Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstfv Structured version   Visualization version   GIF version

Theorem signstfv 34557
Description: Value of the zero-skipping sign word. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signstfv (𝐹 ∈ Word ℝ → (𝑇𝐹) = (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹𝑖))))))
Distinct variable groups:   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐹(𝑗,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑖,𝑗,𝑛,𝑎,𝑏)

Proof of Theorem signstfv
StepHypRef Expression
1 fveq2 6907 . . . 4 (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹))
21oveq2d 7447 . . 3 (𝑓 = 𝐹 → (0..^(♯‘𝑓)) = (0..^(♯‘𝐹)))
3 simpl 482 . . . . . . 7 ((𝑓 = 𝐹𝑖 ∈ (0...𝑛)) → 𝑓 = 𝐹)
43fveq1d 6909 . . . . . 6 ((𝑓 = 𝐹𝑖 ∈ (0...𝑛)) → (𝑓𝑖) = (𝐹𝑖))
54fveq2d 6911 . . . . 5 ((𝑓 = 𝐹𝑖 ∈ (0...𝑛)) → (sgn‘(𝑓𝑖)) = (sgn‘(𝐹𝑖)))
65mpteq2dva 5248 . . . 4 (𝑓 = 𝐹 → (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))) = (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹𝑖))))
76oveq2d 7447 . . 3 (𝑓 = 𝐹 → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖)))) = (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹𝑖)))))
82, 7mpteq12dv 5239 . 2 (𝑓 = 𝐹 → (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))) = (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹𝑖))))))
9 signsv.t . 2 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
10 ovex 7464 . . 3 (0..^(♯‘𝐹)) ∈ V
1110mptex 7243 . 2 (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹𝑖))))) ∈ V
128, 9, 11fvmpt 7016 1 (𝐹 ∈ Word ℝ → (𝑇𝐹) = (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹𝑖))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  ifcif 4531  {cpr 4633  {ctp 4635  cop 4637  cmpt 5231  cfv 6563  (class class class)co 7431  cmpo 7433  cr 11152  0cc0 11153  1c1 11154  cmin 11490  -cneg 11491  ...cfz 13544  ..^cfzo 13691  chash 14366  Word cword 14549  sgncsgn 15122  Σcsu 15719  ndxcnx 17227  Basecbs 17245  +gcplusg 17298   Σg cgsu 17487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434
This theorem is referenced by:  signstfval  34558  signstf  34560  signstlen  34561  signstf0  34562
  Copyright terms: Public domain W3C validator