| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sigagensiga | Structured version Visualization version GIF version | ||
| Description: A generated sigma-algebra is a sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016.) |
| Ref | Expression |
|---|---|
| sigagensiga | ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) ∈ (sigAlgebra‘∪ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sigagenval 34113 | . 2 ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) = ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) | |
| 2 | fvex 6835 | . . . . 5 ⊢ (sigaGen‘𝐴) ∈ V | |
| 3 | 1, 2 | eqeltrrdi 2837 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ V) |
| 4 | intex 5283 | . . . 4 ⊢ ({𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ≠ ∅ ↔ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ V) | |
| 5 | 3, 4 | sylibr 234 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ≠ ∅) |
| 6 | ssrab2 4031 | . . . . 5 ⊢ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ⊆ (sigAlgebra‘∪ 𝐴) | |
| 7 | 6 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ⊆ (sigAlgebra‘∪ 𝐴)) |
| 8 | fvex 6835 | . . . . 5 ⊢ (sigAlgebra‘∪ 𝐴) ∈ V | |
| 9 | 8 | elpw2 5273 | . . . 4 ⊢ ({𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ 𝒫 (sigAlgebra‘∪ 𝐴) ↔ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ⊆ (sigAlgebra‘∪ 𝐴)) |
| 10 | 7, 9 | sylibr 234 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ 𝒫 (sigAlgebra‘∪ 𝐴)) |
| 11 | insiga 34110 | . . 3 ⊢ (({𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ≠ ∅ ∧ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ 𝒫 (sigAlgebra‘∪ 𝐴)) → ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ (sigAlgebra‘∪ 𝐴)) | |
| 12 | 5, 10, 11 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ (sigAlgebra‘∪ 𝐴)) |
| 13 | 1, 12 | eqeltrd 2828 | 1 ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) ∈ (sigAlgebra‘∪ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 {crab 3394 Vcvv 3436 ⊆ wss 3903 ∅c0 4284 𝒫 cpw 4551 ∪ cuni 4858 ∩ cint 4896 ‘cfv 6482 sigAlgebracsiga 34081 sigaGencsigagen 34111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 df-siga 34082 df-sigagen 34112 |
| This theorem is referenced by: sgsiga 34115 unisg 34116 sigagenss2 34123 brsiga 34156 brsigarn 34157 cldssbrsiga 34160 sxsiga 34164 cnmbfm 34237 sxbrsiga 34264 |
| Copyright terms: Public domain | W3C validator |