| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sigagensiga | Structured version Visualization version GIF version | ||
| Description: A generated sigma-algebra is a sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016.) |
| Ref | Expression |
|---|---|
| sigagensiga | ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) ∈ (sigAlgebra‘∪ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sigagenval 34123 | . 2 ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) = ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) | |
| 2 | fvex 6853 | . . . . 5 ⊢ (sigaGen‘𝐴) ∈ V | |
| 3 | 1, 2 | eqeltrrdi 2837 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ V) |
| 4 | intex 5294 | . . . 4 ⊢ ({𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ≠ ∅ ↔ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ V) | |
| 5 | 3, 4 | sylibr 234 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ≠ ∅) |
| 6 | ssrab2 4039 | . . . . 5 ⊢ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ⊆ (sigAlgebra‘∪ 𝐴) | |
| 7 | 6 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ⊆ (sigAlgebra‘∪ 𝐴)) |
| 8 | fvex 6853 | . . . . 5 ⊢ (sigAlgebra‘∪ 𝐴) ∈ V | |
| 9 | 8 | elpw2 5284 | . . . 4 ⊢ ({𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ 𝒫 (sigAlgebra‘∪ 𝐴) ↔ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ⊆ (sigAlgebra‘∪ 𝐴)) |
| 10 | 7, 9 | sylibr 234 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ 𝒫 (sigAlgebra‘∪ 𝐴)) |
| 11 | insiga 34120 | . . 3 ⊢ (({𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ≠ ∅ ∧ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ 𝒫 (sigAlgebra‘∪ 𝐴)) → ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ (sigAlgebra‘∪ 𝐴)) | |
| 12 | 5, 10, 11 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ (sigAlgebra‘∪ 𝐴)) |
| 13 | 1, 12 | eqeltrd 2828 | 1 ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) ∈ (sigAlgebra‘∪ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 {crab 3402 Vcvv 3444 ⊆ wss 3911 ∅c0 4292 𝒫 cpw 4559 ∪ cuni 4867 ∩ cint 4906 ‘cfv 6499 sigAlgebracsiga 34091 sigaGencsigagen 34121 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-siga 34092 df-sigagen 34122 |
| This theorem is referenced by: sgsiga 34125 unisg 34126 sigagenss2 34133 brsiga 34166 brsigarn 34167 cldssbrsiga 34170 sxsiga 34174 cnmbfm 34247 sxbrsiga 34274 |
| Copyright terms: Public domain | W3C validator |