Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigagensiga Structured version   Visualization version   GIF version

Theorem sigagensiga 34131
Description: A generated sigma-algebra is a sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016.)
Assertion
Ref Expression
sigagensiga (𝐴𝑉 → (sigaGen‘𝐴) ∈ (sigAlgebra‘ 𝐴))

Proof of Theorem sigagensiga
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 sigagenval 34130 . 2 (𝐴𝑉 → (sigaGen‘𝐴) = {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠})
2 fvex 6871 . . . . 5 (sigaGen‘𝐴) ∈ V
31, 2eqeltrrdi 2837 . . . 4 (𝐴𝑉 {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ V)
4 intex 5299 . . . 4 ({𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ≠ ∅ ↔ {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ V)
53, 4sylibr 234 . . 3 (𝐴𝑉 → {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ≠ ∅)
6 ssrab2 4043 . . . . 5 {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ⊆ (sigAlgebra‘ 𝐴)
76a1i 11 . . . 4 (𝐴𝑉 → {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ⊆ (sigAlgebra‘ 𝐴))
8 fvex 6871 . . . . 5 (sigAlgebra‘ 𝐴) ∈ V
98elpw2 5289 . . . 4 ({𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ 𝒫 (sigAlgebra‘ 𝐴) ↔ {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ⊆ (sigAlgebra‘ 𝐴))
107, 9sylibr 234 . . 3 (𝐴𝑉 → {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ 𝒫 (sigAlgebra‘ 𝐴))
11 insiga 34127 . . 3 (({𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ≠ ∅ ∧ {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ 𝒫 (sigAlgebra‘ 𝐴)) → {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ (sigAlgebra‘ 𝐴))
125, 10, 11syl2anc 584 . 2 (𝐴𝑉 {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ (sigAlgebra‘ 𝐴))
131, 12eqeltrd 2828 1 (𝐴𝑉 → (sigaGen‘𝐴) ∈ (sigAlgebra‘ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wne 2925  {crab 3405  Vcvv 3447  wss 3914  c0 4296  𝒫 cpw 4563   cuni 4871   cint 4910  cfv 6511  sigAlgebracsiga 34098  sigaGencsigagen 34128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-siga 34099  df-sigagen 34129
This theorem is referenced by:  sgsiga  34132  unisg  34133  sigagenss2  34140  brsiga  34173  brsigarn  34174  cldssbrsiga  34177  sxsiga  34181  cnmbfm  34254  sxbrsiga  34281
  Copyright terms: Public domain W3C validator