Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slotresfo Structured version   Visualization version   GIF version

Theorem slotresfo 48840
Description: The condition of a structure component extractor restricted to a class being a surjection. This combined with fonex 48809 can be used to prove a class being proper. (Contributed by Zhi Wang, 20-Oct-2025.)
Hypotheses
Ref Expression
slotresfo.e 𝐸 Fn V
slotresfo.v (𝑘𝐴 → (𝐸𝑘) ∈ 𝑉)
slotresfo.k (𝑏𝑉𝐾𝐴)
slotresfo.b (𝑏𝑉𝑏 = (𝐸𝐾))
Assertion
Ref Expression
slotresfo (𝐸𝐴):𝐴onto𝑉
Distinct variable groups:   𝐴,𝑏,𝑘   𝐸,𝑏,𝑘   𝑘,𝐾   𝑉,𝑏,𝑘
Allowed substitution hint:   𝐾(𝑏)

Proof of Theorem slotresfo
StepHypRef Expression
1 slotresfo.e . . . 4 𝐸 Fn V
2 ssv 3988 . . . 4 𝐴 ⊆ V
3 fnssres 6666 . . . 4 ((𝐸 Fn V ∧ 𝐴 ⊆ V) → (𝐸𝐴) Fn 𝐴)
41, 2, 3mp2an 692 . . 3 (𝐸𝐴) Fn 𝐴
5 fvres 6900 . . . . . 6 (𝑘𝐴 → ((𝐸𝐴)‘𝑘) = (𝐸𝑘))
6 slotresfo.v . . . . . 6 (𝑘𝐴 → (𝐸𝑘) ∈ 𝑉)
75, 6eqeltrd 2835 . . . . 5 (𝑘𝐴 → ((𝐸𝐴)‘𝑘) ∈ 𝑉)
87rgen 3054 . . . 4 𝑘𝐴 ((𝐸𝐴)‘𝑘) ∈ 𝑉
9 fnfvrnss 7116 . . . 4 (((𝐸𝐴) Fn 𝐴 ∧ ∀𝑘𝐴 ((𝐸𝐴)‘𝑘) ∈ 𝑉) → ran (𝐸𝐴) ⊆ 𝑉)
104, 8, 9mp2an 692 . . 3 ran (𝐸𝐴) ⊆ 𝑉
11 df-f 6540 . . 3 ((𝐸𝐴):𝐴𝑉 ↔ ((𝐸𝐴) Fn 𝐴 ∧ ran (𝐸𝐴) ⊆ 𝑉))
124, 10, 11mpbir2an 711 . 2 (𝐸𝐴):𝐴𝑉
13 fveq2 6881 . . . . . 6 (𝑘 = 𝐾 → (𝐸𝑘) = (𝐸𝐾))
1413eqeq2d 2747 . . . . 5 (𝑘 = 𝐾 → (𝑏 = (𝐸𝑘) ↔ 𝑏 = (𝐸𝐾)))
15 slotresfo.k . . . . 5 (𝑏𝑉𝐾𝐴)
16 slotresfo.b . . . . 5 (𝑏𝑉𝑏 = (𝐸𝐾))
1714, 15, 16rspcedvdw 3609 . . . 4 (𝑏𝑉 → ∃𝑘𝐴 𝑏 = (𝐸𝑘))
185eqeq2d 2747 . . . . 5 (𝑘𝐴 → (𝑏 = ((𝐸𝐴)‘𝑘) ↔ 𝑏 = (𝐸𝑘)))
1918rexbiia 3082 . . . 4 (∃𝑘𝐴 𝑏 = ((𝐸𝐴)‘𝑘) ↔ ∃𝑘𝐴 𝑏 = (𝐸𝑘))
2017, 19sylibr 234 . . 3 (𝑏𝑉 → ∃𝑘𝐴 𝑏 = ((𝐸𝐴)‘𝑘))
2120rgen 3054 . 2 𝑏𝑉𝑘𝐴 𝑏 = ((𝐸𝐴)‘𝑘)
22 dffo3 7097 . 2 ((𝐸𝐴):𝐴onto𝑉 ↔ ((𝐸𝐴):𝐴𝑉 ∧ ∀𝑏𝑉𝑘𝐴 𝑏 = ((𝐸𝐴)‘𝑘)))
2312, 21, 22mpbir2an 711 1 (𝐸𝐴):𝐴onto𝑉
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3052  wrex 3061  Vcvv 3464  wss 3931  ran crn 5660  cres 5661   Fn wfn 6531  wf 6532  ontowfo 6534  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fo 6542  df-fv 6544
This theorem is referenced by:  basresprsfo  48920  basrestermcfo  49419
  Copyright terms: Public domain W3C validator