![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > signstfv | Structured version Visualization version GIF version |
Description: Value of the zero-skipping sign word. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
Ref | Expression |
---|---|
signsv.p | ⒠⨣ = (π β {-1, 0, 1}, π β {-1, 0, 1} β¦ if(π = 0, π, π)) |
signsv.w | β’ π = {β¨(Baseβndx), {-1, 0, 1}β©, β¨(+gβndx), ⨣ β©} |
signsv.t | β’ π = (π β Word β β¦ (π β (0..^(β―βπ)) β¦ (π Ξ£g (π β (0...π) β¦ (sgnβ(πβπ)))))) |
signsv.v | β’ π = (π β Word β β¦ Ξ£π β (1..^(β―βπ))if(((πβπ)βπ) β ((πβπ)β(π β 1)), 1, 0)) |
Ref | Expression |
---|---|
signstfv | β’ (πΉ β Word β β (πβπΉ) = (π β (0..^(β―βπΉ)) β¦ (π Ξ£g (π β (0...π) β¦ (sgnβ(πΉβπ)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6881 | . . . 4 β’ (π = πΉ β (β―βπ) = (β―βπΉ)) | |
2 | 1 | oveq2d 7417 | . . 3 β’ (π = πΉ β (0..^(β―βπ)) = (0..^(β―βπΉ))) |
3 | simpl 482 | . . . . . . 7 β’ ((π = πΉ β§ π β (0...π)) β π = πΉ) | |
4 | 3 | fveq1d 6883 | . . . . . 6 β’ ((π = πΉ β§ π β (0...π)) β (πβπ) = (πΉβπ)) |
5 | 4 | fveq2d 6885 | . . . . 5 β’ ((π = πΉ β§ π β (0...π)) β (sgnβ(πβπ)) = (sgnβ(πΉβπ))) |
6 | 5 | mpteq2dva 5238 | . . . 4 β’ (π = πΉ β (π β (0...π) β¦ (sgnβ(πβπ))) = (π β (0...π) β¦ (sgnβ(πΉβπ)))) |
7 | 6 | oveq2d 7417 | . . 3 β’ (π = πΉ β (π Ξ£g (π β (0...π) β¦ (sgnβ(πβπ)))) = (π Ξ£g (π β (0...π) β¦ (sgnβ(πΉβπ))))) |
8 | 2, 7 | mpteq12dv 5229 | . 2 β’ (π = πΉ β (π β (0..^(β―βπ)) β¦ (π Ξ£g (π β (0...π) β¦ (sgnβ(πβπ))))) = (π β (0..^(β―βπΉ)) β¦ (π Ξ£g (π β (0...π) β¦ (sgnβ(πΉβπ)))))) |
9 | signsv.t | . 2 β’ π = (π β Word β β¦ (π β (0..^(β―βπ)) β¦ (π Ξ£g (π β (0...π) β¦ (sgnβ(πβπ)))))) | |
10 | ovex 7434 | . . 3 β’ (0..^(β―βπΉ)) β V | |
11 | 10 | mptex 7216 | . 2 β’ (π β (0..^(β―βπΉ)) β¦ (π Ξ£g (π β (0...π) β¦ (sgnβ(πΉβπ))))) β V |
12 | 8, 9, 11 | fvmpt 6988 | 1 β’ (πΉ β Word β β (πβπΉ) = (π β (0..^(β―βπΉ)) β¦ (π Ξ£g (π β (0...π) β¦ (sgnβ(πΉβπ)))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β wne 2932 ifcif 4520 {cpr 4622 {ctp 4624 β¨cop 4626 β¦ cmpt 5221 βcfv 6533 (class class class)co 7401 β cmpo 7403 βcr 11104 0cc0 11105 1c1 11106 β cmin 11440 -cneg 11441 ...cfz 13480 ..^cfzo 13623 β―chash 14286 Word cword 14460 sgncsgn 15029 Ξ£csu 15628 ndxcnx 17124 Basecbs 17142 +gcplusg 17195 Ξ£g cgsu 17384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 |
This theorem is referenced by: signstfval 34030 signstf 34032 signstlen 34033 signstf0 34034 |
Copyright terms: Public domain | W3C validator |