![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > scmatlss | Structured version Visualization version GIF version |
Description: The set of scalar matrices is a linear subspace of the matrix algebra. (Contributed by AV, 25-Dec-2019.) |
Ref | Expression |
---|---|
scmatlss.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
scmatlss.s | ⊢ 𝑆 = (𝑁 ScMat 𝑅) |
Ref | Expression |
---|---|
scmatlss | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (LSubSp‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scmatlss.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | 1 | matsca2 22442 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝐴)) |
3 | eqidd 2736 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝑅) = (Base‘𝑅)) | |
4 | eqidd 2736 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝐴) = (Base‘𝐴)) | |
5 | eqidd 2736 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (+g‘𝐴) = (+g‘𝐴)) | |
6 | eqidd 2736 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘𝐴)) | |
7 | eqidd 2736 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (LSubSp‘𝐴) = (LSubSp‘𝐴)) | |
8 | eqid 2735 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
9 | eqid 2735 | . . . 4 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
10 | eqid 2735 | . . . 4 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
11 | eqid 2735 | . . . 4 ⊢ ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘𝐴) | |
12 | scmatlss.s | . . . 4 ⊢ 𝑆 = (𝑁 ScMat 𝑅) | |
13 | 8, 1, 9, 10, 11, 12 | scmatval 22526 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)𝑚 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))}) |
14 | ssrab2 4090 | . . 3 ⊢ {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)𝑚 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))} ⊆ (Base‘𝐴) | |
15 | 13, 14 | eqsstrdi 4050 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ⊆ (Base‘𝐴)) |
16 | eqid 2735 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
17 | 1, 9, 8, 16, 12 | scmatid 22536 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) ∈ 𝑆) |
18 | 17 | ne0d 4348 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ≠ ∅) |
19 | 8, 1, 12, 11 | smatvscl 22546 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥 ∈ 𝑆)) → (𝑎( ·𝑠 ‘𝐴)𝑥) ∈ 𝑆) |
20 | 19 | 3adantr3 1170 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑎( ·𝑠 ‘𝐴)𝑥) ∈ 𝑆) |
21 | simpr3 1195 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ 𝑆) | |
22 | 20, 21 | jca 511 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑎( ·𝑠 ‘𝐴)𝑥) ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) |
23 | 1, 9, 8, 16, 12 | scmataddcl 22538 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑎( ·𝑠 ‘𝐴)𝑥) ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑎( ·𝑠 ‘𝐴)𝑥)(+g‘𝐴)𝑦) ∈ 𝑆) |
24 | 22, 23 | syldan 591 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑎( ·𝑠 ‘𝐴)𝑥)(+g‘𝐴)𝑦) ∈ 𝑆) |
25 | 2, 3, 4, 5, 6, 7, 15, 18, 24 | islssd 20951 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (LSubSp‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 {crab 3433 ‘cfv 6563 (class class class)co 7431 Fincfn 8984 Basecbs 17245 +gcplusg 17298 ·𝑠 cvsca 17302 0gc0g 17486 1rcur 20199 Ringcrg 20251 LSubSpclss 20947 Mat cmat 22427 ScMat cscmat 22511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-ot 4640 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-sup 9480 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-fzo 13692 df-seq 14040 df-hash 14367 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17488 df-gsum 17489 df-prds 17494 df-pws 17496 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-subg 19154 df-ghm 19244 df-cntz 19348 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-subrg 20587 df-lmod 20877 df-lss 20948 df-sra 21190 df-rgmod 21191 df-dsmm 21770 df-frlm 21785 df-mamu 22411 df-mat 22428 df-scmat 22513 |
This theorem is referenced by: scmatghm 22555 |
Copyright terms: Public domain | W3C validator |