Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstfvn Structured version   Visualization version   GIF version

Theorem signstfvn 33518
Description: Zero-skipping sign in a word compared to a shorter word. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signstfvn ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)) = (((𝑇𝐹)‘((♯‘𝐹) − 1)) (sgn‘𝐾)))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝐾,𝑖,𝑛   𝑓,𝑊,𝑖,𝑛
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐹(𝑗,𝑎,𝑏)   𝐾(𝑗,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstfvn
StepHypRef Expression
1 signsv.p . . . . 5 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
2 signsv.w . . . . 5 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
31, 2signswbase 33503 . . . 4 {-1, 0, 1} = (Base‘𝑊)
41, 2signswmnd 33506 . . . . 5 𝑊 ∈ Mnd
54a1i 11 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → 𝑊 ∈ Mnd)
6 eldifi 4125 . . . . . . . . 9 (𝐹 ∈ (Word ℝ ∖ {∅}) → 𝐹 ∈ Word ℝ)
7 lencl 14479 . . . . . . . . 9 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0)
86, 7syl 17 . . . . . . . 8 (𝐹 ∈ (Word ℝ ∖ {∅}) → (♯‘𝐹) ∈ ℕ0)
9 eldifsn 4789 . . . . . . . . 9 (𝐹 ∈ (Word ℝ ∖ {∅}) ↔ (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅))
10 hasheq0 14319 . . . . . . . . . . 11 (𝐹 ∈ Word ℝ → ((♯‘𝐹) = 0 ↔ 𝐹 = ∅))
1110necon3bid 2986 . . . . . . . . . 10 (𝐹 ∈ Word ℝ → ((♯‘𝐹) ≠ 0 ↔ 𝐹 ≠ ∅))
1211biimpar 479 . . . . . . . . 9 ((𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅) → (♯‘𝐹) ≠ 0)
139, 12sylbi 216 . . . . . . . 8 (𝐹 ∈ (Word ℝ ∖ {∅}) → (♯‘𝐹) ≠ 0)
14 elnnne0 12482 . . . . . . . 8 ((♯‘𝐹) ∈ ℕ ↔ ((♯‘𝐹) ∈ ℕ0 ∧ (♯‘𝐹) ≠ 0))
158, 13, 14sylanbrc 584 . . . . . . 7 (𝐹 ∈ (Word ℝ ∖ {∅}) → (♯‘𝐹) ∈ ℕ)
1615adantr 482 . . . . . 6 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (♯‘𝐹) ∈ ℕ)
17 nnm1nn0 12509 . . . . . 6 ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ ℕ0)
1816, 17syl 17 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → ((♯‘𝐹) − 1) ∈ ℕ0)
19 nn0uz 12860 . . . . 5 0 = (ℤ‘0)
2018, 19eleqtrdi 2844 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → ((♯‘𝐹) − 1) ∈ (ℤ‘0))
21 ccatws1cl 14562 . . . . . . . . . 10 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (𝐹 ++ ⟨“𝐾”⟩) ∈ Word ℝ)
2221adantr 482 . . . . . . . . 9 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((♯‘𝐹) − 1))) → (𝐹 ++ ⟨“𝐾”⟩) ∈ Word ℝ)
23 wrdf 14465 . . . . . . . . 9 ((𝐹 ++ ⟨“𝐾”⟩) ∈ Word ℝ → (𝐹 ++ ⟨“𝐾”⟩):(0..^(♯‘(𝐹 ++ ⟨“𝐾”⟩)))⟶ℝ)
2422, 23syl 17 . . . . . . . 8 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((♯‘𝐹) − 1))) → (𝐹 ++ ⟨“𝐾”⟩):(0..^(♯‘(𝐹 ++ ⟨“𝐾”⟩)))⟶ℝ)
257nn0zd 12580 . . . . . . . . . . . . 13 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℤ)
26 fzoval 13629 . . . . . . . . . . . . 13 ((♯‘𝐹) ∈ ℤ → (0..^(♯‘𝐹)) = (0...((♯‘𝐹) − 1)))
2725, 26syl 17 . . . . . . . . . . . 12 (𝐹 ∈ Word ℝ → (0..^(♯‘𝐹)) = (0...((♯‘𝐹) − 1)))
2827adantr 482 . . . . . . . . . . 11 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (0..^(♯‘𝐹)) = (0...((♯‘𝐹) − 1)))
29 fzossfz 13647 . . . . . . . . . . 11 (0..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
3028, 29eqsstrrdi 4036 . . . . . . . . . 10 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (0...((♯‘𝐹) − 1)) ⊆ (0...(♯‘𝐹)))
31 s1cl 14548 . . . . . . . . . . . . . 14 (𝐾 ∈ ℝ → ⟨“𝐾”⟩ ∈ Word ℝ)
32 ccatlen 14521 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word ℝ ∧ ⟨“𝐾”⟩ ∈ Word ℝ) → (♯‘(𝐹 ++ ⟨“𝐾”⟩)) = ((♯‘𝐹) + (♯‘⟨“𝐾”⟩)))
3331, 32sylan2 594 . . . . . . . . . . . . 13 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (♯‘(𝐹 ++ ⟨“𝐾”⟩)) = ((♯‘𝐹) + (♯‘⟨“𝐾”⟩)))
34 s1len 14552 . . . . . . . . . . . . . 14 (♯‘⟨“𝐾”⟩) = 1
3534oveq2i 7415 . . . . . . . . . . . . 13 ((♯‘𝐹) + (♯‘⟨“𝐾”⟩)) = ((♯‘𝐹) + 1)
3633, 35eqtrdi 2789 . . . . . . . . . . . 12 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (♯‘(𝐹 ++ ⟨“𝐾”⟩)) = ((♯‘𝐹) + 1))
3736oveq2d 7420 . . . . . . . . . . 11 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (0..^(♯‘(𝐹 ++ ⟨“𝐾”⟩))) = (0..^((♯‘𝐹) + 1)))
3825adantr 482 . . . . . . . . . . . . 13 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (♯‘𝐹) ∈ ℤ)
3938peano2zd 12665 . . . . . . . . . . . 12 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → ((♯‘𝐹) + 1) ∈ ℤ)
40 fzoval 13629 . . . . . . . . . . . 12 (((♯‘𝐹) + 1) ∈ ℤ → (0..^((♯‘𝐹) + 1)) = (0...(((♯‘𝐹) + 1) − 1)))
4139, 40syl 17 . . . . . . . . . . 11 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (0..^((♯‘𝐹) + 1)) = (0...(((♯‘𝐹) + 1) − 1)))
427nn0cnd 12530 . . . . . . . . . . . . . 14 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℂ)
43 1cnd 11205 . . . . . . . . . . . . . 14 (𝐹 ∈ Word ℝ → 1 ∈ ℂ)
4442, 43pncand 11568 . . . . . . . . . . . . 13 (𝐹 ∈ Word ℝ → (((♯‘𝐹) + 1) − 1) = (♯‘𝐹))
4544adantr 482 . . . . . . . . . . . 12 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (((♯‘𝐹) + 1) − 1) = (♯‘𝐹))
4645oveq2d 7420 . . . . . . . . . . 11 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (0...(((♯‘𝐹) + 1) − 1)) = (0...(♯‘𝐹)))
4737, 41, 463eqtrd 2777 . . . . . . . . . 10 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (0..^(♯‘(𝐹 ++ ⟨“𝐾”⟩))) = (0...(♯‘𝐹)))
4830, 47sseqtrrd 4022 . . . . . . . . 9 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (0...((♯‘𝐹) − 1)) ⊆ (0..^(♯‘(𝐹 ++ ⟨“𝐾”⟩))))
4948sselda 3981 . . . . . . . 8 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((♯‘𝐹) − 1))) → 𝑖 ∈ (0..^(♯‘(𝐹 ++ ⟨“𝐾”⟩))))
5024, 49ffvelcdmd 7083 . . . . . . 7 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((♯‘𝐹) − 1))) → ((𝐹 ++ ⟨“𝐾”⟩)‘𝑖) ∈ ℝ)
516, 50sylanl1 679 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((♯‘𝐹) − 1))) → ((𝐹 ++ ⟨“𝐾”⟩)‘𝑖) ∈ ℝ)
5251rexrd 11260 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((♯‘𝐹) − 1))) → ((𝐹 ++ ⟨“𝐾”⟩)‘𝑖) ∈ ℝ*)
53 sgncl 33475 . . . . 5 (((𝐹 ++ ⟨“𝐾”⟩)‘𝑖) ∈ ℝ* → (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)) ∈ {-1, 0, 1})
5452, 53syl 17 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((♯‘𝐹) − 1))) → (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)) ∈ {-1, 0, 1})
551, 2signswplusg 33504 . . . 4 = (+g𝑊)
56 rexr 11256 . . . . . 6 (𝐾 ∈ ℝ → 𝐾 ∈ ℝ*)
57 sgncl 33475 . . . . . 6 (𝐾 ∈ ℝ* → (sgn‘𝐾) ∈ {-1, 0, 1})
5856, 57syl 17 . . . . 5 (𝐾 ∈ ℝ → (sgn‘𝐾) ∈ {-1, 0, 1})
5958adantl 483 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (sgn‘𝐾) ∈ {-1, 0, 1})
60 id 22 . . . . . . . . 9 (𝑖 = (((♯‘𝐹) − 1) + 1) → 𝑖 = (((♯‘𝐹) − 1) + 1))
6142, 43npcand 11571 . . . . . . . . . 10 (𝐹 ∈ Word ℝ → (((♯‘𝐹) − 1) + 1) = (♯‘𝐹))
6261adantr 482 . . . . . . . . 9 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (((♯‘𝐹) − 1) + 1) = (♯‘𝐹))
6360, 62sylan9eqr 2795 . . . . . . . 8 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) ∧ 𝑖 = (((♯‘𝐹) − 1) + 1)) → 𝑖 = (♯‘𝐹))
6463fveq2d 6892 . . . . . . 7 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) ∧ 𝑖 = (((♯‘𝐹) − 1) + 1)) → ((𝐹 ++ ⟨“𝐾”⟩)‘𝑖) = ((𝐹 ++ ⟨“𝐾”⟩)‘(♯‘𝐹)))
65 ccatws1ls 14579 . . . . . . . 8 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → ((𝐹 ++ ⟨“𝐾”⟩)‘(♯‘𝐹)) = 𝐾)
6665adantr 482 . . . . . . 7 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) ∧ 𝑖 = (((♯‘𝐹) − 1) + 1)) → ((𝐹 ++ ⟨“𝐾”⟩)‘(♯‘𝐹)) = 𝐾)
6764, 66eqtrd 2773 . . . . . 6 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) ∧ 𝑖 = (((♯‘𝐹) − 1) + 1)) → ((𝐹 ++ ⟨“𝐾”⟩)‘𝑖) = 𝐾)
686, 67sylanl1 679 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑖 = (((♯‘𝐹) − 1) + 1)) → ((𝐹 ++ ⟨“𝐾”⟩)‘𝑖) = 𝐾)
6968fveq2d 6892 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑖 = (((♯‘𝐹) − 1) + 1)) → (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)) = (sgn‘𝐾))
703, 5, 20, 54, 55, 59, 69gsumnunsn 33490 . . 3 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (𝑊 Σg (𝑖 ∈ (0...(((♯‘𝐹) − 1) + 1)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))) = ((𝑊 Σg (𝑖 ∈ (0...((♯‘𝐹) − 1)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))) (sgn‘𝐾)))
716, 61syl 17 . . . . . . 7 (𝐹 ∈ (Word ℝ ∖ {∅}) → (((♯‘𝐹) − 1) + 1) = (♯‘𝐹))
7271adantr 482 . . . . . 6 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (((♯‘𝐹) − 1) + 1) = (♯‘𝐹))
7372oveq2d 7420 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (0...(((♯‘𝐹) − 1) + 1)) = (0...(♯‘𝐹)))
7473mpteq1d 5242 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (𝑖 ∈ (0...(((♯‘𝐹) − 1) + 1)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖))) = (𝑖 ∈ (0...(♯‘𝐹)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖))))
7574oveq2d 7420 . . 3 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (𝑊 Σg (𝑖 ∈ (0...(((♯‘𝐹) − 1) + 1)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))) = (𝑊 Σg (𝑖 ∈ (0...(♯‘𝐹)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))))
76 simpll 766 . . . . . . . . 9 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((♯‘𝐹) − 1))) → 𝐹 ∈ Word ℝ)
7731ad2antlr 726 . . . . . . . . 9 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((♯‘𝐹) − 1))) → ⟨“𝐾”⟩ ∈ Word ℝ)
7828eleq2d 2820 . . . . . . . . . 10 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (𝑖 ∈ (0..^(♯‘𝐹)) ↔ 𝑖 ∈ (0...((♯‘𝐹) − 1))))
7978biimpar 479 . . . . . . . . 9 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((♯‘𝐹) − 1))) → 𝑖 ∈ (0..^(♯‘𝐹)))
80 ccatval1 14523 . . . . . . . . 9 ((𝐹 ∈ Word ℝ ∧ ⟨“𝐾”⟩ ∈ Word ℝ ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → ((𝐹 ++ ⟨“𝐾”⟩)‘𝑖) = (𝐹𝑖))
8176, 77, 79, 80syl3anc 1372 . . . . . . . 8 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((♯‘𝐹) − 1))) → ((𝐹 ++ ⟨“𝐾”⟩)‘𝑖) = (𝐹𝑖))
8281fveq2d 6892 . . . . . . 7 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((♯‘𝐹) − 1))) → (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)) = (sgn‘(𝐹𝑖)))
8382mpteq2dva 5247 . . . . . 6 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (𝑖 ∈ (0...((♯‘𝐹) − 1)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖))) = (𝑖 ∈ (0...((♯‘𝐹) − 1)) ↦ (sgn‘(𝐹𝑖))))
846, 83sylan 581 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (𝑖 ∈ (0...((♯‘𝐹) − 1)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖))) = (𝑖 ∈ (0...((♯‘𝐹) − 1)) ↦ (sgn‘(𝐹𝑖))))
8584oveq2d 7420 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (𝑊 Σg (𝑖 ∈ (0...((♯‘𝐹) − 1)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))) = (𝑊 Σg (𝑖 ∈ (0...((♯‘𝐹) − 1)) ↦ (sgn‘(𝐹𝑖)))))
8685oveq1d 7419 . . 3 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → ((𝑊 Σg (𝑖 ∈ (0...((♯‘𝐹) − 1)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))) (sgn‘𝐾)) = ((𝑊 Σg (𝑖 ∈ (0...((♯‘𝐹) − 1)) ↦ (sgn‘(𝐹𝑖)))) (sgn‘𝐾)))
8770, 75, 863eqtr3d 2781 . 2 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (𝑊 Σg (𝑖 ∈ (0...(♯‘𝐹)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))) = ((𝑊 Σg (𝑖 ∈ (0...((♯‘𝐹) − 1)) ↦ (sgn‘(𝐹𝑖)))) (sgn‘𝐾)))
88 eqid 2733 . . . . . . . 8 (♯‘𝐹) = (♯‘𝐹)
8988olci 865 . . . . . . 7 ((♯‘𝐹) ∈ (0..^(♯‘𝐹)) ∨ (♯‘𝐹) = (♯‘𝐹))
907, 19eleqtrdi 2844 . . . . . . . 8 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ (ℤ‘0))
91 fzosplitsni 13739 . . . . . . . 8 ((♯‘𝐹) ∈ (ℤ‘0) → ((♯‘𝐹) ∈ (0..^((♯‘𝐹) + 1)) ↔ ((♯‘𝐹) ∈ (0..^(♯‘𝐹)) ∨ (♯‘𝐹) = (♯‘𝐹))))
9290, 91syl 17 . . . . . . 7 (𝐹 ∈ Word ℝ → ((♯‘𝐹) ∈ (0..^((♯‘𝐹) + 1)) ↔ ((♯‘𝐹) ∈ (0..^(♯‘𝐹)) ∨ (♯‘𝐹) = (♯‘𝐹))))
9389, 92mpbiri 258 . . . . . 6 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ (0..^((♯‘𝐹) + 1)))
9493adantr 482 . . . . 5 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (♯‘𝐹) ∈ (0..^((♯‘𝐹) + 1)))
9594, 37eleqtrrd 2837 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → (♯‘𝐹) ∈ (0..^(♯‘(𝐹 ++ ⟨“𝐾”⟩))))
96 signsv.t . . . . 5 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
97 signsv.v . . . . 5 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
981, 2, 96, 97signstfval 33513 . . . 4 (((𝐹 ++ ⟨“𝐾”⟩) ∈ Word ℝ ∧ (♯‘𝐹) ∈ (0..^(♯‘(𝐹 ++ ⟨“𝐾”⟩)))) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)) = (𝑊 Σg (𝑖 ∈ (0...(♯‘𝐹)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))))
9921, 95, 98syl2anc 585 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)) = (𝑊 Σg (𝑖 ∈ (0...(♯‘𝐹)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))))
1006, 99sylan 581 . 2 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)) = (𝑊 Σg (𝑖 ∈ (0...(♯‘𝐹)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))))
101 fzo0end 13720 . . . . . 6 ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
10215, 101syl 17 . . . . 5 (𝐹 ∈ (Word ℝ ∖ {∅}) → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
1031, 2, 96, 97signstfval 33513 . . . . 5 ((𝐹 ∈ Word ℝ ∧ ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))) → ((𝑇𝐹)‘((♯‘𝐹) − 1)) = (𝑊 Σg (𝑖 ∈ (0...((♯‘𝐹) − 1)) ↦ (sgn‘(𝐹𝑖)))))
1046, 102, 103syl2anc 585 . . . 4 (𝐹 ∈ (Word ℝ ∖ {∅}) → ((𝑇𝐹)‘((♯‘𝐹) − 1)) = (𝑊 Σg (𝑖 ∈ (0...((♯‘𝐹) − 1)) ↦ (sgn‘(𝐹𝑖)))))
105104adantr 482 . . 3 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → ((𝑇𝐹)‘((♯‘𝐹) − 1)) = (𝑊 Σg (𝑖 ∈ (0...((♯‘𝐹) − 1)) ↦ (sgn‘(𝐹𝑖)))))
106105oveq1d 7419 . 2 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (((𝑇𝐹)‘((♯‘𝐹) − 1)) (sgn‘𝐾)) = ((𝑊 Σg (𝑖 ∈ (0...((♯‘𝐹) − 1)) ↦ (sgn‘(𝐹𝑖)))) (sgn‘𝐾)))
10787, 100, 1063eqtr4d 2783 1 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)) = (((𝑇𝐹)‘((♯‘𝐹) − 1)) (sgn‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wcel 2107  wne 2941  cdif 3944  c0 4321  ifcif 4527  {csn 4627  {cpr 4629  {ctp 4631  cop 4633  cmpt 5230  wf 6536  cfv 6540  (class class class)co 7404  cmpo 7406  cr 11105  0cc0 11106  1c1 11107   + caddc 11109  *cxr 11243  cmin 11440  -cneg 11441  cn 12208  0cn0 12468  cz 12554  cuz 12818  ...cfz 13480  ..^cfzo 13623  chash 14286  Word cword 14460   ++ cconcat 14516  ⟨“cs1 14541  sgncsgn 15029  Σcsu 15628  ndxcnx 17122  Basecbs 17140  +gcplusg 17193   Σg cgsu 17382  Mndcmnd 18621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-word 14461  df-concat 14517  df-s1 14542  df-sgn 15030  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-0g 17383  df-gsum 17384  df-mgm 18557  df-sgrp 18606  df-mnd 18622
This theorem is referenced by:  signsvtn0  33519  signstfvneq0  33521  signstfveq0  33526  signsvfn  33531
  Copyright terms: Public domain W3C validator