Proof of Theorem signstfvp
Step | Hyp | Ref
| Expression |
1 | | simp1 1172 |
. . . . . . 7
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
→ 𝐹 ∈ Word
ℝ) |
2 | 1 | adantr 474 |
. . . . . 6
⊢ (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
∧ 𝑖 ∈ (0...𝑁)) → 𝐹 ∈ Word ℝ) |
3 | | s1cl 13662 |
. . . . . . . 8
⊢ (𝐾 ∈ ℝ →
〈“𝐾”〉
∈ Word ℝ) |
4 | 3 | 3ad2ant2 1170 |
. . . . . . 7
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
→ 〈“𝐾”〉 ∈ Word
ℝ) |
5 | 4 | adantr 474 |
. . . . . 6
⊢ (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
∧ 𝑖 ∈ (0...𝑁)) → 〈“𝐾”〉 ∈ Word
ℝ) |
6 | | simp3 1174 |
. . . . . . . 8
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
→ 𝑁 ∈
(0..^(♯‘𝐹))) |
7 | | fzssfzo 31159 |
. . . . . . . 8
⊢ (𝑁 ∈
(0..^(♯‘𝐹))
→ (0...𝑁) ⊆
(0..^(♯‘𝐹))) |
8 | 6, 7 | syl 17 |
. . . . . . 7
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
→ (0...𝑁) ⊆
(0..^(♯‘𝐹))) |
9 | 8 | sselda 3827 |
. . . . . 6
⊢ (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
∧ 𝑖 ∈ (0...𝑁)) → 𝑖 ∈ (0..^(♯‘𝐹))) |
10 | | ccatval1 13637 |
. . . . . 6
⊢ ((𝐹 ∈ Word ℝ ∧
〈“𝐾”〉
∈ Word ℝ ∧ 𝑖
∈ (0..^(♯‘𝐹))) → ((𝐹 ++ 〈“𝐾”〉)‘𝑖) = (𝐹‘𝑖)) |
11 | 2, 5, 9, 10 | syl3anc 1496 |
. . . . 5
⊢ (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
∧ 𝑖 ∈ (0...𝑁)) → ((𝐹 ++ 〈“𝐾”〉)‘𝑖) = (𝐹‘𝑖)) |
12 | 11 | fveq2d 6437 |
. . . 4
⊢ (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
∧ 𝑖 ∈ (0...𝑁)) → (sgn‘((𝐹 ++ 〈“𝐾”〉)‘𝑖)) = (sgn‘(𝐹‘𝑖))) |
13 | 12 | mpteq2dva 4967 |
. . 3
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
→ (𝑖 ∈ (0...𝑁) ↦ (sgn‘((𝐹 ++ 〈“𝐾”〉)‘𝑖))) = (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹‘𝑖)))) |
14 | 13 | oveq2d 6921 |
. 2
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
→ (𝑊
Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘((𝐹 ++ 〈“𝐾”〉)‘𝑖)))) = (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹‘𝑖))))) |
15 | | ccatcl 13634 |
. . . 4
⊢ ((𝐹 ∈ Word ℝ ∧
〈“𝐾”〉
∈ Word ℝ) → (𝐹 ++ 〈“𝐾”〉) ∈ Word
ℝ) |
16 | 1, 4, 15 | syl2anc 581 |
. . 3
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
→ (𝐹 ++
〈“𝐾”〉) ∈ Word
ℝ) |
17 | | lencl 13593 |
. . . . . . . 8
⊢ (𝐹 ∈ Word ℝ →
(♯‘𝐹) ∈
ℕ0) |
18 | 17 | nn0zd 11808 |
. . . . . . 7
⊢ (𝐹 ∈ Word ℝ →
(♯‘𝐹) ∈
ℤ) |
19 | | uzid 11983 |
. . . . . . 7
⊢
((♯‘𝐹)
∈ ℤ → (♯‘𝐹) ∈
(ℤ≥‘(♯‘𝐹))) |
20 | | peano2uz 12023 |
. . . . . . 7
⊢
((♯‘𝐹)
∈ (ℤ≥‘(♯‘𝐹)) → ((♯‘𝐹) + 1) ∈
(ℤ≥‘(♯‘𝐹))) |
21 | | fzoss2 12791 |
. . . . . . 7
⊢
(((♯‘𝐹)
+ 1) ∈ (ℤ≥‘(♯‘𝐹)) → (0..^(♯‘𝐹)) ⊆
(0..^((♯‘𝐹) +
1))) |
22 | 18, 19, 20, 21 | 4syl 19 |
. . . . . 6
⊢ (𝐹 ∈ Word ℝ →
(0..^(♯‘𝐹))
⊆ (0..^((♯‘𝐹) + 1))) |
23 | 22 | 3ad2ant1 1169 |
. . . . 5
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
→ (0..^(♯‘𝐹)) ⊆ (0..^((♯‘𝐹) + 1))) |
24 | 23, 6 | sseldd 3828 |
. . . 4
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
→ 𝑁 ∈
(0..^((♯‘𝐹) +
1))) |
25 | | ccatlen 13635 |
. . . . . . 7
⊢ ((𝐹 ∈ Word ℝ ∧
〈“𝐾”〉
∈ Word ℝ) → (♯‘(𝐹 ++ 〈“𝐾”〉)) = ((♯‘𝐹) +
(♯‘〈“𝐾”〉))) |
26 | 1, 4, 25 | syl2anc 581 |
. . . . . 6
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
→ (♯‘(𝐹 ++
〈“𝐾”〉)) = ((♯‘𝐹) +
(♯‘〈“𝐾”〉))) |
27 | | s1len 13666 |
. . . . . . 7
⊢
(♯‘〈“𝐾”〉) = 1 |
28 | 27 | oveq2i 6916 |
. . . . . 6
⊢
((♯‘𝐹) +
(♯‘〈“𝐾”〉)) = ((♯‘𝐹) + 1) |
29 | 26, 28 | syl6eq 2877 |
. . . . 5
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
→ (♯‘(𝐹 ++
〈“𝐾”〉)) = ((♯‘𝐹) + 1)) |
30 | 29 | oveq2d 6921 |
. . . 4
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
→ (0..^(♯‘(𝐹 ++ 〈“𝐾”〉))) =
(0..^((♯‘𝐹) +
1))) |
31 | 24, 30 | eleqtrrd 2909 |
. . 3
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
→ 𝑁 ∈
(0..^(♯‘(𝐹 ++
〈“𝐾”〉)))) |
32 | | signsv.p |
. . . 4
⊢ ⨣ =
(𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦
if(𝑏 = 0, 𝑎, 𝑏)) |
33 | | signsv.w |
. . . 4
⊢ 𝑊 = {〈(Base‘ndx), {-1,
0, 1}〉, 〈(+g‘ndx), ⨣
〉} |
34 | | signsv.t |
. . . 4
⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈
(0..^(♯‘𝑓))
↦ (𝑊
Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
35 | | signsv.v |
. . . 4
⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈
(1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
36 | 32, 33, 34, 35 | signstfval 31188 |
. . 3
⊢ (((𝐹 ++ 〈“𝐾”〉) ∈ Word
ℝ ∧ 𝑁 ∈
(0..^(♯‘(𝐹 ++
〈“𝐾”〉)))) → ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘𝑁) = (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘((𝐹 ++ 〈“𝐾”〉)‘𝑖))))) |
37 | 16, 31, 36 | syl2anc 581 |
. 2
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
→ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘𝑁) = (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘((𝐹 ++ 〈“𝐾”〉)‘𝑖))))) |
38 | 32, 33, 34, 35 | signstfval 31188 |
. . 3
⊢ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
→ ((𝑇‘𝐹)‘𝑁) = (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹‘𝑖))))) |
39 | 1, 6, 38 | syl2anc 581 |
. 2
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
→ ((𝑇‘𝐹)‘𝑁) = (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹‘𝑖))))) |
40 | 14, 37, 39 | 3eqtr4d 2871 |
1
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈
(0..^(♯‘𝐹)))
→ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘𝑁) = ((𝑇‘𝐹)‘𝑁)) |