Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slotresfo Structured version   Visualization version   GIF version

Theorem slotresfo 48767
Description: The condition of a structure component extractor restricted to a class being a surjection. This combined with fonex 48736 can be used to prove a class being proper. (Contributed by Zhi Wang, 20-Oct-2025.)
Hypotheses
Ref Expression
slotresfo.e 𝐸 Fn V
slotresfo.v (𝑘𝐴 → (𝐸𝑘) ∈ 𝑉)
slotresfo.k (𝑏𝑉𝐾𝐴)
slotresfo.b (𝑏𝑉𝑏 = (𝐸𝐾))
Assertion
Ref Expression
slotresfo (𝐸𝐴):𝐴onto𝑉
Distinct variable groups:   𝐴,𝑏,𝑘   𝐸,𝑏,𝑘   𝑘,𝐾   𝑉,𝑏,𝑘
Allowed substitution hint:   𝐾(𝑏)

Proof of Theorem slotresfo
StepHypRef Expression
1 slotresfo.e . . . 4 𝐸 Fn V
2 ssv 3981 . . . 4 𝐴 ⊆ V
3 fnssres 6658 . . . 4 ((𝐸 Fn V ∧ 𝐴 ⊆ V) → (𝐸𝐴) Fn 𝐴)
41, 2, 3mp2an 692 . . 3 (𝐸𝐴) Fn 𝐴
5 fvres 6892 . . . . . 6 (𝑘𝐴 → ((𝐸𝐴)‘𝑘) = (𝐸𝑘))
6 slotresfo.v . . . . . 6 (𝑘𝐴 → (𝐸𝑘) ∈ 𝑉)
75, 6eqeltrd 2833 . . . . 5 (𝑘𝐴 → ((𝐸𝐴)‘𝑘) ∈ 𝑉)
87rgen 3052 . . . 4 𝑘𝐴 ((𝐸𝐴)‘𝑘) ∈ 𝑉
9 fnfvrnss 7108 . . . 4 (((𝐸𝐴) Fn 𝐴 ∧ ∀𝑘𝐴 ((𝐸𝐴)‘𝑘) ∈ 𝑉) → ran (𝐸𝐴) ⊆ 𝑉)
104, 8, 9mp2an 692 . . 3 ran (𝐸𝐴) ⊆ 𝑉
11 df-f 6532 . . 3 ((𝐸𝐴):𝐴𝑉 ↔ ((𝐸𝐴) Fn 𝐴 ∧ ran (𝐸𝐴) ⊆ 𝑉))
124, 10, 11mpbir2an 711 . 2 (𝐸𝐴):𝐴𝑉
13 fveq2 6873 . . . . . 6 (𝑘 = 𝐾 → (𝐸𝑘) = (𝐸𝐾))
1413eqeq2d 2745 . . . . 5 (𝑘 = 𝐾 → (𝑏 = (𝐸𝑘) ↔ 𝑏 = (𝐸𝐾)))
15 slotresfo.k . . . . 5 (𝑏𝑉𝐾𝐴)
16 slotresfo.b . . . . 5 (𝑏𝑉𝑏 = (𝐸𝐾))
1714, 15, 16rspcedvdw 3602 . . . 4 (𝑏𝑉 → ∃𝑘𝐴 𝑏 = (𝐸𝑘))
185eqeq2d 2745 . . . . 5 (𝑘𝐴 → (𝑏 = ((𝐸𝐴)‘𝑘) ↔ 𝑏 = (𝐸𝑘)))
1918rexbiia 3080 . . . 4 (∃𝑘𝐴 𝑏 = ((𝐸𝐴)‘𝑘) ↔ ∃𝑘𝐴 𝑏 = (𝐸𝑘))
2017, 19sylibr 234 . . 3 (𝑏𝑉 → ∃𝑘𝐴 𝑏 = ((𝐸𝐴)‘𝑘))
2120rgen 3052 . 2 𝑏𝑉𝑘𝐴 𝑏 = ((𝐸𝐴)‘𝑘)
22 dffo3 7089 . 2 ((𝐸𝐴):𝐴onto𝑉 ↔ ((𝐸𝐴):𝐴𝑉 ∧ ∀𝑏𝑉𝑘𝐴 𝑏 = ((𝐸𝐴)‘𝑘)))
2312, 21, 22mpbir2an 711 1 (𝐸𝐴):𝐴onto𝑉
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wral 3050  wrex 3059  Vcvv 3457  wss 3924  ran crn 5653  cres 5654   Fn wfn 6523  wf 6524  ontowfo 6526  cfv 6528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pr 5400
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-fo 6534  df-fv 6536
This theorem is referenced by:  basresprsfo  48847  basrestermcfo  49313
  Copyright terms: Public domain W3C validator