Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > scmatlss | Structured version Visualization version GIF version |
Description: The set of scalar matrices is a linear subspace of the matrix algebra. (Contributed by AV, 25-Dec-2019.) |
Ref | Expression |
---|---|
scmatlss.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
scmatlss.s | ⊢ 𝑆 = (𝑁 ScMat 𝑅) |
Ref | Expression |
---|---|
scmatlss | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (LSubSp‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scmatlss.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | 1 | matsca2 21640 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝐴)) |
3 | eqidd 2738 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝑅) = (Base‘𝑅)) | |
4 | eqidd 2738 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝐴) = (Base‘𝐴)) | |
5 | eqidd 2738 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (+g‘𝐴) = (+g‘𝐴)) | |
6 | eqidd 2738 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘𝐴)) | |
7 | eqidd 2738 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (LSubSp‘𝐴) = (LSubSp‘𝐴)) | |
8 | eqid 2737 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
9 | eqid 2737 | . . . 4 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
10 | eqid 2737 | . . . 4 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
11 | eqid 2737 | . . . 4 ⊢ ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘𝐴) | |
12 | scmatlss.s | . . . 4 ⊢ 𝑆 = (𝑁 ScMat 𝑅) | |
13 | 8, 1, 9, 10, 11, 12 | scmatval 21724 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)𝑚 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))}) |
14 | ssrab2 4023 | . . 3 ⊢ {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)𝑚 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))} ⊆ (Base‘𝐴) | |
15 | 13, 14 | eqsstrdi 3984 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ⊆ (Base‘𝐴)) |
16 | eqid 2737 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
17 | 1, 9, 8, 16, 12 | scmatid 21734 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) ∈ 𝑆) |
18 | 17 | ne0d 4279 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ≠ ∅) |
19 | 8, 1, 12, 11 | smatvscl 21744 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥 ∈ 𝑆)) → (𝑎( ·𝑠 ‘𝐴)𝑥) ∈ 𝑆) |
20 | 19 | 3adantr3 1170 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑎( ·𝑠 ‘𝐴)𝑥) ∈ 𝑆) |
21 | simpr3 1195 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ 𝑆) | |
22 | 20, 21 | jca 512 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑎( ·𝑠 ‘𝐴)𝑥) ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) |
23 | 1, 9, 8, 16, 12 | scmataddcl 21736 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑎( ·𝑠 ‘𝐴)𝑥) ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑎( ·𝑠 ‘𝐴)𝑥)(+g‘𝐴)𝑦) ∈ 𝑆) |
24 | 22, 23 | syldan 591 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑎( ·𝑠 ‘𝐴)𝑥)(+g‘𝐴)𝑦) ∈ 𝑆) |
25 | 2, 3, 4, 5, 6, 7, 15, 18, 24 | islssd 20268 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (LSubSp‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∃wrex 3071 {crab 3404 ‘cfv 6463 (class class class)co 7313 Fincfn 8779 Basecbs 16979 +gcplusg 17029 ·𝑠 cvsca 17033 0gc0g 17217 1rcur 19804 Ringcrg 19850 LSubSpclss 20264 Mat cmat 21625 ScMat cscmat 21709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-tp 4574 df-op 4576 df-ot 4578 df-uni 4849 df-int 4891 df-iun 4937 df-iin 4938 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-se 5561 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-isom 6472 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-of 7571 df-om 7756 df-1st 7874 df-2nd 7875 df-supp 8023 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-1o 8342 df-er 8544 df-map 8663 df-ixp 8732 df-en 8780 df-dom 8781 df-sdom 8782 df-fin 8783 df-fsupp 9197 df-sup 9269 df-oi 9337 df-card 9765 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-nn 12044 df-2 12106 df-3 12107 df-4 12108 df-5 12109 df-6 12110 df-7 12111 df-8 12112 df-9 12113 df-n0 12304 df-z 12390 df-dec 12508 df-uz 12653 df-fz 13310 df-fzo 13453 df-seq 13792 df-hash 14115 df-struct 16915 df-sets 16932 df-slot 16950 df-ndx 16962 df-base 16980 df-ress 17009 df-plusg 17042 df-mulr 17043 df-sca 17045 df-vsca 17046 df-ip 17047 df-tset 17048 df-ple 17049 df-ds 17051 df-hom 17053 df-cco 17054 df-0g 17219 df-gsum 17220 df-prds 17225 df-pws 17227 df-mre 17362 df-mrc 17363 df-acs 17365 df-mgm 18393 df-sgrp 18442 df-mnd 18453 df-mhm 18497 df-submnd 18498 df-grp 18647 df-minusg 18648 df-sbg 18649 df-mulg 18768 df-subg 18819 df-ghm 18899 df-cntz 18990 df-cmn 19455 df-abl 19456 df-mgp 19788 df-ur 19805 df-ring 19852 df-subrg 20093 df-lmod 20196 df-lss 20265 df-sra 20505 df-rgmod 20506 df-dsmm 21010 df-frlm 21025 df-mamu 21604 df-mat 21626 df-scmat 21711 |
This theorem is referenced by: scmatghm 21753 |
Copyright terms: Public domain | W3C validator |