| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > signstfv | Structured version Visualization version GIF version | ||
| Description: Value of the zero-skipping sign word. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
| Ref | Expression |
|---|---|
| signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
| signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
| signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
| signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
| Ref | Expression |
|---|---|
| signstfv | ⊢ (𝐹 ∈ Word ℝ → (𝑇‘𝐹) = (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6817 | . . . 4 ⊢ (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹)) | |
| 2 | 1 | oveq2d 7357 | . . 3 ⊢ (𝑓 = 𝐹 → (0..^(♯‘𝑓)) = (0..^(♯‘𝐹))) |
| 3 | simpl 482 | . . . . . . 7 ⊢ ((𝑓 = 𝐹 ∧ 𝑖 ∈ (0...𝑛)) → 𝑓 = 𝐹) | |
| 4 | 3 | fveq1d 6819 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑖 ∈ (0...𝑛)) → (𝑓‘𝑖) = (𝐹‘𝑖)) |
| 5 | 4 | fveq2d 6821 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑖 ∈ (0...𝑛)) → (sgn‘(𝑓‘𝑖)) = (sgn‘(𝐹‘𝑖))) |
| 6 | 5 | mpteq2dva 5179 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖))) = (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))) |
| 7 | 6 | oveq2d 7357 | . . 3 ⊢ (𝑓 = 𝐹 → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))) = (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖))))) |
| 8 | 2, 7 | mpteq12dv 5173 | . 2 ⊢ (𝑓 = 𝐹 → (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖))))) = (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))))) |
| 9 | signsv.t | . 2 ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) | |
| 10 | ovex 7374 | . . 3 ⊢ (0..^(♯‘𝐹)) ∈ V | |
| 11 | 10 | mptex 7152 | . 2 ⊢ (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖))))) ∈ V |
| 12 | 8, 9, 11 | fvmpt 6924 | 1 ⊢ (𝐹 ∈ Word ℝ → (𝑇‘𝐹) = (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ifcif 4470 {cpr 4573 {ctp 4575 〈cop 4577 ↦ cmpt 5167 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 ℝcr 11000 0cc0 11001 1c1 11002 − cmin 11339 -cneg 11340 ...cfz 13402 ..^cfzo 13549 ♯chash 14232 Word cword 14415 sgncsgn 14988 Σcsu 15588 ndxcnx 17099 Basecbs 17115 +gcplusg 17156 Σg cgsu 17339 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 |
| This theorem is referenced by: signstfval 34569 signstf 34571 signstlen 34572 signstf0 34573 |
| Copyright terms: Public domain | W3C validator |