MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatlss Structured version   Visualization version   GIF version

Theorem scmatlss 22438
Description: The set of scalar matrices is a linear subspace of the matrix algebra. (Contributed by AV, 25-Dec-2019.)
Hypotheses
Ref Expression
scmatlss.a 𝐴 = (𝑁 Mat 𝑅)
scmatlss.s 𝑆 = (𝑁 ScMat 𝑅)
Assertion
Ref Expression
scmatlss ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (LSubSp‘𝐴))

Proof of Theorem scmatlss
Dummy variables 𝑎 𝑥 𝑦 𝑚 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatlss.a . . 3 𝐴 = (𝑁 Mat 𝑅)
21matsca2 22333 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝐴))
3 eqidd 2732 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝑅) = (Base‘𝑅))
4 eqidd 2732 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝐴) = (Base‘𝐴))
5 eqidd 2732 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (+g𝐴) = (+g𝐴))
6 eqidd 2732 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ( ·𝑠𝐴) = ( ·𝑠𝐴))
7 eqidd 2732 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (LSubSp‘𝐴) = (LSubSp‘𝐴))
8 eqid 2731 . . . 4 (Base‘𝑅) = (Base‘𝑅)
9 eqid 2731 . . . 4 (Base‘𝐴) = (Base‘𝐴)
10 eqid 2731 . . . 4 (1r𝐴) = (1r𝐴)
11 eqid 2731 . . . 4 ( ·𝑠𝐴) = ( ·𝑠𝐴)
12 scmatlss.s . . . 4 𝑆 = (𝑁 ScMat 𝑅)
138, 1, 9, 10, 11, 12scmatval 22417 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)𝑚 = (𝑐( ·𝑠𝐴)(1r𝐴))})
14 ssrab2 4030 . . 3 {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)𝑚 = (𝑐( ·𝑠𝐴)(1r𝐴))} ⊆ (Base‘𝐴)
1513, 14eqsstrdi 3979 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ⊆ (Base‘𝐴))
16 eqid 2731 . . . 4 (0g𝑅) = (0g𝑅)
171, 9, 8, 16, 12scmatid 22427 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) ∈ 𝑆)
1817ne0d 4292 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ≠ ∅)
198, 1, 12, 11smatvscl 22437 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥𝑆)) → (𝑎( ·𝑠𝐴)𝑥) ∈ 𝑆)
20193adantr3 1172 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥𝑆𝑦𝑆)) → (𝑎( ·𝑠𝐴)𝑥) ∈ 𝑆)
21 simpr3 1197 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥𝑆𝑦𝑆)) → 𝑦𝑆)
2220, 21jca 511 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥𝑆𝑦𝑆)) → ((𝑎( ·𝑠𝐴)𝑥) ∈ 𝑆𝑦𝑆))
231, 9, 8, 16, 12scmataddcl 22429 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑎( ·𝑠𝐴)𝑥) ∈ 𝑆𝑦𝑆)) → ((𝑎( ·𝑠𝐴)𝑥)(+g𝐴)𝑦) ∈ 𝑆)
2422, 23syldan 591 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥𝑆𝑦𝑆)) → ((𝑎( ·𝑠𝐴)𝑥)(+g𝐴)𝑦) ∈ 𝑆)
252, 3, 4, 5, 6, 7, 15, 18, 24islssd 20866 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (LSubSp‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  {crab 3395  cfv 6481  (class class class)co 7346  Fincfn 8869  Basecbs 17117  +gcplusg 17158   ·𝑠 cvsca 17162  0gc0g 17340  1rcur 20097  Ringcrg 20149  LSubSpclss 20862   Mat cmat 22320   ScMat cscmat 22402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-fz 13405  df-fzo 13552  df-seq 13906  df-hash 14235  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-hom 17182  df-cco 17183  df-0g 17342  df-gsum 17343  df-prds 17348  df-pws 17350  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-mhm 18688  df-submnd 18689  df-grp 18846  df-minusg 18847  df-sbg 18848  df-mulg 18978  df-subg 19033  df-ghm 19123  df-cntz 19227  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-subrg 20483  df-lmod 20793  df-lss 20863  df-sra 21105  df-rgmod 21106  df-dsmm 21667  df-frlm 21682  df-mamu 22304  df-mat 22321  df-scmat 22404
This theorem is referenced by:  scmatghm  22446
  Copyright terms: Public domain W3C validator