Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstfval Structured version   Visualization version   GIF version

Theorem signstfval 34105
Description: Value of the zero-skipping sign word. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Hypotheses
Ref Expression
signsv.p ⨣ = (π‘Ž ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, π‘Ž, 𝑏))
signsv.w π‘Š = {⟨(Baseβ€˜ndx), {-1, 0, 1}⟩, ⟨(+gβ€˜ndx), ⨣ ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(β™―β€˜π‘“)) ↦ (π‘Š Ξ£g (𝑖 ∈ (0...𝑛) ↦ (sgnβ€˜(π‘“β€˜π‘–))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(β™―β€˜π‘“))if(((π‘‡β€˜π‘“)β€˜π‘—) β‰  ((π‘‡β€˜π‘“)β€˜(𝑗 βˆ’ 1)), 1, 0))
Assertion
Ref Expression
signstfval ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(β™―β€˜πΉ))) β†’ ((π‘‡β€˜πΉ)β€˜π‘) = (π‘Š Ξ£g (𝑖 ∈ (0...𝑁) ↦ (sgnβ€˜(πΉβ€˜π‘–)))))
Distinct variable groups:   𝑓,𝑖,𝑛,𝐹   𝑖,𝑁,𝑛   𝑓,π‘Š,𝑛
Allowed substitution hints:   ⨣ (𝑓,𝑖,𝑗,𝑛,π‘Ž,𝑏)   𝑇(𝑓,𝑖,𝑗,𝑛,π‘Ž,𝑏)   𝐹(𝑗,π‘Ž,𝑏)   𝑁(𝑓,𝑗,π‘Ž,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,π‘Ž,𝑏)   π‘Š(𝑖,𝑗,π‘Ž,𝑏)

Proof of Theorem signstfval
StepHypRef Expression
1 signsv.p . . . 4 ⨣ = (π‘Ž ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, π‘Ž, 𝑏))
2 signsv.w . . . 4 π‘Š = {⟨(Baseβ€˜ndx), {-1, 0, 1}⟩, ⟨(+gβ€˜ndx), ⨣ ⟩}
3 signsv.t . . . 4 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(β™―β€˜π‘“)) ↦ (π‘Š Ξ£g (𝑖 ∈ (0...𝑛) ↦ (sgnβ€˜(π‘“β€˜π‘–))))))
4 signsv.v . . . 4 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(β™―β€˜π‘“))if(((π‘‡β€˜π‘“)β€˜π‘—) β‰  ((π‘‡β€˜π‘“)β€˜(𝑗 βˆ’ 1)), 1, 0))
51, 2, 3, 4signstfv 34104 . . 3 (𝐹 ∈ Word ℝ β†’ (π‘‡β€˜πΉ) = (𝑛 ∈ (0..^(β™―β€˜πΉ)) ↦ (π‘Š Ξ£g (𝑖 ∈ (0...𝑛) ↦ (sgnβ€˜(πΉβ€˜π‘–))))))
65adantr 480 . 2 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(β™―β€˜πΉ))) β†’ (π‘‡β€˜πΉ) = (𝑛 ∈ (0..^(β™―β€˜πΉ)) ↦ (π‘Š Ξ£g (𝑖 ∈ (0...𝑛) ↦ (sgnβ€˜(πΉβ€˜π‘–))))))
7 simpr 484 . . . . 5 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(β™―β€˜πΉ))) ∧ 𝑛 = 𝑁) β†’ 𝑛 = 𝑁)
87oveq2d 7421 . . . 4 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(β™―β€˜πΉ))) ∧ 𝑛 = 𝑁) β†’ (0...𝑛) = (0...𝑁))
98mpteq1d 5236 . . 3 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(β™―β€˜πΉ))) ∧ 𝑛 = 𝑁) β†’ (𝑖 ∈ (0...𝑛) ↦ (sgnβ€˜(πΉβ€˜π‘–))) = (𝑖 ∈ (0...𝑁) ↦ (sgnβ€˜(πΉβ€˜π‘–))))
109oveq2d 7421 . 2 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(β™―β€˜πΉ))) ∧ 𝑛 = 𝑁) β†’ (π‘Š Ξ£g (𝑖 ∈ (0...𝑛) ↦ (sgnβ€˜(πΉβ€˜π‘–)))) = (π‘Š Ξ£g (𝑖 ∈ (0...𝑁) ↦ (sgnβ€˜(πΉβ€˜π‘–)))))
11 simpr 484 . 2 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(β™―β€˜πΉ))) β†’ 𝑁 ∈ (0..^(β™―β€˜πΉ)))
12 ovexd 7440 . 2 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(β™―β€˜πΉ))) β†’ (π‘Š Ξ£g (𝑖 ∈ (0...𝑁) ↦ (sgnβ€˜(πΉβ€˜π‘–)))) ∈ V)
136, 10, 11, 12fvmptd 6999 1 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(β™―β€˜πΉ))) β†’ ((π‘‡β€˜πΉ)β€˜π‘) = (π‘Š Ξ£g (𝑖 ∈ (0...𝑁) ↦ (sgnβ€˜(πΉβ€˜π‘–)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098   β‰  wne 2934  Vcvv 3468  ifcif 4523  {cpr 4625  {ctp 4627  βŸ¨cop 4629   ↦ cmpt 5224  β€˜cfv 6537  (class class class)co 7405   ∈ cmpo 7407  β„cr 11111  0cc0 11112  1c1 11113   βˆ’ cmin 11448  -cneg 11449  ...cfz 13490  ..^cfzo 13633  β™―chash 14295  Word cword 14470  sgncsgn 15039  Ξ£csu 15638  ndxcnx 17135  Basecbs 17153  +gcplusg 17206   Ξ£g cgsu 17395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-ov 7408
This theorem is referenced by:  signstcl  34106  signstfvn  34110  signstfvp  34112
  Copyright terms: Public domain W3C validator