![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > signstfval | Structured version Visualization version GIF version |
Description: Value of the zero-skipping sign word. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
Ref | Expression |
---|---|
signsv.p | ⒠⨣ = (π β {-1, 0, 1}, π β {-1, 0, 1} β¦ if(π = 0, π, π)) |
signsv.w | β’ π = {β¨(Baseβndx), {-1, 0, 1}β©, β¨(+gβndx), ⨣ β©} |
signsv.t | β’ π = (π β Word β β¦ (π β (0..^(β―βπ)) β¦ (π Ξ£g (π β (0...π) β¦ (sgnβ(πβπ)))))) |
signsv.v | β’ π = (π β Word β β¦ Ξ£π β (1..^(β―βπ))if(((πβπ)βπ) β ((πβπ)β(π β 1)), 1, 0)) |
Ref | Expression |
---|---|
signstfval | β’ ((πΉ β Word β β§ π β (0..^(β―βπΉ))) β ((πβπΉ)βπ) = (π Ξ£g (π β (0...π) β¦ (sgnβ(πΉβπ))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | signsv.p | . . . 4 ⒠⨣ = (π β {-1, 0, 1}, π β {-1, 0, 1} β¦ if(π = 0, π, π)) | |
2 | signsv.w | . . . 4 β’ π = {β¨(Baseβndx), {-1, 0, 1}β©, β¨(+gβndx), ⨣ β©} | |
3 | signsv.t | . . . 4 β’ π = (π β Word β β¦ (π β (0..^(β―βπ)) β¦ (π Ξ£g (π β (0...π) β¦ (sgnβ(πβπ)))))) | |
4 | signsv.v | . . . 4 β’ π = (π β Word β β¦ Ξ£π β (1..^(β―βπ))if(((πβπ)βπ) β ((πβπ)β(π β 1)), 1, 0)) | |
5 | 1, 2, 3, 4 | signstfv 34104 | . . 3 β’ (πΉ β Word β β (πβπΉ) = (π β (0..^(β―βπΉ)) β¦ (π Ξ£g (π β (0...π) β¦ (sgnβ(πΉβπ)))))) |
6 | 5 | adantr 480 | . 2 β’ ((πΉ β Word β β§ π β (0..^(β―βπΉ))) β (πβπΉ) = (π β (0..^(β―βπΉ)) β¦ (π Ξ£g (π β (0...π) β¦ (sgnβ(πΉβπ)))))) |
7 | simpr 484 | . . . . 5 β’ (((πΉ β Word β β§ π β (0..^(β―βπΉ))) β§ π = π) β π = π) | |
8 | 7 | oveq2d 7421 | . . . 4 β’ (((πΉ β Word β β§ π β (0..^(β―βπΉ))) β§ π = π) β (0...π) = (0...π)) |
9 | 8 | mpteq1d 5236 | . . 3 β’ (((πΉ β Word β β§ π β (0..^(β―βπΉ))) β§ π = π) β (π β (0...π) β¦ (sgnβ(πΉβπ))) = (π β (0...π) β¦ (sgnβ(πΉβπ)))) |
10 | 9 | oveq2d 7421 | . 2 β’ (((πΉ β Word β β§ π β (0..^(β―βπΉ))) β§ π = π) β (π Ξ£g (π β (0...π) β¦ (sgnβ(πΉβπ)))) = (π Ξ£g (π β (0...π) β¦ (sgnβ(πΉβπ))))) |
11 | simpr 484 | . 2 β’ ((πΉ β Word β β§ π β (0..^(β―βπΉ))) β π β (0..^(β―βπΉ))) | |
12 | ovexd 7440 | . 2 β’ ((πΉ β Word β β§ π β (0..^(β―βπΉ))) β (π Ξ£g (π β (0...π) β¦ (sgnβ(πΉβπ)))) β V) | |
13 | 6, 10, 11, 12 | fvmptd 6999 | 1 β’ ((πΉ β Word β β§ π β (0..^(β―βπΉ))) β ((πβπΉ)βπ) = (π Ξ£g (π β (0...π) β¦ (sgnβ(πΉβπ))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β wne 2934 Vcvv 3468 ifcif 4523 {cpr 4625 {ctp 4627 β¨cop 4629 β¦ cmpt 5224 βcfv 6537 (class class class)co 7405 β cmpo 7407 βcr 11111 0cc0 11112 1c1 11113 β cmin 11448 -cneg 11449 ...cfz 13490 ..^cfzo 13633 β―chash 14295 Word cword 14470 sgncsgn 15039 Ξ£csu 15638 ndxcnx 17135 Basecbs 17153 +gcplusg 17206 Ξ£g cgsu 17395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 |
This theorem is referenced by: signstcl 34106 signstfvn 34110 signstfvp 34112 |
Copyright terms: Public domain | W3C validator |