| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > slotresfo | Structured version Visualization version GIF version | ||
| Description: The condition of a structure component extractor restricted to a class being a surjection. This combined with fonex 48809 can be used to prove a class being proper. (Contributed by Zhi Wang, 20-Oct-2025.) |
| Ref | Expression |
|---|---|
| slotresfo.e | ⊢ 𝐸 Fn V |
| slotresfo.v | ⊢ (𝑘 ∈ 𝐴 → (𝐸‘𝑘) ∈ 𝑉) |
| slotresfo.k | ⊢ (𝑏 ∈ 𝑉 → 𝐾 ∈ 𝐴) |
| slotresfo.b | ⊢ (𝑏 ∈ 𝑉 → 𝑏 = (𝐸‘𝐾)) |
| Ref | Expression |
|---|---|
| slotresfo | ⊢ (𝐸 ↾ 𝐴):𝐴–onto→𝑉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slotresfo.e | . . . 4 ⊢ 𝐸 Fn V | |
| 2 | ssv 3988 | . . . 4 ⊢ 𝐴 ⊆ V | |
| 3 | fnssres 6666 | . . . 4 ⊢ ((𝐸 Fn V ∧ 𝐴 ⊆ V) → (𝐸 ↾ 𝐴) Fn 𝐴) | |
| 4 | 1, 2, 3 | mp2an 692 | . . 3 ⊢ (𝐸 ↾ 𝐴) Fn 𝐴 |
| 5 | fvres 6900 | . . . . . 6 ⊢ (𝑘 ∈ 𝐴 → ((𝐸 ↾ 𝐴)‘𝑘) = (𝐸‘𝑘)) | |
| 6 | slotresfo.v | . . . . . 6 ⊢ (𝑘 ∈ 𝐴 → (𝐸‘𝑘) ∈ 𝑉) | |
| 7 | 5, 6 | eqeltrd 2835 | . . . . 5 ⊢ (𝑘 ∈ 𝐴 → ((𝐸 ↾ 𝐴)‘𝑘) ∈ 𝑉) |
| 8 | 7 | rgen 3054 | . . . 4 ⊢ ∀𝑘 ∈ 𝐴 ((𝐸 ↾ 𝐴)‘𝑘) ∈ 𝑉 |
| 9 | fnfvrnss 7116 | . . . 4 ⊢ (((𝐸 ↾ 𝐴) Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 ((𝐸 ↾ 𝐴)‘𝑘) ∈ 𝑉) → ran (𝐸 ↾ 𝐴) ⊆ 𝑉) | |
| 10 | 4, 8, 9 | mp2an 692 | . . 3 ⊢ ran (𝐸 ↾ 𝐴) ⊆ 𝑉 |
| 11 | df-f 6540 | . . 3 ⊢ ((𝐸 ↾ 𝐴):𝐴⟶𝑉 ↔ ((𝐸 ↾ 𝐴) Fn 𝐴 ∧ ran (𝐸 ↾ 𝐴) ⊆ 𝑉)) | |
| 12 | 4, 10, 11 | mpbir2an 711 | . 2 ⊢ (𝐸 ↾ 𝐴):𝐴⟶𝑉 |
| 13 | fveq2 6881 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (𝐸‘𝑘) = (𝐸‘𝐾)) | |
| 14 | 13 | eqeq2d 2747 | . . . . 5 ⊢ (𝑘 = 𝐾 → (𝑏 = (𝐸‘𝑘) ↔ 𝑏 = (𝐸‘𝐾))) |
| 15 | slotresfo.k | . . . . 5 ⊢ (𝑏 ∈ 𝑉 → 𝐾 ∈ 𝐴) | |
| 16 | slotresfo.b | . . . . 5 ⊢ (𝑏 ∈ 𝑉 → 𝑏 = (𝐸‘𝐾)) | |
| 17 | 14, 15, 16 | rspcedvdw 3609 | . . . 4 ⊢ (𝑏 ∈ 𝑉 → ∃𝑘 ∈ 𝐴 𝑏 = (𝐸‘𝑘)) |
| 18 | 5 | eqeq2d 2747 | . . . . 5 ⊢ (𝑘 ∈ 𝐴 → (𝑏 = ((𝐸 ↾ 𝐴)‘𝑘) ↔ 𝑏 = (𝐸‘𝑘))) |
| 19 | 18 | rexbiia 3082 | . . . 4 ⊢ (∃𝑘 ∈ 𝐴 𝑏 = ((𝐸 ↾ 𝐴)‘𝑘) ↔ ∃𝑘 ∈ 𝐴 𝑏 = (𝐸‘𝑘)) |
| 20 | 17, 19 | sylibr 234 | . . 3 ⊢ (𝑏 ∈ 𝑉 → ∃𝑘 ∈ 𝐴 𝑏 = ((𝐸 ↾ 𝐴)‘𝑘)) |
| 21 | 20 | rgen 3054 | . 2 ⊢ ∀𝑏 ∈ 𝑉 ∃𝑘 ∈ 𝐴 𝑏 = ((𝐸 ↾ 𝐴)‘𝑘) |
| 22 | dffo3 7097 | . 2 ⊢ ((𝐸 ↾ 𝐴):𝐴–onto→𝑉 ↔ ((𝐸 ↾ 𝐴):𝐴⟶𝑉 ∧ ∀𝑏 ∈ 𝑉 ∃𝑘 ∈ 𝐴 𝑏 = ((𝐸 ↾ 𝐴)‘𝑘))) | |
| 23 | 12, 21, 22 | mpbir2an 711 | 1 ⊢ (𝐸 ↾ 𝐴):𝐴–onto→𝑉 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 Vcvv 3464 ⊆ wss 3931 ran crn 5660 ↾ cres 5661 Fn wfn 6531 ⟶wf 6532 –onto→wfo 6534 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fo 6542 df-fv 6544 |
| This theorem is referenced by: basresprsfo 48920 basrestermcfo 49419 |
| Copyright terms: Public domain | W3C validator |