Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sepcsepo Structured version   Visualization version   GIF version

Theorem sepcsepo 47647
Description: If two sets are separated by closed neighborhoods, then they are separated by (open) neighborhoods. See sepnsepo 47644 for the equivalence between separatedness by open neighborhoods and separatedness by neighborhoods. Although 𝐽 ∈ Top might be redundant here, it is listed for explicitness. 𝐽 ∈ Top can be obtained from neircl 47625, adantr 481, and rexlimiva 3147. (Contributed by Zhi Wang, 8-Sep-2024.)
Hypotheses
Ref Expression
sepdisj.1 (πœ‘ β†’ 𝐽 ∈ Top)
sepcsepo.2 (πœ‘ β†’ βˆƒπ‘› ∈ ((neiβ€˜π½)β€˜π‘†)βˆƒπ‘š ∈ ((neiβ€˜π½)β€˜π‘‡)(𝑛 ∈ (Clsdβ€˜π½) ∧ π‘š ∈ (Clsdβ€˜π½) ∧ (𝑛 ∩ π‘š) = βˆ…))
Assertion
Ref Expression
sepcsepo (πœ‘ β†’ βˆƒπ‘› ∈ 𝐽 βˆƒπ‘š ∈ 𝐽 (𝑆 βŠ† 𝑛 ∧ 𝑇 βŠ† π‘š ∧ (𝑛 ∩ π‘š) = βˆ…))
Distinct variable groups:   π‘š,𝐽,𝑛   𝑆,π‘š,𝑛   𝑇,π‘š,𝑛
Allowed substitution hints:   πœ‘(π‘š,𝑛)

Proof of Theorem sepcsepo
StepHypRef Expression
1 sepcsepo.2 . . 3 (πœ‘ β†’ βˆƒπ‘› ∈ ((neiβ€˜π½)β€˜π‘†)βˆƒπ‘š ∈ ((neiβ€˜π½)β€˜π‘‡)(𝑛 ∈ (Clsdβ€˜π½) ∧ π‘š ∈ (Clsdβ€˜π½) ∧ (𝑛 ∩ π‘š) = βˆ…))
2 simp3 1138 . . . . 5 ((𝑛 ∈ (Clsdβ€˜π½) ∧ π‘š ∈ (Clsdβ€˜π½) ∧ (𝑛 ∩ π‘š) = βˆ…) β†’ (𝑛 ∩ π‘š) = βˆ…)
32reximi 3084 . . . 4 (βˆƒπ‘š ∈ ((neiβ€˜π½)β€˜π‘‡)(𝑛 ∈ (Clsdβ€˜π½) ∧ π‘š ∈ (Clsdβ€˜π½) ∧ (𝑛 ∩ π‘š) = βˆ…) β†’ βˆƒπ‘š ∈ ((neiβ€˜π½)β€˜π‘‡)(𝑛 ∩ π‘š) = βˆ…)
43reximi 3084 . . 3 (βˆƒπ‘› ∈ ((neiβ€˜π½)β€˜π‘†)βˆƒπ‘š ∈ ((neiβ€˜π½)β€˜π‘‡)(𝑛 ∈ (Clsdβ€˜π½) ∧ π‘š ∈ (Clsdβ€˜π½) ∧ (𝑛 ∩ π‘š) = βˆ…) β†’ βˆƒπ‘› ∈ ((neiβ€˜π½)β€˜π‘†)βˆƒπ‘š ∈ ((neiβ€˜π½)β€˜π‘‡)(𝑛 ∩ π‘š) = βˆ…)
51, 4syl 17 . 2 (πœ‘ β†’ βˆƒπ‘› ∈ ((neiβ€˜π½)β€˜π‘†)βˆƒπ‘š ∈ ((neiβ€˜π½)β€˜π‘‡)(𝑛 ∩ π‘š) = βˆ…)
6 sepdisj.1 . . 3 (πœ‘ β†’ 𝐽 ∈ Top)
76sepnsepo 47644 . 2 (πœ‘ β†’ (βˆƒπ‘› ∈ ((neiβ€˜π½)β€˜π‘†)βˆƒπ‘š ∈ ((neiβ€˜π½)β€˜π‘‡)(𝑛 ∩ π‘š) = βˆ… ↔ βˆƒπ‘› ∈ 𝐽 βˆƒπ‘š ∈ 𝐽 (𝑆 βŠ† 𝑛 ∧ 𝑇 βŠ† π‘š ∧ (𝑛 ∩ π‘š) = βˆ…)))
85, 7mpbid 231 1 (πœ‘ β†’ βˆƒπ‘› ∈ 𝐽 βˆƒπ‘š ∈ 𝐽 (𝑆 βŠ† 𝑛 ∧ 𝑇 βŠ† π‘š ∧ (𝑛 ∩ π‘š) = βˆ…))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070   ∩ cin 3947   βŠ† wss 3948  βˆ…c0 4322  β€˜cfv 6543  Topctop 22615  Clsdccld 22740  neicnei 22821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-top 22616  df-nei 22822
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator