Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigagensiga Structured version   Visualization version   GIF version

Theorem sigagensiga 32405
Description: A generated sigma-algebra is a sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016.)
Assertion
Ref Expression
sigagensiga (𝐴𝑉 → (sigaGen‘𝐴) ∈ (sigAlgebra‘ 𝐴))

Proof of Theorem sigagensiga
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 sigagenval 32404 . 2 (𝐴𝑉 → (sigaGen‘𝐴) = {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠})
2 fvex 6842 . . . . 5 (sigaGen‘𝐴) ∈ V
31, 2eqeltrrdi 2847 . . . 4 (𝐴𝑉 {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ V)
4 intex 5285 . . . 4 ({𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ≠ ∅ ↔ {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ V)
53, 4sylibr 233 . . 3 (𝐴𝑉 → {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ≠ ∅)
6 ssrab2 4028 . . . . 5 {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ⊆ (sigAlgebra‘ 𝐴)
76a1i 11 . . . 4 (𝐴𝑉 → {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ⊆ (sigAlgebra‘ 𝐴))
8 fvex 6842 . . . . 5 (sigAlgebra‘ 𝐴) ∈ V
98elpw2 5293 . . . 4 ({𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ 𝒫 (sigAlgebra‘ 𝐴) ↔ {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ⊆ (sigAlgebra‘ 𝐴))
107, 9sylibr 233 . . 3 (𝐴𝑉 → {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ 𝒫 (sigAlgebra‘ 𝐴))
11 insiga 32401 . . 3 (({𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ≠ ∅ ∧ {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ 𝒫 (sigAlgebra‘ 𝐴)) → {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ (sigAlgebra‘ 𝐴))
125, 10, 11syl2anc 585 . 2 (𝐴𝑉 {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ (sigAlgebra‘ 𝐴))
131, 12eqeltrd 2838 1 (𝐴𝑉 → (sigaGen‘𝐴) ∈ (sigAlgebra‘ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wne 2941  {crab 3404  Vcvv 3442  wss 3901  c0 4273  𝒫 cpw 4551   cuni 4856   cint 4898  cfv 6483  sigAlgebracsiga 32372  sigaGencsigagen 32402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-int 4899  df-br 5097  df-opab 5159  df-mpt 5180  df-id 5522  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-iota 6435  df-fun 6485  df-fv 6491  df-siga 32373  df-sigagen 32403
This theorem is referenced by:  sgsiga  32406  unisg  32407  sigagenss2  32414  brsiga  32447  brsigarn  32448  cldssbrsiga  32451  sxsiga  32455  cnmbfm  32528  sxbrsiga  32555
  Copyright terms: Public domain W3C validator