![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > signstcl | Structured version Visualization version GIF version |
Description: Closure of the zero skipping sign word. (Contributed by Thierry Arnoux, 9-Oct-2018.) |
Ref | Expression |
---|---|
signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
Ref | Expression |
---|---|
signstcl | ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘𝐹)‘𝑁) ∈ {-1, 0, 1}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | signsv.p | . . 3 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
2 | signsv.w | . . 3 ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} | |
3 | signsv.t | . . 3 ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) | |
4 | signsv.v | . . 3 ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) | |
5 | 1, 2, 3, 4 | signstfval 33888 | . 2 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘𝐹)‘𝑁) = (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹‘𝑖))))) |
6 | 1, 2 | signswbase 33878 | . . 3 ⊢ {-1, 0, 1} = (Base‘𝑊) |
7 | 1, 2 | signswmnd 33881 | . . . 4 ⊢ 𝑊 ∈ Mnd |
8 | 7 | a1i 11 | . . 3 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → 𝑊 ∈ Mnd) |
9 | fzo0ssnn0 13720 | . . . . . 6 ⊢ (0..^(♯‘𝐹)) ⊆ ℕ0 | |
10 | nn0uz 12871 | . . . . . 6 ⊢ ℕ0 = (ℤ≥‘0) | |
11 | 9, 10 | sseqtri 4018 | . . . . 5 ⊢ (0..^(♯‘𝐹)) ⊆ (ℤ≥‘0) |
12 | 11 | a1i 11 | . . . 4 ⊢ (𝐹 ∈ Word ℝ → (0..^(♯‘𝐹)) ⊆ (ℤ≥‘0)) |
13 | 12 | sselda 3982 | . . 3 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → 𝑁 ∈ (ℤ≥‘0)) |
14 | wrdf 14476 | . . . . . . 7 ⊢ (𝐹 ∈ Word ℝ → 𝐹:(0..^(♯‘𝐹))⟶ℝ) | |
15 | 14 | ad2antrr 723 | . . . . . 6 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑁)) → 𝐹:(0..^(♯‘𝐹))⟶ℝ) |
16 | fzssfzo 33863 | . . . . . . . 8 ⊢ (𝑁 ∈ (0..^(♯‘𝐹)) → (0...𝑁) ⊆ (0..^(♯‘𝐹))) | |
17 | 16 | adantl 481 | . . . . . . 7 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (0...𝑁) ⊆ (0..^(♯‘𝐹))) |
18 | 17 | sselda 3982 | . . . . . 6 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑁)) → 𝑖 ∈ (0..^(♯‘𝐹))) |
19 | 15, 18 | ffvelcdmd 7087 | . . . . 5 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑁)) → (𝐹‘𝑖) ∈ ℝ) |
20 | 19 | rexrd 11271 | . . . 4 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑁)) → (𝐹‘𝑖) ∈ ℝ*) |
21 | sgncl 33850 | . . . 4 ⊢ ((𝐹‘𝑖) ∈ ℝ* → (sgn‘(𝐹‘𝑖)) ∈ {-1, 0, 1}) | |
22 | 20, 21 | syl 17 | . . 3 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑁)) → (sgn‘(𝐹‘𝑖)) ∈ {-1, 0, 1}) |
23 | 6, 8, 13, 22 | gsumncl 33864 | . 2 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹‘𝑖)))) ∈ {-1, 0, 1}) |
24 | 5, 23 | eqeltrd 2832 | 1 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘𝐹)‘𝑁) ∈ {-1, 0, 1}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ⊆ wss 3948 ifcif 4528 {cpr 4630 {ctp 4632 〈cop 4634 ↦ cmpt 5231 ⟶wf 6539 ‘cfv 6543 (class class class)co 7412 ∈ cmpo 7414 ℝcr 11115 0cc0 11116 1c1 11117 ℝ*cxr 11254 − cmin 11451 -cneg 11452 ℕ0cn0 12479 ℤ≥cuz 12829 ...cfz 13491 ..^cfzo 13634 ♯chash 14297 Word cword 14471 sgncsgn 15040 Σcsu 15639 ndxcnx 17133 Basecbs 17151 +gcplusg 17204 Σg cgsu 17393 Mndcmnd 18662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-n0 12480 df-z 12566 df-uz 12830 df-fz 13492 df-fzo 13635 df-seq 13974 df-hash 14298 df-word 14472 df-sgn 15041 df-struct 17087 df-slot 17122 df-ndx 17134 df-base 17152 df-plusg 17217 df-0g 17394 df-gsum 17395 df-mgm 18568 df-sgrp 18647 df-mnd 18663 |
This theorem is referenced by: signsvtn0 33894 signstfvneq0 33896 signstfvcl 33897 signstfveq0 33901 |
Copyright terms: Public domain | W3C validator |