Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstfvp Structured version   Visualization version   GIF version

Theorem signstfvp 31951
Description: Zero-skipping sign in a word compared to a shorter word. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signstfvp ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑁) = ((𝑇𝐹)‘𝑁))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝐾,𝑖,𝑛   𝑓,𝑊,𝑖,𝑛   𝑖,𝑁,𝑛
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐹(𝑗,𝑎,𝑏)   𝐾(𝑗,𝑎,𝑏)   𝑁(𝑓,𝑗,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstfvp
StepHypRef Expression
1 simpl1 1188 . . . . . 6 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑁)) → 𝐹 ∈ Word ℝ)
2 s1cl 13947 . . . . . . . 8 (𝐾 ∈ ℝ → ⟨“𝐾”⟩ ∈ Word ℝ)
323ad2ant2 1131 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ⟨“𝐾”⟩ ∈ Word ℝ)
43adantr 484 . . . . . 6 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑁)) → ⟨“𝐾”⟩ ∈ Word ℝ)
5 fzssfzo 31919 . . . . . . . 8 (𝑁 ∈ (0..^(♯‘𝐹)) → (0...𝑁) ⊆ (0..^(♯‘𝐹)))
653ad2ant3 1132 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (0...𝑁) ⊆ (0..^(♯‘𝐹)))
76sselda 3915 . . . . . 6 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑁)) → 𝑖 ∈ (0..^(♯‘𝐹)))
8 ccatval1 13921 . . . . . 6 ((𝐹 ∈ Word ℝ ∧ ⟨“𝐾”⟩ ∈ Word ℝ ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → ((𝐹 ++ ⟨“𝐾”⟩)‘𝑖) = (𝐹𝑖))
91, 4, 7, 8syl3anc 1368 . . . . 5 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑁)) → ((𝐹 ++ ⟨“𝐾”⟩)‘𝑖) = (𝐹𝑖))
109fveq2d 6649 . . . 4 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑁)) → (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)) = (sgn‘(𝐹𝑖)))
1110mpteq2dva 5125 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (𝑖 ∈ (0...𝑁) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖))) = (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹𝑖))))
1211oveq2d 7151 . 2 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))) = (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹𝑖)))))
13 ccatws1cl 13961 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (𝐹 ++ ⟨“𝐾”⟩) ∈ Word ℝ)
14133adant3 1129 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (𝐹 ++ ⟨“𝐾”⟩) ∈ Word ℝ)
15 lencl 13876 . . . . . . . . 9 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0)
1615nn0zd 12073 . . . . . . . 8 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℤ)
1716uzidd 12247 . . . . . . 7 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ (ℤ‘(♯‘𝐹)))
18 peano2uz 12289 . . . . . . 7 ((♯‘𝐹) ∈ (ℤ‘(♯‘𝐹)) → ((♯‘𝐹) + 1) ∈ (ℤ‘(♯‘𝐹)))
19 fzoss2 13060 . . . . . . 7 (((♯‘𝐹) + 1) ∈ (ℤ‘(♯‘𝐹)) → (0..^(♯‘𝐹)) ⊆ (0..^((♯‘𝐹) + 1)))
2017, 18, 193syl 18 . . . . . 6 (𝐹 ∈ Word ℝ → (0..^(♯‘𝐹)) ⊆ (0..^((♯‘𝐹) + 1)))
2120sselda 3915 . . . . 5 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → 𝑁 ∈ (0..^((♯‘𝐹) + 1)))
22213adant2 1128 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → 𝑁 ∈ (0..^((♯‘𝐹) + 1)))
23 ccatlen 13918 . . . . . . . 8 ((𝐹 ∈ Word ℝ ∧ ⟨“𝐾”⟩ ∈ Word ℝ) → (♯‘(𝐹 ++ ⟨“𝐾”⟩)) = ((♯‘𝐹) + (♯‘⟨“𝐾”⟩)))
242, 23sylan2 595 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (♯‘(𝐹 ++ ⟨“𝐾”⟩)) = ((♯‘𝐹) + (♯‘⟨“𝐾”⟩)))
25243adant3 1129 . . . . . 6 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (♯‘(𝐹 ++ ⟨“𝐾”⟩)) = ((♯‘𝐹) + (♯‘⟨“𝐾”⟩)))
26 s1len 13951 . . . . . . 7 (♯‘⟨“𝐾”⟩) = 1
2726oveq2i 7146 . . . . . 6 ((♯‘𝐹) + (♯‘⟨“𝐾”⟩)) = ((♯‘𝐹) + 1)
2825, 27eqtrdi 2849 . . . . 5 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (♯‘(𝐹 ++ ⟨“𝐾”⟩)) = ((♯‘𝐹) + 1))
2928oveq2d 7151 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (0..^(♯‘(𝐹 ++ ⟨“𝐾”⟩))) = (0..^((♯‘𝐹) + 1)))
3022, 29eleqtrrd 2893 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → 𝑁 ∈ (0..^(♯‘(𝐹 ++ ⟨“𝐾”⟩))))
31 signsv.p . . . 4 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
32 signsv.w . . . 4 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
33 signsv.t . . . 4 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
34 signsv.v . . . 4 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
3531, 32, 33, 34signstfval 31944 . . 3 (((𝐹 ++ ⟨“𝐾”⟩) ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘(𝐹 ++ ⟨“𝐾”⟩)))) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑁) = (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))))
3614, 30, 35syl2anc 587 . 2 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑁) = (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))))
3731, 32, 33, 34signstfval 31944 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇𝐹)‘𝑁) = (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹𝑖)))))
38373adant2 1128 . 2 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇𝐹)‘𝑁) = (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹𝑖)))))
3912, 36, 383eqtr4d 2843 1 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑁) = ((𝑇𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wss 3881  ifcif 4425  {cpr 4527  {ctp 4529  cop 4531  cmpt 5110  cfv 6324  (class class class)co 7135  cmpo 7137  cr 10525  0cc0 10526  1c1 10527   + caddc 10529  cmin 10859  -cneg 10860  cuz 12231  ...cfz 12885  ..^cfzo 13028  chash 13686  Word cword 13857   ++ cconcat 13913  ⟨“cs1 13940  sgncsgn 14437  Σcsu 15034  ndxcnx 16472  Basecbs 16475  +gcplusg 16557   Σg cgsu 16706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941
This theorem is referenced by:  signstfvneq0  31952  signstfvc  31954  signstfveq0  31957  signsvfn  31962
  Copyright terms: Public domain W3C validator