| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > slotresfo | Structured version Visualization version GIF version | ||
| Description: The condition of a structure component extractor restricted to a class being a surjection. This combined with fonex 48736 can be used to prove a class being proper. (Contributed by Zhi Wang, 20-Oct-2025.) |
| Ref | Expression |
|---|---|
| slotresfo.e | ⊢ 𝐸 Fn V |
| slotresfo.v | ⊢ (𝑘 ∈ 𝐴 → (𝐸‘𝑘) ∈ 𝑉) |
| slotresfo.k | ⊢ (𝑏 ∈ 𝑉 → 𝐾 ∈ 𝐴) |
| slotresfo.b | ⊢ (𝑏 ∈ 𝑉 → 𝑏 = (𝐸‘𝐾)) |
| Ref | Expression |
|---|---|
| slotresfo | ⊢ (𝐸 ↾ 𝐴):𝐴–onto→𝑉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slotresfo.e | . . . 4 ⊢ 𝐸 Fn V | |
| 2 | ssv 3981 | . . . 4 ⊢ 𝐴 ⊆ V | |
| 3 | fnssres 6658 | . . . 4 ⊢ ((𝐸 Fn V ∧ 𝐴 ⊆ V) → (𝐸 ↾ 𝐴) Fn 𝐴) | |
| 4 | 1, 2, 3 | mp2an 692 | . . 3 ⊢ (𝐸 ↾ 𝐴) Fn 𝐴 |
| 5 | fvres 6892 | . . . . . 6 ⊢ (𝑘 ∈ 𝐴 → ((𝐸 ↾ 𝐴)‘𝑘) = (𝐸‘𝑘)) | |
| 6 | slotresfo.v | . . . . . 6 ⊢ (𝑘 ∈ 𝐴 → (𝐸‘𝑘) ∈ 𝑉) | |
| 7 | 5, 6 | eqeltrd 2833 | . . . . 5 ⊢ (𝑘 ∈ 𝐴 → ((𝐸 ↾ 𝐴)‘𝑘) ∈ 𝑉) |
| 8 | 7 | rgen 3052 | . . . 4 ⊢ ∀𝑘 ∈ 𝐴 ((𝐸 ↾ 𝐴)‘𝑘) ∈ 𝑉 |
| 9 | fnfvrnss 7108 | . . . 4 ⊢ (((𝐸 ↾ 𝐴) Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 ((𝐸 ↾ 𝐴)‘𝑘) ∈ 𝑉) → ran (𝐸 ↾ 𝐴) ⊆ 𝑉) | |
| 10 | 4, 8, 9 | mp2an 692 | . . 3 ⊢ ran (𝐸 ↾ 𝐴) ⊆ 𝑉 |
| 11 | df-f 6532 | . . 3 ⊢ ((𝐸 ↾ 𝐴):𝐴⟶𝑉 ↔ ((𝐸 ↾ 𝐴) Fn 𝐴 ∧ ran (𝐸 ↾ 𝐴) ⊆ 𝑉)) | |
| 12 | 4, 10, 11 | mpbir2an 711 | . 2 ⊢ (𝐸 ↾ 𝐴):𝐴⟶𝑉 |
| 13 | fveq2 6873 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (𝐸‘𝑘) = (𝐸‘𝐾)) | |
| 14 | 13 | eqeq2d 2745 | . . . . 5 ⊢ (𝑘 = 𝐾 → (𝑏 = (𝐸‘𝑘) ↔ 𝑏 = (𝐸‘𝐾))) |
| 15 | slotresfo.k | . . . . 5 ⊢ (𝑏 ∈ 𝑉 → 𝐾 ∈ 𝐴) | |
| 16 | slotresfo.b | . . . . 5 ⊢ (𝑏 ∈ 𝑉 → 𝑏 = (𝐸‘𝐾)) | |
| 17 | 14, 15, 16 | rspcedvdw 3602 | . . . 4 ⊢ (𝑏 ∈ 𝑉 → ∃𝑘 ∈ 𝐴 𝑏 = (𝐸‘𝑘)) |
| 18 | 5 | eqeq2d 2745 | . . . . 5 ⊢ (𝑘 ∈ 𝐴 → (𝑏 = ((𝐸 ↾ 𝐴)‘𝑘) ↔ 𝑏 = (𝐸‘𝑘))) |
| 19 | 18 | rexbiia 3080 | . . . 4 ⊢ (∃𝑘 ∈ 𝐴 𝑏 = ((𝐸 ↾ 𝐴)‘𝑘) ↔ ∃𝑘 ∈ 𝐴 𝑏 = (𝐸‘𝑘)) |
| 20 | 17, 19 | sylibr 234 | . . 3 ⊢ (𝑏 ∈ 𝑉 → ∃𝑘 ∈ 𝐴 𝑏 = ((𝐸 ↾ 𝐴)‘𝑘)) |
| 21 | 20 | rgen 3052 | . 2 ⊢ ∀𝑏 ∈ 𝑉 ∃𝑘 ∈ 𝐴 𝑏 = ((𝐸 ↾ 𝐴)‘𝑘) |
| 22 | dffo3 7089 | . 2 ⊢ ((𝐸 ↾ 𝐴):𝐴–onto→𝑉 ↔ ((𝐸 ↾ 𝐴):𝐴⟶𝑉 ∧ ∀𝑏 ∈ 𝑉 ∃𝑘 ∈ 𝐴 𝑏 = ((𝐸 ↾ 𝐴)‘𝑘))) | |
| 23 | 12, 21, 22 | mpbir2an 711 | 1 ⊢ (𝐸 ↾ 𝐴):𝐴–onto→𝑉 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 Vcvv 3457 ⊆ wss 3924 ran crn 5653 ↾ cres 5654 Fn wfn 6523 ⟶wf 6524 –onto→wfo 6526 ‘cfv 6528 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pr 5400 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-fo 6534 df-fv 6536 |
| This theorem is referenced by: basresprsfo 48847 basrestermcfo 49313 |
| Copyright terms: Public domain | W3C validator |