Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slotresfo Structured version   Visualization version   GIF version

Theorem slotresfo 48803
Description: The condition of a structure component extractor restricted to a class being a surjection. This combined with fonex 48774 can be used to prove a class being proper. (Contributed by Zhi Wang, 20-Oct-2025.)
Hypotheses
Ref Expression
slotresfo.e 𝐸 Fn V
slotresfo.v (𝑘𝐴 → (𝐸𝑘) ∈ 𝑉)
slotresfo.k (𝑏𝑉𝐾𝐴)
slotresfo.b (𝑏𝑉𝑏 = (𝐸𝐾))
Assertion
Ref Expression
slotresfo (𝐸𝐴):𝐴onto𝑉
Distinct variable groups:   𝐴,𝑏,𝑘   𝐸,𝑏,𝑘   𝑘,𝐾   𝑉,𝑏,𝑘
Allowed substitution hint:   𝐾(𝑏)

Proof of Theorem slotresfo
StepHypRef Expression
1 slotresfo.e . . . 4 𝐸 Fn V
2 ssv 4007 . . . 4 𝐴 ⊆ V
3 fnssres 6690 . . . 4 ((𝐸 Fn V ∧ 𝐴 ⊆ V) → (𝐸𝐴) Fn 𝐴)
41, 2, 3mp2an 692 . . 3 (𝐸𝐴) Fn 𝐴
5 fvres 6924 . . . . . 6 (𝑘𝐴 → ((𝐸𝐴)‘𝑘) = (𝐸𝑘))
6 slotresfo.v . . . . . 6 (𝑘𝐴 → (𝐸𝑘) ∈ 𝑉)
75, 6eqeltrd 2840 . . . . 5 (𝑘𝐴 → ((𝐸𝐴)‘𝑘) ∈ 𝑉)
87rgen 3062 . . . 4 𝑘𝐴 ((𝐸𝐴)‘𝑘) ∈ 𝑉
9 fnfvrnss 7140 . . . 4 (((𝐸𝐴) Fn 𝐴 ∧ ∀𝑘𝐴 ((𝐸𝐴)‘𝑘) ∈ 𝑉) → ran (𝐸𝐴) ⊆ 𝑉)
104, 8, 9mp2an 692 . . 3 ran (𝐸𝐴) ⊆ 𝑉
11 df-f 6564 . . 3 ((𝐸𝐴):𝐴𝑉 ↔ ((𝐸𝐴) Fn 𝐴 ∧ ran (𝐸𝐴) ⊆ 𝑉))
124, 10, 11mpbir2an 711 . 2 (𝐸𝐴):𝐴𝑉
13 fveq2 6905 . . . . . 6 (𝑘 = 𝐾 → (𝐸𝑘) = (𝐸𝐾))
1413eqeq2d 2747 . . . . 5 (𝑘 = 𝐾 → (𝑏 = (𝐸𝑘) ↔ 𝑏 = (𝐸𝐾)))
15 slotresfo.k . . . . 5 (𝑏𝑉𝐾𝐴)
16 slotresfo.b . . . . 5 (𝑏𝑉𝑏 = (𝐸𝐾))
1714, 15, 16rspcedvdw 3624 . . . 4 (𝑏𝑉 → ∃𝑘𝐴 𝑏 = (𝐸𝑘))
185eqeq2d 2747 . . . . 5 (𝑘𝐴 → (𝑏 = ((𝐸𝐴)‘𝑘) ↔ 𝑏 = (𝐸𝑘)))
1918rexbiia 3091 . . . 4 (∃𝑘𝐴 𝑏 = ((𝐸𝐴)‘𝑘) ↔ ∃𝑘𝐴 𝑏 = (𝐸𝑘))
2017, 19sylibr 234 . . 3 (𝑏𝑉 → ∃𝑘𝐴 𝑏 = ((𝐸𝐴)‘𝑘))
2120rgen 3062 . 2 𝑏𝑉𝑘𝐴 𝑏 = ((𝐸𝐴)‘𝑘)
22 dffo3 7121 . 2 ((𝐸𝐴):𝐴onto𝑉 ↔ ((𝐸𝐴):𝐴𝑉 ∧ ∀𝑏𝑉𝑘𝐴 𝑏 = ((𝐸𝐴)‘𝑘)))
2312, 21, 22mpbir2an 711 1 (𝐸𝐴):𝐴onto𝑉
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wral 3060  wrex 3069  Vcvv 3479  wss 3950  ran crn 5685  cres 5686   Fn wfn 6555  wf 6556  ontowfo 6558  cfv 6560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fo 6566  df-fv 6568
This theorem is referenced by:  basresprsfo  48883  basrestermcfo  49227
  Copyright terms: Public domain W3C validator