| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrestr | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
| Ref | Expression |
|---|---|
| elrestr | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐴 ∈ 𝐽) → (𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ (𝐴 ∩ 𝑆) = (𝐴 ∩ 𝑆) | |
| 2 | ineq1 4193 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∩ 𝑆) = (𝐴 ∩ 𝑆)) | |
| 3 | 2 | rspceeqv 3629 | . . . 4 ⊢ ((𝐴 ∈ 𝐽 ∧ (𝐴 ∩ 𝑆) = (𝐴 ∩ 𝑆)) → ∃𝑥 ∈ 𝐽 (𝐴 ∩ 𝑆) = (𝑥 ∩ 𝑆)) |
| 4 | 1, 3 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ 𝐽 → ∃𝑥 ∈ 𝐽 (𝐴 ∩ 𝑆) = (𝑥 ∩ 𝑆)) |
| 5 | elrest 17446 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ((𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆) ↔ ∃𝑥 ∈ 𝐽 (𝐴 ∩ 𝑆) = (𝑥 ∩ 𝑆))) | |
| 6 | 4, 5 | imbitrrid 246 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝐴 ∈ 𝐽 → (𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆))) |
| 7 | 6 | 3impia 1117 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐴 ∈ 𝐽) → (𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 ∩ cin 3930 (class class class)co 7410 ↾t crest 17439 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-rest 17441 |
| This theorem is referenced by: firest 17451 restbas 23101 tgrest 23102 resttopon 23104 restcld 23115 restfpw 23122 neitr 23123 restntr 23125 ordtrest 23145 cnrest 23228 lmss 23241 connsubclo 23367 restnlly 23425 islly2 23427 cldllycmp 23438 lly1stc 23439 kgenss 23486 xkococnlem 23602 xkoinjcn 23630 qtoprest 23660 trfbas2 23786 trfil1 23829 trfil2 23830 fgtr 23833 trfg 23834 uzrest 23840 trufil 23853 flimrest 23926 cnextcn 24010 trust 24173 restutop 24181 trcfilu 24237 cfiluweak 24238 xrsmopn 24757 zdis 24761 xrge0tsms 24779 cnheibor 24910 cfilres 25253 lhop2 25977 psercn 26393 xrlimcnp 26935 xrge0tsmsd 33061 ordtrestNEW 33957 pnfneige0 33987 lmxrge0 33988 rrhre 34057 cvmscld 35300 cvmopnlem 35305 cvmliftmolem1 35308 poimirlem30 37679 subspopn 37781 iocopn 45516 icoopn 45521 limcresiooub 45638 limcresioolb 45639 fourierdlem32 46135 fourierdlem33 46136 fourierdlem48 46150 fourierdlem49 46151 i0oii 48861 io1ii 48862 iscnrm3llem2 48891 |
| Copyright terms: Public domain | W3C validator |