𝑅 expressed as a subset of 𝑁 x 𝑁 matrices over the ring 𝑅 with certain properties for their entries. (Contributed by AV, 31-Oct-2019.) (Revised by AV, 19-Dec-2019.) |
Ref | Expression |
---|---|
scmatmat.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
scmatmat.b | ⊢ 𝐵 = (Base‘𝐴) |
scmatmat.s | ⊢ 𝑆 = (𝑁 ScMat 𝑅) |
scmate.k | ⊢ 𝐾 = (Base‘𝑅) |
scmate.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
scmatmats | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 = {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scmate.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
2 | scmatmat.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | scmatmat.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
4 | eqid 2799 | . . 3 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
5 | eqid 2799 | . . 3 ⊢ ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘𝐴) | |
6 | scmatmat.s | . . 3 ⊢ 𝑆 = (𝑁 ScMat 𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | scmatval 20636 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 = {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 𝑚 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))}) |
8 | simpr 478 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) → 𝑚 ∈ 𝐵) | |
9 | 8 | adantr 473 | . . . . . 6 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → 𝑚 ∈ 𝐵) |
10 | simpll 784 | . . . . . . 7 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) | |
11 | 2 | matring 20574 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
12 | 3, 4 | ringidcl 18884 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ Ring → (1r‘𝐴) ∈ 𝐵) |
13 | 11, 12 | syl 17 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) ∈ 𝐵) |
14 | 13 | adantr 473 | . . . . . . . . 9 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) → (1r‘𝐴) ∈ 𝐵) |
15 | 14 | anim1i 609 | . . . . . . . 8 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → ((1r‘𝐴) ∈ 𝐵 ∧ 𝑐 ∈ 𝐾)) |
16 | 15 | ancomd 454 | . . . . . . 7 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → (𝑐 ∈ 𝐾 ∧ (1r‘𝐴) ∈ 𝐵)) |
17 | 1, 2, 3, 5 | matvscl 20562 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑐 ∈ 𝐾 ∧ (1r‘𝐴) ∈ 𝐵)) → (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴)) ∈ 𝐵) |
18 | 10, 16, 17 | syl2anc 580 | . . . . . 6 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴)) ∈ 𝐵) |
19 | 2, 3 | eqmat 20555 | . . . . . 6 ⊢ ((𝑚 ∈ 𝐵 ∧ (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴)) ∈ 𝐵) → (𝑚 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴)) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = (𝑖(𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))𝑗))) |
20 | 9, 18, 19 | syl2anc 580 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → (𝑚 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴)) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = (𝑖(𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))𝑗))) |
21 | simplll 792 | . . . . . . . . 9 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → 𝑁 ∈ Fin) | |
22 | simpllr 794 | . . . . . . . . 9 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → 𝑅 ∈ Ring) | |
23 | simpr 478 | . . . . . . . . 9 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → 𝑐 ∈ 𝐾) | |
24 | 21, 22, 23 | 3jca 1159 | . . . . . . . 8 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑐 ∈ 𝐾)) |
25 | scmate.0 | . . . . . . . . 9 ⊢ 0 = (0g‘𝑅) | |
26 | 2, 1, 25, 4, 5 | scmatscmide 20639 | . . . . . . . 8 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑐 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )) |
27 | 24, 26 | sylan 576 | . . . . . . 7 ⊢ (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )) |
28 | 27 | eqeq2d 2809 | . . . . . 6 ⊢ (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((𝑖𝑚𝑗) = (𝑖(𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))𝑗) ↔ (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ))) |
29 | 28 | 2ralbidva 3169 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = (𝑖(𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))𝑗) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ))) |
30 | 20, 29 | bitrd 271 | . . . 4 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → (𝑚 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴)) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ))) |
31 | 30 | rexbidva 3230 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) → (∃𝑐 ∈ 𝐾 𝑚 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴)) ↔ ∃𝑐 ∈ 𝐾 ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ))) |
32 | 31 | rabbidva 3372 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 𝑚 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))} = {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )}) |
33 | 7, 32 | eqtrd 2833 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 = {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ∀wral 3089 ∃wrex 3090 {crab 3093 ifcif 4277 ‘cfv 6101 (class class class)co 6878 Fincfn 8195 Basecbs 16184 ·𝑠 cvsca 16271 0gc0g 16415 1rcur 18817 Ringcrg 18863 Mat cmat 20538 ScMat cscmat 20621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-ot 4377 df-uni 4629 df-int 4668 df-iun 4712 df-iin 4713 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-of 7131 df-om 7300 df-1st 7401 df-2nd 7402 df-supp 7533 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-oadd 7803 df-er 7982 df-map 8097 df-ixp 8149 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-fsupp 8518 df-sup 8590 df-oi 8657 df-card 9051 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-5 11379 df-6 11380 df-7 11381 df-8 11382 df-9 11383 df-n0 11581 df-z 11667 df-dec 11784 df-uz 11931 df-fz 12581 df-fzo 12721 df-seq 13056 df-hash 13371 df-struct 16186 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-ress 16192 df-plusg 16280 df-mulr 16281 df-sca 16283 df-vsca 16284 df-ip 16285 df-tset 16286 df-ple 16287 df-ds 16289 df-hom 16291 df-cco 16292 df-0g 16417 df-gsum 16418 df-prds 16423 df-pws 16425 df-mre 16561 df-mrc 16562 df-acs 16564 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-mhm 17650 df-submnd 17651 df-grp 17741 df-minusg 17742 df-sbg 17743 df-mulg 17857 df-subg 17904 df-ghm 17971 df-cntz 18062 df-cmn 18510 df-abl 18511 df-mgp 18806 df-ur 18818 df-ring 18865 df-subrg 19096 df-lmod 19183 df-lss 19251 df-sra 19495 df-rgmod 19496 df-dsmm 20401 df-frlm 20416 df-mamu 20515 df-mat 20539 df-scmat 20623 |
This theorem is referenced by: scmateALT 20644 scmatdmat 20647 |
Copyright terms: Public domain | W3C validator |