![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > signstfv | Structured version Visualization version GIF version |
Description: Value of the zero-skipping sign word. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
Ref | Expression |
---|---|
signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
Ref | Expression |
---|---|
signstfv | ⊢ (𝐹 ∈ Word ℝ → (𝑇‘𝐹) = (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6907 | . . . 4 ⊢ (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹)) | |
2 | 1 | oveq2d 7447 | . . 3 ⊢ (𝑓 = 𝐹 → (0..^(♯‘𝑓)) = (0..^(♯‘𝐹))) |
3 | simpl 482 | . . . . . . 7 ⊢ ((𝑓 = 𝐹 ∧ 𝑖 ∈ (0...𝑛)) → 𝑓 = 𝐹) | |
4 | 3 | fveq1d 6909 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑖 ∈ (0...𝑛)) → (𝑓‘𝑖) = (𝐹‘𝑖)) |
5 | 4 | fveq2d 6911 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑖 ∈ (0...𝑛)) → (sgn‘(𝑓‘𝑖)) = (sgn‘(𝐹‘𝑖))) |
6 | 5 | mpteq2dva 5248 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖))) = (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))) |
7 | 6 | oveq2d 7447 | . . 3 ⊢ (𝑓 = 𝐹 → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))) = (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖))))) |
8 | 2, 7 | mpteq12dv 5239 | . 2 ⊢ (𝑓 = 𝐹 → (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖))))) = (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))))) |
9 | signsv.t | . 2 ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) | |
10 | ovex 7464 | . . 3 ⊢ (0..^(♯‘𝐹)) ∈ V | |
11 | 10 | mptex 7243 | . 2 ⊢ (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖))))) ∈ V |
12 | 8, 9, 11 | fvmpt 7016 | 1 ⊢ (𝐹 ∈ Word ℝ → (𝑇‘𝐹) = (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ifcif 4531 {cpr 4633 {ctp 4635 〈cop 4637 ↦ cmpt 5231 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 ℝcr 11152 0cc0 11153 1c1 11154 − cmin 11490 -cneg 11491 ...cfz 13544 ..^cfzo 13691 ♯chash 14366 Word cword 14549 sgncsgn 15122 Σcsu 15719 ndxcnx 17227 Basecbs 17245 +gcplusg 17298 Σg cgsu 17487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 |
This theorem is referenced by: signstfval 34558 signstf 34560 signstlen 34561 signstf0 34562 |
Copyright terms: Public domain | W3C validator |