![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > subspopn | Structured version Visualization version GIF version |
Description: An open set is open in the subspace topology. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
Ref | Expression |
---|---|
subspopn | ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴)) → 𝐵 ∈ (𝐽 ↾t 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrestr 17417 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐽) → (𝐵 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) | |
2 | df-ss 3966 | . . . . 5 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∩ 𝐴) = 𝐵) | |
3 | eleq1 2817 | . . . . 5 ⊢ ((𝐵 ∩ 𝐴) = 𝐵 → ((𝐵 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴) ↔ 𝐵 ∈ (𝐽 ↾t 𝐴))) | |
4 | 2, 3 | sylbi 216 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → ((𝐵 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴) ↔ 𝐵 ∈ (𝐽 ↾t 𝐴))) |
5 | 1, 4 | syl5ibcom 244 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐽) → (𝐵 ⊆ 𝐴 → 𝐵 ∈ (𝐽 ↾t 𝐴))) |
6 | 5 | 3expa 1115 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ 𝐵 ∈ 𝐽) → (𝐵 ⊆ 𝐴 → 𝐵 ∈ (𝐽 ↾t 𝐴))) |
7 | 6 | impr 453 | 1 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴)) → 𝐵 ∈ (𝐽 ↾t 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∩ cin 3948 ⊆ wss 3949 (class class class)co 7426 ↾t crest 17409 Topctop 22815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 df-rest 17411 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |