Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstfv Structured version   Visualization version   GIF version

Theorem signstfv 34579
Description: Value of the zero-skipping sign word. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signstfv (𝐹 ∈ Word ℝ → (𝑇𝐹) = (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹𝑖))))))
Distinct variable groups:   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐹(𝑗,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑖,𝑗,𝑛,𝑎,𝑏)

Proof of Theorem signstfv
StepHypRef Expression
1 fveq2 6905 . . . 4 (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹))
21oveq2d 7448 . . 3 (𝑓 = 𝐹 → (0..^(♯‘𝑓)) = (0..^(♯‘𝐹)))
3 simpl 482 . . . . . . 7 ((𝑓 = 𝐹𝑖 ∈ (0...𝑛)) → 𝑓 = 𝐹)
43fveq1d 6907 . . . . . 6 ((𝑓 = 𝐹𝑖 ∈ (0...𝑛)) → (𝑓𝑖) = (𝐹𝑖))
54fveq2d 6909 . . . . 5 ((𝑓 = 𝐹𝑖 ∈ (0...𝑛)) → (sgn‘(𝑓𝑖)) = (sgn‘(𝐹𝑖)))
65mpteq2dva 5241 . . . 4 (𝑓 = 𝐹 → (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))) = (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹𝑖))))
76oveq2d 7448 . . 3 (𝑓 = 𝐹 → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖)))) = (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹𝑖)))))
82, 7mpteq12dv 5232 . 2 (𝑓 = 𝐹 → (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))) = (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹𝑖))))))
9 signsv.t . 2 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
10 ovex 7465 . . 3 (0..^(♯‘𝐹)) ∈ V
1110mptex 7244 . 2 (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹𝑖))))) ∈ V
128, 9, 11fvmpt 7015 1 (𝐹 ∈ Word ℝ → (𝑇𝐹) = (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹𝑖))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2939  ifcif 4524  {cpr 4627  {ctp 4629  cop 4631  cmpt 5224  cfv 6560  (class class class)co 7432  cmpo 7434  cr 11155  0cc0 11156  1c1 11157  cmin 11493  -cneg 11494  ...cfz 13548  ..^cfzo 13695  chash 14370  Word cword 14553  sgncsgn 15126  Σcsu 15723  ndxcnx 17231  Basecbs 17248  +gcplusg 17298   Σg cgsu 17486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435
This theorem is referenced by:  signstfval  34580  signstf  34582  signstlen  34583  signstf0  34584
  Copyright terms: Public domain W3C validator