![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > scmatlss | Structured version Visualization version GIF version |
Description: The set of scalar matrices is a linear subspace of the matrix algebra. (Contributed by AV, 25-Dec-2019.) |
Ref | Expression |
---|---|
scmatlss.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
scmatlss.s | ⊢ 𝑆 = (𝑁 ScMat 𝑅) |
Ref | Expression |
---|---|
scmatlss | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (LSubSp‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scmatlss.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | 1 | matsca2 20548 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝐴)) |
3 | eqidd 2798 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝑅) = (Base‘𝑅)) | |
4 | eqidd 2798 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝐴) = (Base‘𝐴)) | |
5 | eqidd 2798 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (+g‘𝐴) = (+g‘𝐴)) | |
6 | eqidd 2798 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘𝐴)) | |
7 | eqidd 2798 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (LSubSp‘𝐴) = (LSubSp‘𝐴)) | |
8 | eqid 2797 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
9 | eqid 2797 | . . . 4 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
10 | eqid 2797 | . . . 4 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
11 | eqid 2797 | . . . 4 ⊢ ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘𝐴) | |
12 | scmatlss.s | . . . 4 ⊢ 𝑆 = (𝑁 ScMat 𝑅) | |
13 | 8, 1, 9, 10, 11, 12 | scmatval 20633 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)𝑚 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))}) |
14 | ssrab2 3881 | . . 3 ⊢ {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)𝑚 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))} ⊆ (Base‘𝐴) | |
15 | 13, 14 | syl6eqss 3849 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ⊆ (Base‘𝐴)) |
16 | eqid 2797 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
17 | 1, 9, 8, 16, 12 | scmatid 20643 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) ∈ 𝑆) |
18 | 17 | ne0d 4120 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ≠ ∅) |
19 | 8, 1, 12, 11 | smatvscl 20653 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥 ∈ 𝑆)) → (𝑎( ·𝑠 ‘𝐴)𝑥) ∈ 𝑆) |
20 | 19 | 3adantr3 1213 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑎( ·𝑠 ‘𝐴)𝑥) ∈ 𝑆) |
21 | simpr3 1253 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ 𝑆) | |
22 | 20, 21 | jca 508 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑎( ·𝑠 ‘𝐴)𝑥) ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) |
23 | 1, 9, 8, 16, 12 | scmataddcl 20645 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑎( ·𝑠 ‘𝐴)𝑥) ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑎( ·𝑠 ‘𝐴)𝑥)(+g‘𝐴)𝑦) ∈ 𝑆) |
24 | 22, 23 | syldan 586 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑎( ·𝑠 ‘𝐴)𝑥)(+g‘𝐴)𝑦) ∈ 𝑆) |
25 | 2, 3, 4, 5, 6, 7, 15, 18, 24 | islssd 19251 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (LSubSp‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ∃wrex 3088 {crab 3091 ‘cfv 6099 (class class class)co 6876 Fincfn 8193 Basecbs 16181 +gcplusg 16264 ·𝑠 cvsca 16268 0gc0g 16412 1rcur 18814 Ringcrg 18860 LSubSpclss 19247 Mat cmat 20535 ScMat cscmat 20618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-inf2 8786 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-ot 4375 df-uni 4627 df-int 4666 df-iun 4710 df-iin 4711 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-se 5270 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-isom 6108 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-of 7129 df-om 7298 df-1st 7399 df-2nd 7400 df-supp 7531 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-1o 7797 df-oadd 7801 df-er 7980 df-map 8095 df-ixp 8147 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-fsupp 8516 df-sup 8588 df-oi 8655 df-card 9049 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-nn 11311 df-2 11372 df-3 11373 df-4 11374 df-5 11375 df-6 11376 df-7 11377 df-8 11378 df-9 11379 df-n0 11577 df-z 11663 df-dec 11780 df-uz 11927 df-fz 12577 df-fzo 12717 df-seq 13052 df-hash 13367 df-struct 16183 df-ndx 16184 df-slot 16185 df-base 16187 df-sets 16188 df-ress 16189 df-plusg 16277 df-mulr 16278 df-sca 16280 df-vsca 16281 df-ip 16282 df-tset 16283 df-ple 16284 df-ds 16286 df-hom 16288 df-cco 16289 df-0g 16414 df-gsum 16415 df-prds 16420 df-pws 16422 df-mre 16558 df-mrc 16559 df-acs 16561 df-mgm 17554 df-sgrp 17596 df-mnd 17607 df-mhm 17647 df-submnd 17648 df-grp 17738 df-minusg 17739 df-sbg 17740 df-mulg 17854 df-subg 17901 df-ghm 17968 df-cntz 18059 df-cmn 18507 df-abl 18508 df-mgp 18803 df-ur 18815 df-ring 18862 df-subrg 19093 df-lmod 19180 df-lss 19248 df-sra 19492 df-rgmod 19493 df-dsmm 20398 df-frlm 20413 df-mamu 20512 df-mat 20536 df-scmat 20620 |
This theorem is referenced by: scmatghm 20662 |
Copyright terms: Public domain | W3C validator |