![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > signstcl | Structured version Visualization version GIF version |
Description: Closure of the zero skipping sign word. (Contributed by Thierry Arnoux, 9-Oct-2018.) |
Ref | Expression |
---|---|
signsv.p | ⒠⨣ = (π β {-1, 0, 1}, π β {-1, 0, 1} β¦ if(π = 0, π, π)) |
signsv.w | β’ π = {β¨(Baseβndx), {-1, 0, 1}β©, β¨(+gβndx), ⨣ β©} |
signsv.t | β’ π = (π β Word β β¦ (π β (0..^(β―βπ)) β¦ (π Ξ£g (π β (0...π) β¦ (sgnβ(πβπ)))))) |
signsv.v | β’ π = (π β Word β β¦ Ξ£π β (1..^(β―βπ))if(((πβπ)βπ) β ((πβπ)β(π β 1)), 1, 0)) |
Ref | Expression |
---|---|
signstcl | β’ ((πΉ β Word β β§ π β (0..^(β―βπΉ))) β ((πβπΉ)βπ) β {-1, 0, 1}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | signsv.p | . . 3 ⒠⨣ = (π β {-1, 0, 1}, π β {-1, 0, 1} β¦ if(π = 0, π, π)) | |
2 | signsv.w | . . 3 β’ π = {β¨(Baseβndx), {-1, 0, 1}β©, β¨(+gβndx), ⨣ β©} | |
3 | signsv.t | . . 3 β’ π = (π β Word β β¦ (π β (0..^(β―βπ)) β¦ (π Ξ£g (π β (0...π) β¦ (sgnβ(πβπ)))))) | |
4 | signsv.v | . . 3 β’ π = (π β Word β β¦ Ξ£π β (1..^(β―βπ))if(((πβπ)βπ) β ((πβπ)β(π β 1)), 1, 0)) | |
5 | 1, 2, 3, 4 | signstfval 33563 | . 2 β’ ((πΉ β Word β β§ π β (0..^(β―βπΉ))) β ((πβπΉ)βπ) = (π Ξ£g (π β (0...π) β¦ (sgnβ(πΉβπ))))) |
6 | 1, 2 | signswbase 33553 | . . 3 β’ {-1, 0, 1} = (Baseβπ) |
7 | 1, 2 | signswmnd 33556 | . . . 4 β’ π β Mnd |
8 | 7 | a1i 11 | . . 3 β’ ((πΉ β Word β β§ π β (0..^(β―βπΉ))) β π β Mnd) |
9 | fzo0ssnn0 13709 | . . . . . 6 β’ (0..^(β―βπΉ)) β β0 | |
10 | nn0uz 12860 | . . . . . 6 β’ β0 = (β€β₯β0) | |
11 | 9, 10 | sseqtri 4017 | . . . . 5 β’ (0..^(β―βπΉ)) β (β€β₯β0) |
12 | 11 | a1i 11 | . . . 4 β’ (πΉ β Word β β (0..^(β―βπΉ)) β (β€β₯β0)) |
13 | 12 | sselda 3981 | . . 3 β’ ((πΉ β Word β β§ π β (0..^(β―βπΉ))) β π β (β€β₯β0)) |
14 | wrdf 14465 | . . . . . . 7 β’ (πΉ β Word β β πΉ:(0..^(β―βπΉ))βΆβ) | |
15 | 14 | ad2antrr 724 | . . . . . 6 β’ (((πΉ β Word β β§ π β (0..^(β―βπΉ))) β§ π β (0...π)) β πΉ:(0..^(β―βπΉ))βΆβ) |
16 | fzssfzo 33538 | . . . . . . . 8 β’ (π β (0..^(β―βπΉ)) β (0...π) β (0..^(β―βπΉ))) | |
17 | 16 | adantl 482 | . . . . . . 7 β’ ((πΉ β Word β β§ π β (0..^(β―βπΉ))) β (0...π) β (0..^(β―βπΉ))) |
18 | 17 | sselda 3981 | . . . . . 6 β’ (((πΉ β Word β β§ π β (0..^(β―βπΉ))) β§ π β (0...π)) β π β (0..^(β―βπΉ))) |
19 | 15, 18 | ffvelcdmd 7084 | . . . . 5 β’ (((πΉ β Word β β§ π β (0..^(β―βπΉ))) β§ π β (0...π)) β (πΉβπ) β β) |
20 | 19 | rexrd 11260 | . . . 4 β’ (((πΉ β Word β β§ π β (0..^(β―βπΉ))) β§ π β (0...π)) β (πΉβπ) β β*) |
21 | sgncl 33525 | . . . 4 β’ ((πΉβπ) β β* β (sgnβ(πΉβπ)) β {-1, 0, 1}) | |
22 | 20, 21 | syl 17 | . . 3 β’ (((πΉ β Word β β§ π β (0..^(β―βπΉ))) β§ π β (0...π)) β (sgnβ(πΉβπ)) β {-1, 0, 1}) |
23 | 6, 8, 13, 22 | gsumncl 33539 | . 2 β’ ((πΉ β Word β β§ π β (0..^(β―βπΉ))) β (π Ξ£g (π β (0...π) β¦ (sgnβ(πΉβπ)))) β {-1, 0, 1}) |
24 | 5, 23 | eqeltrd 2833 | 1 β’ ((πΉ β Word β β§ π β (0..^(β―βπΉ))) β ((πβπΉ)βπ) β {-1, 0, 1}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β wne 2940 β wss 3947 ifcif 4527 {cpr 4629 {ctp 4631 β¨cop 4633 β¦ cmpt 5230 βΆwf 6536 βcfv 6540 (class class class)co 7405 β cmpo 7407 βcr 11105 0cc0 11106 1c1 11107 β*cxr 11243 β cmin 11440 -cneg 11441 β0cn0 12468 β€β₯cuz 12818 ...cfz 13480 ..^cfzo 13623 β―chash 14286 Word cword 14460 sgncsgn 15029 Ξ£csu 15628 ndxcnx 17122 Basecbs 17140 +gcplusg 17193 Ξ£g cgsu 17382 Mndcmnd 18621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-word 14461 df-sgn 15030 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-0g 17383 df-gsum 17384 df-mgm 18557 df-sgrp 18606 df-mnd 18622 |
This theorem is referenced by: signsvtn0 33569 signstfvneq0 33571 signstfvcl 33572 signstfveq0 33576 |
Copyright terms: Public domain | W3C validator |