![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > subspopn | Structured version Visualization version GIF version |
Description: An open set is open in the subspace topology. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
Ref | Expression |
---|---|
subspopn | ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴)) → 𝐵 ∈ (𝐽 ↾t 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrestr 17318 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐽) → (𝐵 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) | |
2 | df-ss 3931 | . . . . 5 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∩ 𝐴) = 𝐵) | |
3 | eleq1 2822 | . . . . 5 ⊢ ((𝐵 ∩ 𝐴) = 𝐵 → ((𝐵 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴) ↔ 𝐵 ∈ (𝐽 ↾t 𝐴))) | |
4 | 2, 3 | sylbi 216 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → ((𝐵 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴) ↔ 𝐵 ∈ (𝐽 ↾t 𝐴))) |
5 | 1, 4 | syl5ibcom 244 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐽) → (𝐵 ⊆ 𝐴 → 𝐵 ∈ (𝐽 ↾t 𝐴))) |
6 | 5 | 3expa 1119 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ 𝐵 ∈ 𝐽) → (𝐵 ⊆ 𝐴 → 𝐵 ∈ (𝐽 ↾t 𝐴))) |
7 | 6 | impr 456 | 1 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴)) → 𝐵 ∈ (𝐽 ↾t 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∩ cin 3913 ⊆ wss 3914 (class class class)co 7361 ↾t crest 17310 Topctop 22265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-ov 7364 df-oprab 7365 df-mpo 7366 df-rest 17312 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |