Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigagensiga Structured version   Visualization version   GIF version

Theorem sigagensiga 33139
Description: A generated sigma-algebra is a sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016.)
Assertion
Ref Expression
sigagensiga (𝐴𝑉 → (sigaGen‘𝐴) ∈ (sigAlgebra‘ 𝐴))

Proof of Theorem sigagensiga
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 sigagenval 33138 . 2 (𝐴𝑉 → (sigaGen‘𝐴) = {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠})
2 fvex 6905 . . . . 5 (sigaGen‘𝐴) ∈ V
31, 2eqeltrrdi 2843 . . . 4 (𝐴𝑉 {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ V)
4 intex 5338 . . . 4 ({𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ≠ ∅ ↔ {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ V)
53, 4sylibr 233 . . 3 (𝐴𝑉 → {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ≠ ∅)
6 ssrab2 4078 . . . . 5 {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ⊆ (sigAlgebra‘ 𝐴)
76a1i 11 . . . 4 (𝐴𝑉 → {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ⊆ (sigAlgebra‘ 𝐴))
8 fvex 6905 . . . . 5 (sigAlgebra‘ 𝐴) ∈ V
98elpw2 5346 . . . 4 ({𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ 𝒫 (sigAlgebra‘ 𝐴) ↔ {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ⊆ (sigAlgebra‘ 𝐴))
107, 9sylibr 233 . . 3 (𝐴𝑉 → {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ 𝒫 (sigAlgebra‘ 𝐴))
11 insiga 33135 . . 3 (({𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ≠ ∅ ∧ {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ 𝒫 (sigAlgebra‘ 𝐴)) → {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ (sigAlgebra‘ 𝐴))
125, 10, 11syl2anc 585 . 2 (𝐴𝑉 {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ (sigAlgebra‘ 𝐴))
131, 12eqeltrd 2834 1 (𝐴𝑉 → (sigaGen‘𝐴) ∈ (sigAlgebra‘ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  wne 2941  {crab 3433  Vcvv 3475  wss 3949  c0 4323  𝒫 cpw 4603   cuni 4909   cint 4951  cfv 6544  sigAlgebracsiga 33106  sigaGencsigagen 33136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-siga 33107  df-sigagen 33137
This theorem is referenced by:  sgsiga  33140  unisg  33141  sigagenss2  33148  brsiga  33181  brsigarn  33182  cldssbrsiga  33185  sxsiga  33189  cnmbfm  33262  sxbrsiga  33289
  Copyright terms: Public domain W3C validator