![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > subspopn | Structured version Visualization version GIF version |
Description: An open set is open in the subspace topology. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
Ref | Expression |
---|---|
subspopn | ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴)) → 𝐵 ∈ (𝐽 ↾t 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrestr 17484 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐽) → (𝐵 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) | |
2 | dfss2 3984 | . . . . 5 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∩ 𝐴) = 𝐵) | |
3 | eleq1 2829 | . . . . 5 ⊢ ((𝐵 ∩ 𝐴) = 𝐵 → ((𝐵 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴) ↔ 𝐵 ∈ (𝐽 ↾t 𝐴))) | |
4 | 2, 3 | sylbi 217 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → ((𝐵 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴) ↔ 𝐵 ∈ (𝐽 ↾t 𝐴))) |
5 | 1, 4 | syl5ibcom 245 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐽) → (𝐵 ⊆ 𝐴 → 𝐵 ∈ (𝐽 ↾t 𝐴))) |
6 | 5 | 3expa 1119 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ 𝐵 ∈ 𝐽) → (𝐵 ⊆ 𝐴 → 𝐵 ∈ (𝐽 ↾t 𝐴))) |
7 | 6 | impr 454 | 1 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴)) → 𝐵 ∈ (𝐽 ↾t 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 ∩ cin 3965 ⊆ wss 3966 (class class class)co 7438 ↾t crest 17476 Topctop 22924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-rest 17478 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |