![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > scmatmats | Structured version Visualization version GIF version |
Description: The set of an 𝑁 x 𝑁 scalar matrices over the ring 𝑅 expressed as a subset of 𝑁 x 𝑁 matrices over the ring 𝑅 with certain properties for their entries. (Contributed by AV, 31-Oct-2019.) (Revised by AV, 19-Dec-2019.) |
Ref | Expression |
---|---|
scmatmat.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
scmatmat.b | ⊢ 𝐵 = (Base‘𝐴) |
scmatmat.s | ⊢ 𝑆 = (𝑁 ScMat 𝑅) |
scmate.k | ⊢ 𝐾 = (Base‘𝑅) |
scmate.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
scmatmats | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 = {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scmate.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
2 | scmatmat.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | scmatmat.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
4 | eqid 2740 | . . 3 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
5 | eqid 2740 | . . 3 ⊢ ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘𝐴) | |
6 | scmatmat.s | . . 3 ⊢ 𝑆 = (𝑁 ScMat 𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | scmatval 22531 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 = {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 𝑚 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))}) |
8 | simpr 484 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) → 𝑚 ∈ 𝐵) | |
9 | 8 | adantr 480 | . . . . . 6 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → 𝑚 ∈ 𝐵) |
10 | simpll 766 | . . . . . . 7 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) | |
11 | 2 | matring 22470 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
12 | 3, 4 | ringidcl 20289 | . . . . . . . . . 10 ⊢ (𝐴 ∈ Ring → (1r‘𝐴) ∈ 𝐵) |
13 | 11, 12 | syl 17 | . . . . . . . . 9 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) ∈ 𝐵) |
14 | 13 | adantr 480 | . . . . . . . 8 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) → (1r‘𝐴) ∈ 𝐵) |
15 | 14 | anim1ci 615 | . . . . . . 7 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → (𝑐 ∈ 𝐾 ∧ (1r‘𝐴) ∈ 𝐵)) |
16 | 1, 2, 3, 5 | matvscl 22458 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑐 ∈ 𝐾 ∧ (1r‘𝐴) ∈ 𝐵)) → (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴)) ∈ 𝐵) |
17 | 10, 15, 16 | syl2anc 583 | . . . . . 6 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴)) ∈ 𝐵) |
18 | 2, 3 | eqmat 22451 | . . . . . 6 ⊢ ((𝑚 ∈ 𝐵 ∧ (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴)) ∈ 𝐵) → (𝑚 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴)) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = (𝑖(𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))𝑗))) |
19 | 9, 17, 18 | syl2anc 583 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → (𝑚 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴)) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = (𝑖(𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))𝑗))) |
20 | simplll 774 | . . . . . . . . 9 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → 𝑁 ∈ Fin) | |
21 | simpllr 775 | . . . . . . . . 9 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → 𝑅 ∈ Ring) | |
22 | simpr 484 | . . . . . . . . 9 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → 𝑐 ∈ 𝐾) | |
23 | 20, 21, 22 | 3jca 1128 | . . . . . . . 8 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑐 ∈ 𝐾)) |
24 | scmate.0 | . . . . . . . . 9 ⊢ 0 = (0g‘𝑅) | |
25 | 2, 1, 24, 4, 5 | scmatscmide 22534 | . . . . . . . 8 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑐 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )) |
26 | 23, 25 | sylan 579 | . . . . . . 7 ⊢ (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )) |
27 | 26 | eqeq2d 2751 | . . . . . 6 ⊢ (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((𝑖𝑚𝑗) = (𝑖(𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))𝑗) ↔ (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ))) |
28 | 27 | 2ralbidva 3225 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = (𝑖(𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))𝑗) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ))) |
29 | 19, 28 | bitrd 279 | . . . 4 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → (𝑚 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴)) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ))) |
30 | 29 | rexbidva 3183 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) → (∃𝑐 ∈ 𝐾 𝑚 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴)) ↔ ∃𝑐 ∈ 𝐾 ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ))) |
31 | 30 | rabbidva 3450 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 𝑚 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))} = {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )}) |
32 | 7, 31 | eqtrd 2780 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 = {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 {crab 3443 ifcif 4548 ‘cfv 6573 (class class class)co 7448 Fincfn 9003 Basecbs 17258 ·𝑠 cvsca 17315 0gc0g 17499 1rcur 20208 Ringcrg 20260 Mat cmat 22432 ScMat cscmat 22516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-hom 17335 df-cco 17336 df-0g 17501 df-gsum 17502 df-prds 17507 df-pws 17509 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-ghm 19253 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-subrg 20597 df-lmod 20882 df-lss 20953 df-sra 21195 df-rgmod 21196 df-dsmm 21775 df-frlm 21790 df-mamu 22416 df-mat 22433 df-scmat 22518 |
This theorem is referenced by: scmateALT 22539 scmatdmat 22542 |
Copyright terms: Public domain | W3C validator |