![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > signstfval | Structured version Visualization version GIF version |
Description: Value of the zero-skipping sign word. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
Ref | Expression |
---|---|
signsv.p | ⒠⨣ = (π β {-1, 0, 1}, π β {-1, 0, 1} β¦ if(π = 0, π, π)) |
signsv.w | β’ π = {β¨(Baseβndx), {-1, 0, 1}β©, β¨(+gβndx), ⨣ β©} |
signsv.t | β’ π = (π β Word β β¦ (π β (0..^(β―βπ)) β¦ (π Ξ£g (π β (0...π) β¦ (sgnβ(πβπ)))))) |
signsv.v | β’ π = (π β Word β β¦ Ξ£π β (1..^(β―βπ))if(((πβπ)βπ) β ((πβπ)β(π β 1)), 1, 0)) |
Ref | Expression |
---|---|
signstfval | β’ ((πΉ β Word β β§ π β (0..^(β―βπΉ))) β ((πβπΉ)βπ) = (π Ξ£g (π β (0...π) β¦ (sgnβ(πΉβπ))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | signsv.p | . . . 4 ⒠⨣ = (π β {-1, 0, 1}, π β {-1, 0, 1} β¦ if(π = 0, π, π)) | |
2 | signsv.w | . . . 4 β’ π = {β¨(Baseβndx), {-1, 0, 1}β©, β¨(+gβndx), ⨣ β©} | |
3 | signsv.t | . . . 4 β’ π = (π β Word β β¦ (π β (0..^(β―βπ)) β¦ (π Ξ£g (π β (0...π) β¦ (sgnβ(πβπ)))))) | |
4 | signsv.v | . . . 4 β’ π = (π β Word β β¦ Ξ£π β (1..^(β―βπ))if(((πβπ)βπ) β ((πβπ)β(π β 1)), 1, 0)) | |
5 | 1, 2, 3, 4 | signstfv 33574 | . . 3 β’ (πΉ β Word β β (πβπΉ) = (π β (0..^(β―βπΉ)) β¦ (π Ξ£g (π β (0...π) β¦ (sgnβ(πΉβπ)))))) |
6 | 5 | adantr 482 | . 2 β’ ((πΉ β Word β β§ π β (0..^(β―βπΉ))) β (πβπΉ) = (π β (0..^(β―βπΉ)) β¦ (π Ξ£g (π β (0...π) β¦ (sgnβ(πΉβπ)))))) |
7 | simpr 486 | . . . . 5 β’ (((πΉ β Word β β§ π β (0..^(β―βπΉ))) β§ π = π) β π = π) | |
8 | 7 | oveq2d 7425 | . . . 4 β’ (((πΉ β Word β β§ π β (0..^(β―βπΉ))) β§ π = π) β (0...π) = (0...π)) |
9 | 8 | mpteq1d 5244 | . . 3 β’ (((πΉ β Word β β§ π β (0..^(β―βπΉ))) β§ π = π) β (π β (0...π) β¦ (sgnβ(πΉβπ))) = (π β (0...π) β¦ (sgnβ(πΉβπ)))) |
10 | 9 | oveq2d 7425 | . 2 β’ (((πΉ β Word β β§ π β (0..^(β―βπΉ))) β§ π = π) β (π Ξ£g (π β (0...π) β¦ (sgnβ(πΉβπ)))) = (π Ξ£g (π β (0...π) β¦ (sgnβ(πΉβπ))))) |
11 | simpr 486 | . 2 β’ ((πΉ β Word β β§ π β (0..^(β―βπΉ))) β π β (0..^(β―βπΉ))) | |
12 | ovexd 7444 | . 2 β’ ((πΉ β Word β β§ π β (0..^(β―βπΉ))) β (π Ξ£g (π β (0...π) β¦ (sgnβ(πΉβπ)))) β V) | |
13 | 6, 10, 11, 12 | fvmptd 7006 | 1 β’ ((πΉ β Word β β§ π β (0..^(β―βπΉ))) β ((πβπΉ)βπ) = (π Ξ£g (π β (0...π) β¦ (sgnβ(πΉβπ))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 β wne 2941 Vcvv 3475 ifcif 4529 {cpr 4631 {ctp 4633 β¨cop 4635 β¦ cmpt 5232 βcfv 6544 (class class class)co 7409 β cmpo 7411 βcr 11109 0cc0 11110 1c1 11111 β cmin 11444 -cneg 11445 ...cfz 13484 ..^cfzo 13627 β―chash 14290 Word cword 14464 sgncsgn 15033 Ξ£csu 15632 ndxcnx 17126 Basecbs 17144 +gcplusg 17197 Ξ£g cgsu 17386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 |
This theorem is referenced by: signstcl 33576 signstfvn 33580 signstfvp 33582 |
Copyright terms: Public domain | W3C validator |