| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sigagensiga | Structured version Visualization version GIF version | ||
| Description: A generated sigma-algebra is a sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016.) |
| Ref | Expression |
|---|---|
| sigagensiga | ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) ∈ (sigAlgebra‘∪ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sigagenval 34153 | . 2 ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) = ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) | |
| 2 | fvex 6835 | . . . . 5 ⊢ (sigaGen‘𝐴) ∈ V | |
| 3 | 1, 2 | eqeltrrdi 2840 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ V) |
| 4 | intex 5280 | . . . 4 ⊢ ({𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ≠ ∅ ↔ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ V) | |
| 5 | 3, 4 | sylibr 234 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ≠ ∅) |
| 6 | ssrab2 4027 | . . . . 5 ⊢ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ⊆ (sigAlgebra‘∪ 𝐴) | |
| 7 | 6 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ⊆ (sigAlgebra‘∪ 𝐴)) |
| 8 | fvex 6835 | . . . . 5 ⊢ (sigAlgebra‘∪ 𝐴) ∈ V | |
| 9 | 8 | elpw2 5270 | . . . 4 ⊢ ({𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ 𝒫 (sigAlgebra‘∪ 𝐴) ↔ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ⊆ (sigAlgebra‘∪ 𝐴)) |
| 10 | 7, 9 | sylibr 234 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ 𝒫 (sigAlgebra‘∪ 𝐴)) |
| 11 | insiga 34150 | . . 3 ⊢ (({𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ≠ ∅ ∧ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ 𝒫 (sigAlgebra‘∪ 𝐴)) → ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ (sigAlgebra‘∪ 𝐴)) | |
| 12 | 5, 10, 11 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ (sigAlgebra‘∪ 𝐴)) |
| 13 | 1, 12 | eqeltrd 2831 | 1 ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) ∈ (sigAlgebra‘∪ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ≠ wne 2928 {crab 3395 Vcvv 3436 ⊆ wss 3897 ∅c0 4280 𝒫 cpw 4547 ∪ cuni 4856 ∩ cint 4895 ‘cfv 6481 sigAlgebracsiga 34121 sigaGencsigagen 34151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-siga 34122 df-sigagen 34152 |
| This theorem is referenced by: sgsiga 34155 unisg 34156 sigagenss2 34163 brsiga 34196 brsigarn 34197 cldssbrsiga 34200 sxsiga 34204 cnmbfm 34276 sxbrsiga 34303 |
| Copyright terms: Public domain | W3C validator |