![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > scmatmats | Structured version Visualization version GIF version |
Description: The set of an 𝑁 x 𝑁 scalar matrices over the ring 𝑅 expressed as a subset of 𝑁 x 𝑁 matrices over the ring 𝑅 with certain properties for their entries. (Contributed by AV, 31-Oct-2019.) (Revised by AV, 19-Dec-2019.) |
Ref | Expression |
---|---|
scmatmat.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
scmatmat.b | ⊢ 𝐵 = (Base‘𝐴) |
scmatmat.s | ⊢ 𝑆 = (𝑁 ScMat 𝑅) |
scmate.k | ⊢ 𝐾 = (Base‘𝑅) |
scmate.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
scmatmats | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 = {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scmate.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
2 | scmatmat.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | scmatmat.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
4 | eqid 2736 | . . 3 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
5 | eqid 2736 | . . 3 ⊢ ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘𝐴) | |
6 | scmatmat.s | . . 3 ⊢ 𝑆 = (𝑁 ScMat 𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | scmatval 21853 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 = {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 𝑚 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))}) |
8 | simpr 485 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) → 𝑚 ∈ 𝐵) | |
9 | 8 | adantr 481 | . . . . . 6 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → 𝑚 ∈ 𝐵) |
10 | simpll 765 | . . . . . . 7 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) | |
11 | 2 | matring 21792 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
12 | 3, 4 | ringidcl 19989 | . . . . . . . . . 10 ⊢ (𝐴 ∈ Ring → (1r‘𝐴) ∈ 𝐵) |
13 | 11, 12 | syl 17 | . . . . . . . . 9 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) ∈ 𝐵) |
14 | 13 | adantr 481 | . . . . . . . 8 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) → (1r‘𝐴) ∈ 𝐵) |
15 | 14 | anim1ci 616 | . . . . . . 7 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → (𝑐 ∈ 𝐾 ∧ (1r‘𝐴) ∈ 𝐵)) |
16 | 1, 2, 3, 5 | matvscl 21780 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑐 ∈ 𝐾 ∧ (1r‘𝐴) ∈ 𝐵)) → (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴)) ∈ 𝐵) |
17 | 10, 15, 16 | syl2anc 584 | . . . . . 6 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴)) ∈ 𝐵) |
18 | 2, 3 | eqmat 21773 | . . . . . 6 ⊢ ((𝑚 ∈ 𝐵 ∧ (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴)) ∈ 𝐵) → (𝑚 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴)) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = (𝑖(𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))𝑗))) |
19 | 9, 17, 18 | syl2anc 584 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → (𝑚 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴)) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = (𝑖(𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))𝑗))) |
20 | simplll 773 | . . . . . . . . 9 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → 𝑁 ∈ Fin) | |
21 | simpllr 774 | . . . . . . . . 9 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → 𝑅 ∈ Ring) | |
22 | simpr 485 | . . . . . . . . 9 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → 𝑐 ∈ 𝐾) | |
23 | 20, 21, 22 | 3jca 1128 | . . . . . . . 8 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑐 ∈ 𝐾)) |
24 | scmate.0 | . . . . . . . . 9 ⊢ 0 = (0g‘𝑅) | |
25 | 2, 1, 24, 4, 5 | scmatscmide 21856 | . . . . . . . 8 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑐 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )) |
26 | 23, 25 | sylan 580 | . . . . . . 7 ⊢ (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )) |
27 | 26 | eqeq2d 2747 | . . . . . 6 ⊢ (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((𝑖𝑚𝑗) = (𝑖(𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))𝑗) ↔ (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ))) |
28 | 27 | 2ralbidva 3210 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = (𝑖(𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))𝑗) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ))) |
29 | 19, 28 | bitrd 278 | . . . 4 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) ∧ 𝑐 ∈ 𝐾) → (𝑚 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴)) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ))) |
30 | 29 | rexbidva 3173 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) → (∃𝑐 ∈ 𝐾 𝑚 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴)) ↔ ∃𝑐 ∈ 𝐾 ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ))) |
31 | 30 | rabbidva 3414 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 𝑚 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))} = {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )}) |
32 | 7, 31 | eqtrd 2776 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 = {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3064 ∃wrex 3073 {crab 3407 ifcif 4486 ‘cfv 6496 (class class class)co 7357 Fincfn 8883 Basecbs 17083 ·𝑠 cvsca 17137 0gc0g 17321 1rcur 19913 Ringcrg 19964 Mat cmat 21754 ScMat cscmat 21838 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-ot 4595 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-sup 9378 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-fz 13425 df-fzo 13568 df-seq 13907 df-hash 14231 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-hom 17157 df-cco 17158 df-0g 17323 df-gsum 17324 df-prds 17329 df-pws 17331 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-mhm 18601 df-submnd 18602 df-grp 18751 df-minusg 18752 df-sbg 18753 df-mulg 18873 df-subg 18925 df-ghm 19006 df-cntz 19097 df-cmn 19564 df-abl 19565 df-mgp 19897 df-ur 19914 df-ring 19966 df-subrg 20220 df-lmod 20324 df-lss 20393 df-sra 20633 df-rgmod 20634 df-dsmm 21138 df-frlm 21153 df-mamu 21733 df-mat 21755 df-scmat 21840 |
This theorem is referenced by: scmateALT 21861 scmatdmat 21864 |
Copyright terms: Public domain | W3C validator |