Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subspopn Structured version   Visualization version   GIF version

Theorem subspopn 37812
Description: An open set is open in the subspace topology. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Assertion
Ref Expression
subspopn (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴)) → 𝐵 ∈ (𝐽t 𝐴))

Proof of Theorem subspopn
StepHypRef Expression
1 elrestr 17334 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑉𝐵𝐽) → (𝐵𝐴) ∈ (𝐽t 𝐴))
2 dfss2 3916 . . . . 5 (𝐵𝐴 ↔ (𝐵𝐴) = 𝐵)
3 eleq1 2821 . . . . 5 ((𝐵𝐴) = 𝐵 → ((𝐵𝐴) ∈ (𝐽t 𝐴) ↔ 𝐵 ∈ (𝐽t 𝐴)))
42, 3sylbi 217 . . . 4 (𝐵𝐴 → ((𝐵𝐴) ∈ (𝐽t 𝐴) ↔ 𝐵 ∈ (𝐽t 𝐴)))
51, 4syl5ibcom 245 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑉𝐵𝐽) → (𝐵𝐴𝐵 ∈ (𝐽t 𝐴)))
653expa 1118 . 2 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ 𝐵𝐽) → (𝐵𝐴𝐵 ∈ (𝐽t 𝐴)))
76impr 454 1 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴)) → 𝐵 ∈ (𝐽t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  cin 3897  wss 3898  (class class class)co 7352  t crest 17326  Topctop 22809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-rest 17328
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator