Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstfvp Structured version   Visualization version   GIF version

Theorem signstfvp 31196
Description: Zero-skipping sign in a word compared to a shorter word. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signstfvp ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑁) = ((𝑇𝐹)‘𝑁))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝐾,𝑖,𝑛   𝑓,𝑊,𝑖,𝑛   𝑖,𝑁,𝑛
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐹(𝑗,𝑎,𝑏)   𝐾(𝑗,𝑎,𝑏)   𝑁(𝑓,𝑗,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstfvp
StepHypRef Expression
1 simp1 1172 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → 𝐹 ∈ Word ℝ)
21adantr 474 . . . . . 6 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑁)) → 𝐹 ∈ Word ℝ)
3 s1cl 13662 . . . . . . . 8 (𝐾 ∈ ℝ → ⟨“𝐾”⟩ ∈ Word ℝ)
433ad2ant2 1170 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ⟨“𝐾”⟩ ∈ Word ℝ)
54adantr 474 . . . . . 6 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑁)) → ⟨“𝐾”⟩ ∈ Word ℝ)
6 simp3 1174 . . . . . . . 8 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → 𝑁 ∈ (0..^(♯‘𝐹)))
7 fzssfzo 31159 . . . . . . . 8 (𝑁 ∈ (0..^(♯‘𝐹)) → (0...𝑁) ⊆ (0..^(♯‘𝐹)))
86, 7syl 17 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (0...𝑁) ⊆ (0..^(♯‘𝐹)))
98sselda 3827 . . . . . 6 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑁)) → 𝑖 ∈ (0..^(♯‘𝐹)))
10 ccatval1 13637 . . . . . 6 ((𝐹 ∈ Word ℝ ∧ ⟨“𝐾”⟩ ∈ Word ℝ ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → ((𝐹 ++ ⟨“𝐾”⟩)‘𝑖) = (𝐹𝑖))
112, 5, 9, 10syl3anc 1496 . . . . 5 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑁)) → ((𝐹 ++ ⟨“𝐾”⟩)‘𝑖) = (𝐹𝑖))
1211fveq2d 6437 . . . 4 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑁)) → (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)) = (sgn‘(𝐹𝑖)))
1312mpteq2dva 4967 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (𝑖 ∈ (0...𝑁) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖))) = (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹𝑖))))
1413oveq2d 6921 . 2 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))) = (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹𝑖)))))
15 ccatcl 13634 . . . 4 ((𝐹 ∈ Word ℝ ∧ ⟨“𝐾”⟩ ∈ Word ℝ) → (𝐹 ++ ⟨“𝐾”⟩) ∈ Word ℝ)
161, 4, 15syl2anc 581 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (𝐹 ++ ⟨“𝐾”⟩) ∈ Word ℝ)
17 lencl 13593 . . . . . . . 8 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0)
1817nn0zd 11808 . . . . . . 7 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℤ)
19 uzid 11983 . . . . . . 7 ((♯‘𝐹) ∈ ℤ → (♯‘𝐹) ∈ (ℤ‘(♯‘𝐹)))
20 peano2uz 12023 . . . . . . 7 ((♯‘𝐹) ∈ (ℤ‘(♯‘𝐹)) → ((♯‘𝐹) + 1) ∈ (ℤ‘(♯‘𝐹)))
21 fzoss2 12791 . . . . . . 7 (((♯‘𝐹) + 1) ∈ (ℤ‘(♯‘𝐹)) → (0..^(♯‘𝐹)) ⊆ (0..^((♯‘𝐹) + 1)))
2218, 19, 20, 214syl 19 . . . . . 6 (𝐹 ∈ Word ℝ → (0..^(♯‘𝐹)) ⊆ (0..^((♯‘𝐹) + 1)))
23223ad2ant1 1169 . . . . 5 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (0..^(♯‘𝐹)) ⊆ (0..^((♯‘𝐹) + 1)))
2423, 6sseldd 3828 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → 𝑁 ∈ (0..^((♯‘𝐹) + 1)))
25 ccatlen 13635 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ ⟨“𝐾”⟩ ∈ Word ℝ) → (♯‘(𝐹 ++ ⟨“𝐾”⟩)) = ((♯‘𝐹) + (♯‘⟨“𝐾”⟩)))
261, 4, 25syl2anc 581 . . . . . 6 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (♯‘(𝐹 ++ ⟨“𝐾”⟩)) = ((♯‘𝐹) + (♯‘⟨“𝐾”⟩)))
27 s1len 13666 . . . . . . 7 (♯‘⟨“𝐾”⟩) = 1
2827oveq2i 6916 . . . . . 6 ((♯‘𝐹) + (♯‘⟨“𝐾”⟩)) = ((♯‘𝐹) + 1)
2926, 28syl6eq 2877 . . . . 5 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (♯‘(𝐹 ++ ⟨“𝐾”⟩)) = ((♯‘𝐹) + 1))
3029oveq2d 6921 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (0..^(♯‘(𝐹 ++ ⟨“𝐾”⟩))) = (0..^((♯‘𝐹) + 1)))
3124, 30eleqtrrd 2909 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → 𝑁 ∈ (0..^(♯‘(𝐹 ++ ⟨“𝐾”⟩))))
32 signsv.p . . . 4 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
33 signsv.w . . . 4 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
34 signsv.t . . . 4 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
35 signsv.v . . . 4 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
3632, 33, 34, 35signstfval 31188 . . 3 (((𝐹 ++ ⟨“𝐾”⟩) ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘(𝐹 ++ ⟨“𝐾”⟩)))) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑁) = (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))))
3716, 31, 36syl2anc 581 . 2 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑁) = (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))))
3832, 33, 34, 35signstfval 31188 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇𝐹)‘𝑁) = (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹𝑖)))))
391, 6, 38syl2anc 581 . 2 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇𝐹)‘𝑁) = (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹𝑖)))))
4014, 37, 393eqtr4d 2871 1 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑁) = ((𝑇𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1113   = wceq 1658  wcel 2166  wne 2999  wss 3798  ifcif 4306  {cpr 4399  {ctp 4401  cop 4403  cmpt 4952  cfv 6123  (class class class)co 6905  cmpt2 6907  cr 10251  0cc0 10252  1c1 10253   + caddc 10255  cmin 10585  -cneg 10586  cz 11704  cuz 11968  ...cfz 12619  ..^cfzo 12760  chash 13410  Word cword 13574   ++ cconcat 13630  ⟨“cs1 13655  sgncsgn 14203  Σcsu 14793  ndxcnx 16219  Basecbs 16222  +gcplusg 16305   Σg cgsu 16454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-n0 11619  df-z 11705  df-uz 11969  df-fz 12620  df-fzo 12761  df-hash 13411  df-word 13575  df-concat 13631  df-s1 13656
This theorem is referenced by:  signstfvneq0  31197  signstfvc  31199  signstfveq0  31202  signstfveq0OLD  31203  signsvfn  31208
  Copyright terms: Public domain W3C validator