Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subspopn Structured version   Visualization version   GIF version

Theorem subspopn 37718
Description: An open set is open in the subspace topology. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Assertion
Ref Expression
subspopn (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴)) → 𝐵 ∈ (𝐽t 𝐴))

Proof of Theorem subspopn
StepHypRef Expression
1 elrestr 17444 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑉𝐵𝐽) → (𝐵𝐴) ∈ (𝐽t 𝐴))
2 dfss2 3949 . . . . 5 (𝐵𝐴 ↔ (𝐵𝐴) = 𝐵)
3 eleq1 2821 . . . . 5 ((𝐵𝐴) = 𝐵 → ((𝐵𝐴) ∈ (𝐽t 𝐴) ↔ 𝐵 ∈ (𝐽t 𝐴)))
42, 3sylbi 217 . . . 4 (𝐵𝐴 → ((𝐵𝐴) ∈ (𝐽t 𝐴) ↔ 𝐵 ∈ (𝐽t 𝐴)))
51, 4syl5ibcom 245 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑉𝐵𝐽) → (𝐵𝐴𝐵 ∈ (𝐽t 𝐴)))
653expa 1118 . 2 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ 𝐵𝐽) → (𝐵𝐴𝐵 ∈ (𝐽t 𝐴)))
76impr 454 1 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴)) → 𝐵 ∈ (𝐽t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  cin 3930  wss 3931  (class class class)co 7413  t crest 17436  Topctop 22847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-rest 17438
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator