Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slotresfo Structured version   Visualization version   GIF version

Theorem slotresfo 49023
Description: The condition of a structure component extractor restricted to a class being a surjection. This combined with fonex 48991 can be used to prove a class being proper. (Contributed by Zhi Wang, 20-Oct-2025.)
Hypotheses
Ref Expression
slotresfo.e 𝐸 Fn V
slotresfo.v (𝑘𝐴 → (𝐸𝑘) ∈ 𝑉)
slotresfo.k (𝑏𝑉𝐾𝐴)
slotresfo.b (𝑏𝑉𝑏 = (𝐸𝐾))
Assertion
Ref Expression
slotresfo (𝐸𝐴):𝐴onto𝑉
Distinct variable groups:   𝐴,𝑏,𝑘   𝐸,𝑏,𝑘   𝑘,𝐾   𝑉,𝑏,𝑘
Allowed substitution hint:   𝐾(𝑏)

Proof of Theorem slotresfo
StepHypRef Expression
1 slotresfo.e . . . 4 𝐸 Fn V
2 ssv 3955 . . . 4 𝐴 ⊆ V
3 fnssres 6609 . . . 4 ((𝐸 Fn V ∧ 𝐴 ⊆ V) → (𝐸𝐴) Fn 𝐴)
41, 2, 3mp2an 692 . . 3 (𝐸𝐴) Fn 𝐴
5 fvres 6847 . . . . . 6 (𝑘𝐴 → ((𝐸𝐴)‘𝑘) = (𝐸𝑘))
6 slotresfo.v . . . . . 6 (𝑘𝐴 → (𝐸𝑘) ∈ 𝑉)
75, 6eqeltrd 2833 . . . . 5 (𝑘𝐴 → ((𝐸𝐴)‘𝑘) ∈ 𝑉)
87rgen 3050 . . . 4 𝑘𝐴 ((𝐸𝐴)‘𝑘) ∈ 𝑉
9 fnfvrnss 7060 . . . 4 (((𝐸𝐴) Fn 𝐴 ∧ ∀𝑘𝐴 ((𝐸𝐴)‘𝑘) ∈ 𝑉) → ran (𝐸𝐴) ⊆ 𝑉)
104, 8, 9mp2an 692 . . 3 ran (𝐸𝐴) ⊆ 𝑉
11 df-f 6490 . . 3 ((𝐸𝐴):𝐴𝑉 ↔ ((𝐸𝐴) Fn 𝐴 ∧ ran (𝐸𝐴) ⊆ 𝑉))
124, 10, 11mpbir2an 711 . 2 (𝐸𝐴):𝐴𝑉
13 fveq2 6828 . . . . . 6 (𝑘 = 𝐾 → (𝐸𝑘) = (𝐸𝐾))
1413eqeq2d 2744 . . . . 5 (𝑘 = 𝐾 → (𝑏 = (𝐸𝑘) ↔ 𝑏 = (𝐸𝐾)))
15 slotresfo.k . . . . 5 (𝑏𝑉𝐾𝐴)
16 slotresfo.b . . . . 5 (𝑏𝑉𝑏 = (𝐸𝐾))
1714, 15, 16rspcedvdw 3576 . . . 4 (𝑏𝑉 → ∃𝑘𝐴 𝑏 = (𝐸𝑘))
185eqeq2d 2744 . . . . 5 (𝑘𝐴 → (𝑏 = ((𝐸𝐴)‘𝑘) ↔ 𝑏 = (𝐸𝑘)))
1918rexbiia 3078 . . . 4 (∃𝑘𝐴 𝑏 = ((𝐸𝐴)‘𝑘) ↔ ∃𝑘𝐴 𝑏 = (𝐸𝑘))
2017, 19sylibr 234 . . 3 (𝑏𝑉 → ∃𝑘𝐴 𝑏 = ((𝐸𝐴)‘𝑘))
2120rgen 3050 . 2 𝑏𝑉𝑘𝐴 𝑏 = ((𝐸𝐴)‘𝑘)
22 dffo3 7041 . 2 ((𝐸𝐴):𝐴onto𝑉 ↔ ((𝐸𝐴):𝐴𝑉 ∧ ∀𝑏𝑉𝑘𝐴 𝑏 = ((𝐸𝐴)‘𝑘)))
2312, 21, 22mpbir2an 711 1 (𝐸𝐴):𝐴onto𝑉
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wral 3048  wrex 3057  Vcvv 3437  wss 3898  ran crn 5620  cres 5621   Fn wfn 6481  wf 6482  ontowfo 6484  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494
This theorem is referenced by:  basresprsfo  49103  basrestermcfo  49700
  Copyright terms: Public domain W3C validator