Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subspopn Structured version   Visualization version   GIF version

Theorem subspopn 37731
Description: An open set is open in the subspace topology. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Assertion
Ref Expression
subspopn (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴)) → 𝐵 ∈ (𝐽t 𝐴))

Proof of Theorem subspopn
StepHypRef Expression
1 elrestr 17350 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑉𝐵𝐽) → (𝐵𝐴) ∈ (𝐽t 𝐴))
2 dfss2 3923 . . . . 5 (𝐵𝐴 ↔ (𝐵𝐴) = 𝐵)
3 eleq1 2816 . . . . 5 ((𝐵𝐴) = 𝐵 → ((𝐵𝐴) ∈ (𝐽t 𝐴) ↔ 𝐵 ∈ (𝐽t 𝐴)))
42, 3sylbi 217 . . . 4 (𝐵𝐴 → ((𝐵𝐴) ∈ (𝐽t 𝐴) ↔ 𝐵 ∈ (𝐽t 𝐴)))
51, 4syl5ibcom 245 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑉𝐵𝐽) → (𝐵𝐴𝐵 ∈ (𝐽t 𝐴)))
653expa 1118 . 2 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ 𝐵𝐽) → (𝐵𝐴𝐵 ∈ (𝐽t 𝐴)))
76impr 454 1 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴)) → 𝐵 ∈ (𝐽t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3904  wss 3905  (class class class)co 7353  t crest 17342  Topctop 22796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-rest 17344
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator