Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sepcsepo Structured version   Visualization version   GIF version

Theorem sepcsepo 46220
Description: If two sets are separated by closed neighborhoods, then they are separated by (open) neighborhoods. See sepnsepo 46217 for the equivalence between separatedness by open neighborhoods and separatedness by neighborhoods. Although 𝐽 ∈ Top might be redundant here, it is listed for explicitness. 𝐽 ∈ Top can be obtained from neircl 46198, adantr 481, and rexlimiva 3210. (Contributed by Zhi Wang, 8-Sep-2024.)
Hypotheses
Ref Expression
sepdisj.1 (𝜑𝐽 ∈ Top)
sepcsepo.2 (𝜑 → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅))
Assertion
Ref Expression
sepcsepo (𝜑 → ∃𝑛𝐽𝑚𝐽 (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅))
Distinct variable groups:   𝑚,𝐽,𝑛   𝑆,𝑚,𝑛   𝑇,𝑚,𝑛
Allowed substitution hints:   𝜑(𝑚,𝑛)

Proof of Theorem sepcsepo
StepHypRef Expression
1 sepcsepo.2 . . 3 (𝜑 → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅))
2 simp3 1137 . . . . 5 ((𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅) → (𝑛𝑚) = ∅)
32reximi 3178 . . . 4 (∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅) → ∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛𝑚) = ∅)
43reximi 3178 . . 3 (∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅) → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛𝑚) = ∅)
51, 4syl 17 . 2 (𝜑 → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛𝑚) = ∅)
6 sepdisj.1 . . 3 (𝜑𝐽 ∈ Top)
76sepnsepo 46217 . 2 (𝜑 → (∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛𝑚) = ∅ ↔ ∃𝑛𝐽𝑚𝐽 (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)))
85, 7mpbid 231 1 (𝜑 → ∃𝑛𝐽𝑚𝐽 (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  cin 3886  wss 3887  c0 4256  cfv 6433  Topctop 22042  Clsdccld 22167  neicnei 22248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-top 22043  df-nei 22249
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator