Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstfvn Structured version   Visualization version   GIF version

Theorem signstfvn 32548
Description: Zero-skipping sign in a word compared to a shorter word. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signstfvn ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)) = (((𝑇𝐹)‘((♯‘𝐹) − 1)) (sgn‘𝐾)))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝐾,𝑖,𝑛   𝑓,𝑊,𝑖,𝑛
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐹(𝑗,𝑎,𝑏)   𝐾(𝑗,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstfvn
StepHypRef Expression
1 signsv.p . . . . 5 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
2 signsv.w . . . . 5 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
31, 2signswbase 32533 . . . 4 {-1, 0, 1} = (Base‘𝑊)
41, 2signswmnd 32536 . . . . 5 𝑊 ∈ Mnd
54a1i 11 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → 𝑊 ∈ Mnd)
6 eldifi 4061 . . . . . . . . 9 (𝐹 ∈ (Word ℝ ∖ {∅}) → 𝐹 ∈ Word ℝ)
7 lencl 14236 . . . . . . . . 9 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0)
86, 7syl 17 . . . . . . . 8 (𝐹 ∈ (Word ℝ ∖ {∅}) → (♯‘𝐹) ∈ ℕ0)
9 eldifsn 4720 . . . . . . . . 9 (𝐹 ∈ (Word ℝ ∖ {∅}) ↔ (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅))
10 hasheq0 14078 . . . . . . . . . . 11 (𝐹 ∈ Word ℝ → ((♯‘𝐹) = 0 ↔ 𝐹 = ∅))
1110necon3bid 2988 . . . . . . . . . 10 (𝐹 ∈ Word ℝ → ((♯‘𝐹) ≠ 0 ↔ 𝐹 ≠ ∅))
1211biimpar 478 . . . . . . . . 9 ((𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅) → (♯‘𝐹) ≠ 0)
139, 12sylbi 216 . . . . . . . 8 (𝐹 ∈ (Word ℝ ∖ {∅}) → (♯‘𝐹) ≠ 0)
14 elnnne0 12247 . . . . . . . 8 ((♯‘𝐹) ∈ ℕ ↔ ((♯‘𝐹) ∈ ℕ0 ∧ (♯‘𝐹) ≠ 0))
158, 13, 14sylanbrc 583 . . . . . . 7 (𝐹 ∈ (Word ℝ ∖ {∅}) → (♯‘𝐹) ∈ ℕ)
1615adantr 481 . . . . . 6 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (♯‘𝐹) ∈ ℕ)
17 nnm1nn0 12274 . . . . . 6 ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ ℕ0)
1816, 17syl 17 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → ((♯‘𝐹) − 1) ∈ ℕ0)
19 nn0uz 12620 . . . . 5 0 = (ℤ‘0)
2018, 19eleqtrdi 2849 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → ((♯‘𝐹) − 1) ∈ (ℤ‘0))
21 ccatws1cl 14321 . . . . . . . . . 10 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (𝐹 ++ ⟨“𝐾”⟩) ∈ Word ℝ)
2221adantr 481 . . . . . . . . 9 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((♯‘𝐹) − 1))) → (𝐹 ++ ⟨“𝐾”⟩) ∈ Word ℝ)
23 wrdf 14222 . . . . . . . . 9 ((𝐹 ++ ⟨“𝐾”⟩) ∈ Word ℝ → (𝐹 ++ ⟨“𝐾”⟩):(0..^(♯‘(𝐹 ++ ⟨“𝐾”⟩)))⟶ℝ)
2422, 23syl 17 . . . . . . . 8 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((♯‘𝐹) − 1))) → (𝐹 ++ ⟨“𝐾”⟩):(0..^(♯‘(𝐹 ++ ⟨“𝐾”⟩)))⟶ℝ)
257nn0zd 12424 . . . . . . . . . . . . 13 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℤ)
26 fzoval 13388 . . . . . . . . . . . . 13 ((♯‘𝐹) ∈ ℤ → (0..^(♯‘𝐹)) = (0...((♯‘𝐹) − 1)))
2725, 26syl 17 . . . . . . . . . . . 12 (𝐹 ∈ Word ℝ → (0..^(♯‘𝐹)) = (0...((♯‘𝐹) − 1)))
2827adantr 481 . . . . . . . . . . 11 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (0..^(♯‘𝐹)) = (0...((♯‘𝐹) − 1)))
29 fzossfz 13406 . . . . . . . . . . 11 (0..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
3028, 29eqsstrrdi 3976 . . . . . . . . . 10 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (0...((♯‘𝐹) − 1)) ⊆ (0...(♯‘𝐹)))
31 s1cl 14307 . . . . . . . . . . . . . 14 (𝐾 ∈ ℝ → ⟨“𝐾”⟩ ∈ Word ℝ)
32 ccatlen 14278 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word ℝ ∧ ⟨“𝐾”⟩ ∈ Word ℝ) → (♯‘(𝐹 ++ ⟨“𝐾”⟩)) = ((♯‘𝐹) + (♯‘⟨“𝐾”⟩)))
3331, 32sylan2 593 . . . . . . . . . . . . 13 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (♯‘(𝐹 ++ ⟨“𝐾”⟩)) = ((♯‘𝐹) + (♯‘⟨“𝐾”⟩)))
34 s1len 14311 . . . . . . . . . . . . . 14 (♯‘⟨“𝐾”⟩) = 1
3534oveq2i 7286 . . . . . . . . . . . . 13 ((♯‘𝐹) + (♯‘⟨“𝐾”⟩)) = ((♯‘𝐹) + 1)
3633, 35eqtrdi 2794 . . . . . . . . . . . 12 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (♯‘(𝐹 ++ ⟨“𝐾”⟩)) = ((♯‘𝐹) + 1))
3736oveq2d 7291 . . . . . . . . . . 11 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (0..^(♯‘(𝐹 ++ ⟨“𝐾”⟩))) = (0..^((♯‘𝐹) + 1)))
3825adantr 481 . . . . . . . . . . . . 13 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (♯‘𝐹) ∈ ℤ)
3938peano2zd 12429 . . . . . . . . . . . 12 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → ((♯‘𝐹) + 1) ∈ ℤ)
40 fzoval 13388 . . . . . . . . . . . 12 (((♯‘𝐹) + 1) ∈ ℤ → (0..^((♯‘𝐹) + 1)) = (0...(((♯‘𝐹) + 1) − 1)))
4139, 40syl 17 . . . . . . . . . . 11 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (0..^((♯‘𝐹) + 1)) = (0...(((♯‘𝐹) + 1) − 1)))
427nn0cnd 12295 . . . . . . . . . . . . . 14 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℂ)
43 1cnd 10970 . . . . . . . . . . . . . 14 (𝐹 ∈ Word ℝ → 1 ∈ ℂ)
4442, 43pncand 11333 . . . . . . . . . . . . 13 (𝐹 ∈ Word ℝ → (((♯‘𝐹) + 1) − 1) = (♯‘𝐹))
4544adantr 481 . . . . . . . . . . . 12 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (((♯‘𝐹) + 1) − 1) = (♯‘𝐹))
4645oveq2d 7291 . . . . . . . . . . 11 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (0...(((♯‘𝐹) + 1) − 1)) = (0...(♯‘𝐹)))
4737, 41, 463eqtrd 2782 . . . . . . . . . 10 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (0..^(♯‘(𝐹 ++ ⟨“𝐾”⟩))) = (0...(♯‘𝐹)))
4830, 47sseqtrrd 3962 . . . . . . . . 9 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (0...((♯‘𝐹) − 1)) ⊆ (0..^(♯‘(𝐹 ++ ⟨“𝐾”⟩))))
4948sselda 3921 . . . . . . . 8 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((♯‘𝐹) − 1))) → 𝑖 ∈ (0..^(♯‘(𝐹 ++ ⟨“𝐾”⟩))))
5024, 49ffvelrnd 6962 . . . . . . 7 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((♯‘𝐹) − 1))) → ((𝐹 ++ ⟨“𝐾”⟩)‘𝑖) ∈ ℝ)
516, 50sylanl1 677 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((♯‘𝐹) − 1))) → ((𝐹 ++ ⟨“𝐾”⟩)‘𝑖) ∈ ℝ)
5251rexrd 11025 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((♯‘𝐹) − 1))) → ((𝐹 ++ ⟨“𝐾”⟩)‘𝑖) ∈ ℝ*)
53 sgncl 32505 . . . . 5 (((𝐹 ++ ⟨“𝐾”⟩)‘𝑖) ∈ ℝ* → (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)) ∈ {-1, 0, 1})
5452, 53syl 17 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((♯‘𝐹) − 1))) → (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)) ∈ {-1, 0, 1})
551, 2signswplusg 32534 . . . 4 = (+g𝑊)
56 rexr 11021 . . . . . 6 (𝐾 ∈ ℝ → 𝐾 ∈ ℝ*)
57 sgncl 32505 . . . . . 6 (𝐾 ∈ ℝ* → (sgn‘𝐾) ∈ {-1, 0, 1})
5856, 57syl 17 . . . . 5 (𝐾 ∈ ℝ → (sgn‘𝐾) ∈ {-1, 0, 1})
5958adantl 482 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (sgn‘𝐾) ∈ {-1, 0, 1})
60 id 22 . . . . . . . . 9 (𝑖 = (((♯‘𝐹) − 1) + 1) → 𝑖 = (((♯‘𝐹) − 1) + 1))
6142, 43npcand 11336 . . . . . . . . . 10 (𝐹 ∈ Word ℝ → (((♯‘𝐹) − 1) + 1) = (♯‘𝐹))
6261adantr 481 . . . . . . . . 9 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (((♯‘𝐹) − 1) + 1) = (♯‘𝐹))
6360, 62sylan9eqr 2800 . . . . . . . 8 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) ∧ 𝑖 = (((♯‘𝐹) − 1) + 1)) → 𝑖 = (♯‘𝐹))
6463fveq2d 6778 . . . . . . 7 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) ∧ 𝑖 = (((♯‘𝐹) − 1) + 1)) → ((𝐹 ++ ⟨“𝐾”⟩)‘𝑖) = ((𝐹 ++ ⟨“𝐾”⟩)‘(♯‘𝐹)))
65 ccatws1ls 14343 . . . . . . . 8 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → ((𝐹 ++ ⟨“𝐾”⟩)‘(♯‘𝐹)) = 𝐾)
6665adantr 481 . . . . . . 7 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) ∧ 𝑖 = (((♯‘𝐹) − 1) + 1)) → ((𝐹 ++ ⟨“𝐾”⟩)‘(♯‘𝐹)) = 𝐾)
6764, 66eqtrd 2778 . . . . . 6 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) ∧ 𝑖 = (((♯‘𝐹) − 1) + 1)) → ((𝐹 ++ ⟨“𝐾”⟩)‘𝑖) = 𝐾)
686, 67sylanl1 677 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑖 = (((♯‘𝐹) − 1) + 1)) → ((𝐹 ++ ⟨“𝐾”⟩)‘𝑖) = 𝐾)
6968fveq2d 6778 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑖 = (((♯‘𝐹) − 1) + 1)) → (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)) = (sgn‘𝐾))
703, 5, 20, 54, 55, 59, 69gsumnunsn 32520 . . 3 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (𝑊 Σg (𝑖 ∈ (0...(((♯‘𝐹) − 1) + 1)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))) = ((𝑊 Σg (𝑖 ∈ (0...((♯‘𝐹) − 1)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))) (sgn‘𝐾)))
716, 61syl 17 . . . . . . 7 (𝐹 ∈ (Word ℝ ∖ {∅}) → (((♯‘𝐹) − 1) + 1) = (♯‘𝐹))
7271adantr 481 . . . . . 6 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (((♯‘𝐹) − 1) + 1) = (♯‘𝐹))
7372oveq2d 7291 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (0...(((♯‘𝐹) − 1) + 1)) = (0...(♯‘𝐹)))
7473mpteq1d 5169 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (𝑖 ∈ (0...(((♯‘𝐹) − 1) + 1)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖))) = (𝑖 ∈ (0...(♯‘𝐹)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖))))
7574oveq2d 7291 . . 3 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (𝑊 Σg (𝑖 ∈ (0...(((♯‘𝐹) − 1) + 1)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))) = (𝑊 Σg (𝑖 ∈ (0...(♯‘𝐹)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))))
76 simpll 764 . . . . . . . . 9 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((♯‘𝐹) − 1))) → 𝐹 ∈ Word ℝ)
7731ad2antlr 724 . . . . . . . . 9 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((♯‘𝐹) − 1))) → ⟨“𝐾”⟩ ∈ Word ℝ)
7828eleq2d 2824 . . . . . . . . . 10 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (𝑖 ∈ (0..^(♯‘𝐹)) ↔ 𝑖 ∈ (0...((♯‘𝐹) − 1))))
7978biimpar 478 . . . . . . . . 9 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((♯‘𝐹) − 1))) → 𝑖 ∈ (0..^(♯‘𝐹)))
80 ccatval1 14281 . . . . . . . . 9 ((𝐹 ∈ Word ℝ ∧ ⟨“𝐾”⟩ ∈ Word ℝ ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → ((𝐹 ++ ⟨“𝐾”⟩)‘𝑖) = (𝐹𝑖))
8176, 77, 79, 80syl3anc 1370 . . . . . . . 8 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((♯‘𝐹) − 1))) → ((𝐹 ++ ⟨“𝐾”⟩)‘𝑖) = (𝐹𝑖))
8281fveq2d 6778 . . . . . . 7 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((♯‘𝐹) − 1))) → (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)) = (sgn‘(𝐹𝑖)))
8382mpteq2dva 5174 . . . . . 6 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (𝑖 ∈ (0...((♯‘𝐹) − 1)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖))) = (𝑖 ∈ (0...((♯‘𝐹) − 1)) ↦ (sgn‘(𝐹𝑖))))
846, 83sylan 580 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (𝑖 ∈ (0...((♯‘𝐹) − 1)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖))) = (𝑖 ∈ (0...((♯‘𝐹) − 1)) ↦ (sgn‘(𝐹𝑖))))
8584oveq2d 7291 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (𝑊 Σg (𝑖 ∈ (0...((♯‘𝐹) − 1)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))) = (𝑊 Σg (𝑖 ∈ (0...((♯‘𝐹) − 1)) ↦ (sgn‘(𝐹𝑖)))))
8685oveq1d 7290 . . 3 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → ((𝑊 Σg (𝑖 ∈ (0...((♯‘𝐹) − 1)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))) (sgn‘𝐾)) = ((𝑊 Σg (𝑖 ∈ (0...((♯‘𝐹) − 1)) ↦ (sgn‘(𝐹𝑖)))) (sgn‘𝐾)))
8770, 75, 863eqtr3d 2786 . 2 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (𝑊 Σg (𝑖 ∈ (0...(♯‘𝐹)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))) = ((𝑊 Σg (𝑖 ∈ (0...((♯‘𝐹) − 1)) ↦ (sgn‘(𝐹𝑖)))) (sgn‘𝐾)))
88 eqid 2738 . . . . . . . 8 (♯‘𝐹) = (♯‘𝐹)
8988olci 863 . . . . . . 7 ((♯‘𝐹) ∈ (0..^(♯‘𝐹)) ∨ (♯‘𝐹) = (♯‘𝐹))
907, 19eleqtrdi 2849 . . . . . . . 8 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ (ℤ‘0))
91 fzosplitsni 13498 . . . . . . . 8 ((♯‘𝐹) ∈ (ℤ‘0) → ((♯‘𝐹) ∈ (0..^((♯‘𝐹) + 1)) ↔ ((♯‘𝐹) ∈ (0..^(♯‘𝐹)) ∨ (♯‘𝐹) = (♯‘𝐹))))
9290, 91syl 17 . . . . . . 7 (𝐹 ∈ Word ℝ → ((♯‘𝐹) ∈ (0..^((♯‘𝐹) + 1)) ↔ ((♯‘𝐹) ∈ (0..^(♯‘𝐹)) ∨ (♯‘𝐹) = (♯‘𝐹))))
9389, 92mpbiri 257 . . . . . 6 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ (0..^((♯‘𝐹) + 1)))
9493adantr 481 . . . . 5 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (♯‘𝐹) ∈ (0..^((♯‘𝐹) + 1)))
9594, 37eleqtrrd 2842 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (♯‘𝐹) ∈ (0..^(♯‘(𝐹 ++ ⟨“𝐾”⟩))))
96 signsv.t . . . . 5 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
97 signsv.v . . . . 5 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
981, 2, 96, 97signstfval 32543 . . . 4 (((𝐹 ++ ⟨“𝐾”⟩) ∈ Word ℝ ∧ (♯‘𝐹) ∈ (0..^(♯‘(𝐹 ++ ⟨“𝐾”⟩)))) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)) = (𝑊 Σg (𝑖 ∈ (0...(♯‘𝐹)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))))
9921, 95, 98syl2anc 584 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)) = (𝑊 Σg (𝑖 ∈ (0...(♯‘𝐹)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))))
1006, 99sylan 580 . 2 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)) = (𝑊 Σg (𝑖 ∈ (0...(♯‘𝐹)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))))
101 fzo0end 13479 . . . . . 6 ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
10215, 101syl 17 . . . . 5 (𝐹 ∈ (Word ℝ ∖ {∅}) → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
1031, 2, 96, 97signstfval 32543 . . . . 5 ((𝐹 ∈ Word ℝ ∧ ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))) → ((𝑇𝐹)‘((♯‘𝐹) − 1)) = (𝑊 Σg (𝑖 ∈ (0...((♯‘𝐹) − 1)) ↦ (sgn‘(𝐹𝑖)))))
1046, 102, 103syl2anc 584 . . . 4 (𝐹 ∈ (Word ℝ ∖ {∅}) → ((𝑇𝐹)‘((♯‘𝐹) − 1)) = (𝑊 Σg (𝑖 ∈ (0...((♯‘𝐹) − 1)) ↦ (sgn‘(𝐹𝑖)))))
105104adantr 481 . . 3 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → ((𝑇𝐹)‘((♯‘𝐹) − 1)) = (𝑊 Σg (𝑖 ∈ (0...((♯‘𝐹) − 1)) ↦ (sgn‘(𝐹𝑖)))))
106105oveq1d 7290 . 2 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (((𝑇𝐹)‘((♯‘𝐹) − 1)) (sgn‘𝐾)) = ((𝑊 Σg (𝑖 ∈ (0...((♯‘𝐹) − 1)) ↦ (sgn‘(𝐹𝑖)))) (sgn‘𝐾)))
10787, 100, 1063eqtr4d 2788 1 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)) = (((𝑇𝐹)‘((♯‘𝐹) − 1)) (sgn‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  cdif 3884  c0 4256  ifcif 4459  {csn 4561  {cpr 4563  {ctp 4565  cop 4567  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  cr 10870  0cc0 10871  1c1 10872   + caddc 10874  *cxr 11008  cmin 11205  -cneg 11206  cn 11973  0cn0 12233  cz 12319  cuz 12582  ...cfz 13239  ..^cfzo 13382  chash 14044  Word cword 14217   ++ cconcat 14273  ⟨“cs1 14300  sgncsgn 14797  Σcsu 15397  ndxcnx 16894  Basecbs 16912  +gcplusg 16962   Σg cgsu 17151  Mndcmnd 18385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-sgn 14798  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-0g 17152  df-gsum 17153  df-mgm 18326  df-sgrp 18375  df-mnd 18386
This theorem is referenced by:  signsvtn0  32549  signstfvneq0  32551  signstfveq0  32556  signsvfn  32561
  Copyright terms: Public domain W3C validator