Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstcl Structured version   Visualization version   GIF version

Theorem signstcl 34226
Description: Closure of the zero skipping sign word. (Contributed by Thierry Arnoux, 9-Oct-2018.)
Hypotheses
Ref Expression
signsv.p ⨣ = (π‘Ž ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, π‘Ž, 𝑏))
signsv.w π‘Š = {⟨(Baseβ€˜ndx), {-1, 0, 1}⟩, ⟨(+gβ€˜ndx), ⨣ ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(β™―β€˜π‘“)) ↦ (π‘Š Ξ£g (𝑖 ∈ (0...𝑛) ↦ (sgnβ€˜(π‘“β€˜π‘–))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(β™―β€˜π‘“))if(((π‘‡β€˜π‘“)β€˜π‘—) β‰  ((π‘‡β€˜π‘“)β€˜(𝑗 βˆ’ 1)), 1, 0))
Assertion
Ref Expression
signstcl ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(β™―β€˜πΉ))) β†’ ((π‘‡β€˜πΉ)β€˜π‘) ∈ {-1, 0, 1})
Distinct variable groups:   π‘Ž,𝑏, ⨣   𝑓,𝑖,𝑛,𝐹   𝑖,𝑁,𝑛   𝑓,π‘Š,𝑖,𝑛
Allowed substitution hints:   ⨣ (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛,π‘Ž,𝑏)   𝐹(𝑗,π‘Ž,𝑏)   𝑁(𝑓,𝑗,π‘Ž,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,π‘Ž,𝑏)   π‘Š(𝑗,π‘Ž,𝑏)

Proof of Theorem signstcl
StepHypRef Expression
1 signsv.p . . 3 ⨣ = (π‘Ž ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, π‘Ž, 𝑏))
2 signsv.w . . 3 π‘Š = {⟨(Baseβ€˜ndx), {-1, 0, 1}⟩, ⟨(+gβ€˜ndx), ⨣ ⟩}
3 signsv.t . . 3 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(β™―β€˜π‘“)) ↦ (π‘Š Ξ£g (𝑖 ∈ (0...𝑛) ↦ (sgnβ€˜(π‘“β€˜π‘–))))))
4 signsv.v . . 3 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(β™―β€˜π‘“))if(((π‘‡β€˜π‘“)β€˜π‘—) β‰  ((π‘‡β€˜π‘“)β€˜(𝑗 βˆ’ 1)), 1, 0))
51, 2, 3, 4signstfval 34225 . 2 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(β™―β€˜πΉ))) β†’ ((π‘‡β€˜πΉ)β€˜π‘) = (π‘Š Ξ£g (𝑖 ∈ (0...𝑁) ↦ (sgnβ€˜(πΉβ€˜π‘–)))))
61, 2signswbase 34215 . . 3 {-1, 0, 1} = (Baseβ€˜π‘Š)
71, 2signswmnd 34218 . . . 4 π‘Š ∈ Mnd
87a1i 11 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(β™―β€˜πΉ))) β†’ π‘Š ∈ Mnd)
9 fzo0ssnn0 13743 . . . . . 6 (0..^(β™―β€˜πΉ)) βŠ† β„•0
10 nn0uz 12892 . . . . . 6 β„•0 = (β„€β‰₯β€˜0)
119, 10sseqtri 4008 . . . . 5 (0..^(β™―β€˜πΉ)) βŠ† (β„€β‰₯β€˜0)
1211a1i 11 . . . 4 (𝐹 ∈ Word ℝ β†’ (0..^(β™―β€˜πΉ)) βŠ† (β„€β‰₯β€˜0))
1312sselda 3972 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(β™―β€˜πΉ))) β†’ 𝑁 ∈ (β„€β‰₯β€˜0))
14 wrdf 14499 . . . . . . 7 (𝐹 ∈ Word ℝ β†’ 𝐹:(0..^(β™―β€˜πΉ))βŸΆβ„)
1514ad2antrr 724 . . . . . 6 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(β™―β€˜πΉ))) ∧ 𝑖 ∈ (0...𝑁)) β†’ 𝐹:(0..^(β™―β€˜πΉ))βŸΆβ„)
16 fzssfzo 34200 . . . . . . . 8 (𝑁 ∈ (0..^(β™―β€˜πΉ)) β†’ (0...𝑁) βŠ† (0..^(β™―β€˜πΉ)))
1716adantl 480 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(β™―β€˜πΉ))) β†’ (0...𝑁) βŠ† (0..^(β™―β€˜πΉ)))
1817sselda 3972 . . . . . 6 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(β™―β€˜πΉ))) ∧ 𝑖 ∈ (0...𝑁)) β†’ 𝑖 ∈ (0..^(β™―β€˜πΉ)))
1915, 18ffvelcdmd 7088 . . . . 5 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(β™―β€˜πΉ))) ∧ 𝑖 ∈ (0...𝑁)) β†’ (πΉβ€˜π‘–) ∈ ℝ)
2019rexrd 11292 . . . 4 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(β™―β€˜πΉ))) ∧ 𝑖 ∈ (0...𝑁)) β†’ (πΉβ€˜π‘–) ∈ ℝ*)
21 sgncl 34187 . . . 4 ((πΉβ€˜π‘–) ∈ ℝ* β†’ (sgnβ€˜(πΉβ€˜π‘–)) ∈ {-1, 0, 1})
2220, 21syl 17 . . 3 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(β™―β€˜πΉ))) ∧ 𝑖 ∈ (0...𝑁)) β†’ (sgnβ€˜(πΉβ€˜π‘–)) ∈ {-1, 0, 1})
236, 8, 13, 22gsumncl 34201 . 2 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(β™―β€˜πΉ))) β†’ (π‘Š Ξ£g (𝑖 ∈ (0...𝑁) ↦ (sgnβ€˜(πΉβ€˜π‘–)))) ∈ {-1, 0, 1})
245, 23eqeltrd 2825 1 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(β™―β€˜πΉ))) β†’ ((π‘‡β€˜πΉ)β€˜π‘) ∈ {-1, 0, 1})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098   β‰  wne 2930   βŠ† wss 3939  ifcif 4522  {cpr 4624  {ctp 4626  βŸ¨cop 4628   ↦ cmpt 5224  βŸΆwf 6537  β€˜cfv 6541  (class class class)co 7414   ∈ cmpo 7416  β„cr 11135  0cc0 11136  1c1 11137  β„*cxr 11275   βˆ’ cmin 11472  -cneg 11473  β„•0cn0 12500  β„€β‰₯cuz 12850  ...cfz 13514  ..^cfzo 13657  β™―chash 14319  Word cword 14494  sgncsgn 15063  Ξ£csu 15662  ndxcnx 17159  Basecbs 17177  +gcplusg 17230   Ξ£g cgsu 17419  Mndcmnd 18691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3958  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-int 4943  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-2 12303  df-n0 12501  df-z 12587  df-uz 12851  df-fz 13515  df-fzo 13658  df-seq 13997  df-hash 14320  df-word 14495  df-sgn 15064  df-struct 17113  df-slot 17148  df-ndx 17160  df-base 17178  df-plusg 17243  df-0g 17420  df-gsum 17421  df-mgm 18597  df-sgrp 18676  df-mnd 18692
This theorem is referenced by:  signsvtn0  34231  signstfvneq0  34233  signstfvcl  34234  signstfveq0  34238
  Copyright terms: Public domain W3C validator