Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem2 Structured version   Visualization version   GIF version

Theorem stoweidlem2 45384
Description: lemma for stoweid 45445: here we prove that the subalgebra of continuous functions, which contains constant functions, is closed under scaling. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem2.1 𝑡𝜑
stoweidlem2.2 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem2.3 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem2.4 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem2.5 (𝜑𝐸 ∈ ℝ)
stoweidlem2.6 (𝜑𝐹𝐴)
Assertion
Ref Expression
stoweidlem2 (𝜑 → (𝑡𝑇 ↦ (𝐸 · (𝐹𝑡))) ∈ 𝐴)
Distinct variable groups:   𝑓,𝑔,𝑡,𝐹   𝑓,𝐸,𝑡   𝐴,𝑓,𝑔   𝑇,𝑓,𝑔,𝑡   𝜑,𝑓,𝑔   𝑥,𝑡,𝐸   𝑥,𝐴   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑡)   𝐸(𝑔)   𝐹(𝑥)

Proof of Theorem stoweidlem2
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem2.1 . . 3 𝑡𝜑
2 simpr 484 . . . . . 6 ((𝜑𝑡𝑇) → 𝑡𝑇)
3 stoweidlem2.5 . . . . . . 7 (𝜑𝐸 ∈ ℝ)
43adantr 480 . . . . . 6 ((𝜑𝑡𝑇) → 𝐸 ∈ ℝ)
5 eqidd 2729 . . . . . . . 8 (𝑠 = 𝑡𝐸 = 𝐸)
65cbvmptv 5255 . . . . . . 7 (𝑠𝑇𝐸) = (𝑡𝑇𝐸)
76fvmpt2 7010 . . . . . 6 ((𝑡𝑇𝐸 ∈ ℝ) → ((𝑠𝑇𝐸)‘𝑡) = 𝐸)
82, 4, 7syl2anc 583 . . . . 5 ((𝜑𝑡𝑇) → ((𝑠𝑇𝐸)‘𝑡) = 𝐸)
98eqcomd 2734 . . . 4 ((𝜑𝑡𝑇) → 𝐸 = ((𝑠𝑇𝐸)‘𝑡))
109oveq1d 7429 . . 3 ((𝜑𝑡𝑇) → (𝐸 · (𝐹𝑡)) = (((𝑠𝑇𝐸)‘𝑡) · (𝐹𝑡)))
111, 10mpteq2da 5240 . 2 (𝜑 → (𝑡𝑇 ↦ (𝐸 · (𝐹𝑡))) = (𝑡𝑇 ↦ (((𝑠𝑇𝐸)‘𝑡) · (𝐹𝑡))))
12 id 22 . . . . . . . . 9 (𝑥 = 𝐸𝑥 = 𝐸)
1312mpteq2dv 5244 . . . . . . . 8 (𝑥 = 𝐸 → (𝑡𝑇𝑥) = (𝑡𝑇𝐸))
1413eleq1d 2814 . . . . . . 7 (𝑥 = 𝐸 → ((𝑡𝑇𝑥) ∈ 𝐴 ↔ (𝑡𝑇𝐸) ∈ 𝐴))
1514imbi2d 340 . . . . . 6 (𝑥 = 𝐸 → ((𝜑 → (𝑡𝑇𝑥) ∈ 𝐴) ↔ (𝜑 → (𝑡𝑇𝐸) ∈ 𝐴)))
16 stoweidlem2.3 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
1716expcom 413 . . . . . 6 (𝑥 ∈ ℝ → (𝜑 → (𝑡𝑇𝑥) ∈ 𝐴))
1815, 17vtoclga 3562 . . . . 5 (𝐸 ∈ ℝ → (𝜑 → (𝑡𝑇𝐸) ∈ 𝐴))
193, 18mpcom 38 . . . 4 (𝜑 → (𝑡𝑇𝐸) ∈ 𝐴)
206, 19eqeltrid 2833 . . 3 (𝜑 → (𝑠𝑇𝐸) ∈ 𝐴)
21 fveq1 6890 . . . . . . . 8 (𝑓 = (𝑠𝑇𝐸) → (𝑓𝑡) = ((𝑠𝑇𝐸)‘𝑡))
2221oveq1d 7429 . . . . . . 7 (𝑓 = (𝑠𝑇𝐸) → ((𝑓𝑡) · (𝐹𝑡)) = (((𝑠𝑇𝐸)‘𝑡) · (𝐹𝑡)))
2322mpteq2dv 5244 . . . . . 6 (𝑓 = (𝑠𝑇𝐸) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝐹𝑡))) = (𝑡𝑇 ↦ (((𝑠𝑇𝐸)‘𝑡) · (𝐹𝑡))))
2423eleq1d 2814 . . . . 5 (𝑓 = (𝑠𝑇𝐸) → ((𝑡𝑇 ↦ ((𝑓𝑡) · (𝐹𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ (((𝑠𝑇𝐸)‘𝑡) · (𝐹𝑡))) ∈ 𝐴))
2524imbi2d 340 . . . 4 (𝑓 = (𝑠𝑇𝐸) → ((𝜑 → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝐹𝑡))) ∈ 𝐴) ↔ (𝜑 → (𝑡𝑇 ↦ (((𝑠𝑇𝐸)‘𝑡) · (𝐹𝑡))) ∈ 𝐴)))
26 stoweidlem2.6 . . . . . . 7 (𝜑𝐹𝐴)
2726adantr 480 . . . . . 6 ((𝜑𝑓𝐴) → 𝐹𝐴)
28 fveq1 6890 . . . . . . . . . . 11 (𝑔 = 𝐹 → (𝑔𝑡) = (𝐹𝑡))
2928oveq2d 7430 . . . . . . . . . 10 (𝑔 = 𝐹 → ((𝑓𝑡) · (𝑔𝑡)) = ((𝑓𝑡) · (𝐹𝑡)))
3029mpteq2dv 5244 . . . . . . . . 9 (𝑔 = 𝐹 → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑓𝑡) · (𝐹𝑡))))
3130eleq1d 2814 . . . . . . . 8 (𝑔 = 𝐹 → ((𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝐹𝑡))) ∈ 𝐴))
3231imbi2d 340 . . . . . . 7 (𝑔 = 𝐹 → (((𝜑𝑓𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴) ↔ ((𝜑𝑓𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝐹𝑡))) ∈ 𝐴)))
33 stoweidlem2.2 . . . . . . . . 9 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
34333comr 1123 . . . . . . . 8 ((𝑔𝐴𝜑𝑓𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
35343expib 1120 . . . . . . 7 (𝑔𝐴 → ((𝜑𝑓𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴))
3632, 35vtoclga 3562 . . . . . 6 (𝐹𝐴 → ((𝜑𝑓𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝐹𝑡))) ∈ 𝐴))
3727, 36mpcom 38 . . . . 5 ((𝜑𝑓𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝐹𝑡))) ∈ 𝐴)
3837expcom 413 . . . 4 (𝑓𝐴 → (𝜑 → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝐹𝑡))) ∈ 𝐴))
3925, 38vtoclga 3562 . . 3 ((𝑠𝑇𝐸) ∈ 𝐴 → (𝜑 → (𝑡𝑇 ↦ (((𝑠𝑇𝐸)‘𝑡) · (𝐹𝑡))) ∈ 𝐴))
4020, 39mpcom 38 . 2 (𝜑 → (𝑡𝑇 ↦ (((𝑠𝑇𝐸)‘𝑡) · (𝐹𝑡))) ∈ 𝐴)
4111, 40eqeltrd 2829 1 (𝜑 → (𝑡𝑇 ↦ (𝐸 · (𝐹𝑡))) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wnf 1778  wcel 2099  cmpt 5225  wf 6538  cfv 6542  (class class class)co 7414  cr 11131   · cmul 11137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7417
This theorem is referenced by:  stoweidlem17  45399
  Copyright terms: Public domain W3C validator