![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > subspopn | Structured version Visualization version GIF version |
Description: An open set is open in the subspace topology. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
Ref | Expression |
---|---|
subspopn | ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴)) → 𝐵 ∈ (𝐽 ↾t 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrestr 16479 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐽) → (𝐵 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) | |
2 | df-ss 3806 | . . . . 5 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∩ 𝐴) = 𝐵) | |
3 | eleq1 2847 | . . . . 5 ⊢ ((𝐵 ∩ 𝐴) = 𝐵 → ((𝐵 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴) ↔ 𝐵 ∈ (𝐽 ↾t 𝐴))) | |
4 | 2, 3 | sylbi 209 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → ((𝐵 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴) ↔ 𝐵 ∈ (𝐽 ↾t 𝐴))) |
5 | 1, 4 | syl5ibcom 237 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐽) → (𝐵 ⊆ 𝐴 → 𝐵 ∈ (𝐽 ↾t 𝐴))) |
6 | 5 | 3expa 1108 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ 𝐵 ∈ 𝐽) → (𝐵 ⊆ 𝐴 → 𝐵 ∈ (𝐽 ↾t 𝐴))) |
7 | 6 | impr 448 | 1 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴)) → 𝐵 ∈ (𝐽 ↾t 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ∩ cin 3791 ⊆ wss 3792 (class class class)co 6924 ↾t crest 16471 Topctop 21109 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-rest 16473 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |