| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > signstfval | Structured version Visualization version GIF version | ||
| Description: Value of the zero-skipping sign word. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
| Ref | Expression |
|---|---|
| signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
| signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
| signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
| signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
| Ref | Expression |
|---|---|
| signstfval | ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘𝐹)‘𝑁) = (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹‘𝑖))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | signsv.p | . . . 4 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
| 2 | signsv.w | . . . 4 ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} | |
| 3 | signsv.t | . . . 4 ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) | |
| 4 | signsv.v | . . . 4 ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) | |
| 5 | 1, 2, 3, 4 | signstfv 34561 | . . 3 ⊢ (𝐹 ∈ Word ℝ → (𝑇‘𝐹) = (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))))) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (𝑇‘𝐹) = (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))))) |
| 7 | simpr 484 | . . . . 5 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ 𝑛 = 𝑁) → 𝑛 = 𝑁) | |
| 8 | 7 | oveq2d 7406 | . . . 4 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ 𝑛 = 𝑁) → (0...𝑛) = (0...𝑁)) |
| 9 | 8 | mpteq1d 5200 | . . 3 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ 𝑛 = 𝑁) → (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖))) = (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹‘𝑖)))) |
| 10 | 9 | oveq2d 7406 | . 2 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ 𝑛 = 𝑁) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))) = (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹‘𝑖))))) |
| 11 | simpr 484 | . 2 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → 𝑁 ∈ (0..^(♯‘𝐹))) | |
| 12 | ovexd 7425 | . 2 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹‘𝑖)))) ∈ V) | |
| 13 | 6, 10, 11, 12 | fvmptd 6978 | 1 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘𝐹)‘𝑁) = (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹‘𝑖))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ifcif 4491 {cpr 4594 {ctp 4596 〈cop 4598 ↦ cmpt 5191 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 ℝcr 11074 0cc0 11075 1c1 11076 − cmin 11412 -cneg 11413 ...cfz 13475 ..^cfzo 13622 ♯chash 14302 Word cword 14485 sgncsgn 15059 Σcsu 15659 ndxcnx 17170 Basecbs 17186 +gcplusg 17227 Σg cgsu 17410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: signstcl 34563 signstfvn 34567 signstfvp 34569 |
| Copyright terms: Public domain | W3C validator |