Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slotresfo Structured version   Visualization version   GIF version

Theorem slotresfo 48929
Description: The condition of a structure component extractor restricted to a class being a surjection. This combined with fonex 48897 can be used to prove a class being proper. (Contributed by Zhi Wang, 20-Oct-2025.)
Hypotheses
Ref Expression
slotresfo.e 𝐸 Fn V
slotresfo.v (𝑘𝐴 → (𝐸𝑘) ∈ 𝑉)
slotresfo.k (𝑏𝑉𝐾𝐴)
slotresfo.b (𝑏𝑉𝑏 = (𝐸𝐾))
Assertion
Ref Expression
slotresfo (𝐸𝐴):𝐴onto𝑉
Distinct variable groups:   𝐴,𝑏,𝑘   𝐸,𝑏,𝑘   𝑘,𝐾   𝑉,𝑏,𝑘
Allowed substitution hint:   𝐾(𝑏)

Proof of Theorem slotresfo
StepHypRef Expression
1 slotresfo.e . . . 4 𝐸 Fn V
2 ssv 3959 . . . 4 𝐴 ⊆ V
3 fnssres 6604 . . . 4 ((𝐸 Fn V ∧ 𝐴 ⊆ V) → (𝐸𝐴) Fn 𝐴)
41, 2, 3mp2an 692 . . 3 (𝐸𝐴) Fn 𝐴
5 fvres 6841 . . . . . 6 (𝑘𝐴 → ((𝐸𝐴)‘𝑘) = (𝐸𝑘))
6 slotresfo.v . . . . . 6 (𝑘𝐴 → (𝐸𝑘) ∈ 𝑉)
75, 6eqeltrd 2831 . . . . 5 (𝑘𝐴 → ((𝐸𝐴)‘𝑘) ∈ 𝑉)
87rgen 3049 . . . 4 𝑘𝐴 ((𝐸𝐴)‘𝑘) ∈ 𝑉
9 fnfvrnss 7054 . . . 4 (((𝐸𝐴) Fn 𝐴 ∧ ∀𝑘𝐴 ((𝐸𝐴)‘𝑘) ∈ 𝑉) → ran (𝐸𝐴) ⊆ 𝑉)
104, 8, 9mp2an 692 . . 3 ran (𝐸𝐴) ⊆ 𝑉
11 df-f 6485 . . 3 ((𝐸𝐴):𝐴𝑉 ↔ ((𝐸𝐴) Fn 𝐴 ∧ ran (𝐸𝐴) ⊆ 𝑉))
124, 10, 11mpbir2an 711 . 2 (𝐸𝐴):𝐴𝑉
13 fveq2 6822 . . . . . 6 (𝑘 = 𝐾 → (𝐸𝑘) = (𝐸𝐾))
1413eqeq2d 2742 . . . . 5 (𝑘 = 𝐾 → (𝑏 = (𝐸𝑘) ↔ 𝑏 = (𝐸𝐾)))
15 slotresfo.k . . . . 5 (𝑏𝑉𝐾𝐴)
16 slotresfo.b . . . . 5 (𝑏𝑉𝑏 = (𝐸𝐾))
1714, 15, 16rspcedvdw 3580 . . . 4 (𝑏𝑉 → ∃𝑘𝐴 𝑏 = (𝐸𝑘))
185eqeq2d 2742 . . . . 5 (𝑘𝐴 → (𝑏 = ((𝐸𝐴)‘𝑘) ↔ 𝑏 = (𝐸𝑘)))
1918rexbiia 3077 . . . 4 (∃𝑘𝐴 𝑏 = ((𝐸𝐴)‘𝑘) ↔ ∃𝑘𝐴 𝑏 = (𝐸𝑘))
2017, 19sylibr 234 . . 3 (𝑏𝑉 → ∃𝑘𝐴 𝑏 = ((𝐸𝐴)‘𝑘))
2120rgen 3049 . 2 𝑏𝑉𝑘𝐴 𝑏 = ((𝐸𝐴)‘𝑘)
22 dffo3 7035 . 2 ((𝐸𝐴):𝐴onto𝑉 ↔ ((𝐸𝐴):𝐴𝑉 ∧ ∀𝑏𝑉𝑘𝐴 𝑏 = ((𝐸𝐴)‘𝑘)))
2312, 21, 22mpbir2an 711 1 (𝐸𝐴):𝐴onto𝑉
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  wss 3902  ran crn 5617  cres 5618   Fn wfn 6476  wf 6477  ontowfo 6479  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489
This theorem is referenced by:  basresprsfo  49009  basrestermcfo  49606
  Copyright terms: Public domain W3C validator