| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrestr | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
| Ref | Expression |
|---|---|
| elrestr | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐴 ∈ 𝐽) → (𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (𝐴 ∩ 𝑆) = (𝐴 ∩ 𝑆) | |
| 2 | ineq1 4176 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∩ 𝑆) = (𝐴 ∩ 𝑆)) | |
| 3 | 2 | rspceeqv 3611 | . . . 4 ⊢ ((𝐴 ∈ 𝐽 ∧ (𝐴 ∩ 𝑆) = (𝐴 ∩ 𝑆)) → ∃𝑥 ∈ 𝐽 (𝐴 ∩ 𝑆) = (𝑥 ∩ 𝑆)) |
| 4 | 1, 3 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ 𝐽 → ∃𝑥 ∈ 𝐽 (𝐴 ∩ 𝑆) = (𝑥 ∩ 𝑆)) |
| 5 | elrest 17390 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ((𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆) ↔ ∃𝑥 ∈ 𝐽 (𝐴 ∩ 𝑆) = (𝑥 ∩ 𝑆))) | |
| 6 | 4, 5 | imbitrrid 246 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝐴 ∈ 𝐽 → (𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆))) |
| 7 | 6 | 3impia 1117 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐴 ∈ 𝐽) → (𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∩ cin 3913 (class class class)co 7387 ↾t crest 17383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-rest 17385 |
| This theorem is referenced by: firest 17395 restbas 23045 tgrest 23046 resttopon 23048 restcld 23059 restfpw 23066 neitr 23067 restntr 23069 ordtrest 23089 cnrest 23172 lmss 23185 connsubclo 23311 restnlly 23369 islly2 23371 cldllycmp 23382 lly1stc 23383 kgenss 23430 xkococnlem 23546 xkoinjcn 23574 qtoprest 23604 trfbas2 23730 trfil1 23773 trfil2 23774 fgtr 23777 trfg 23778 uzrest 23784 trufil 23797 flimrest 23870 cnextcn 23954 trust 24117 restutop 24125 trcfilu 24181 cfiluweak 24182 xrsmopn 24701 zdis 24705 xrge0tsms 24723 cnheibor 24854 cfilres 25196 lhop2 25920 psercn 26336 xrlimcnp 26878 xrge0tsmsd 33002 ordtrestNEW 33911 pnfneige0 33941 lmxrge0 33942 rrhre 34011 cvmscld 35260 cvmopnlem 35265 cvmliftmolem1 35268 poimirlem30 37644 subspopn 37746 iocopn 45518 icoopn 45523 limcresiooub 45640 limcresioolb 45641 fourierdlem32 46137 fourierdlem33 46138 fourierdlem48 46152 fourierdlem49 46153 i0oii 48905 io1ii 48906 iscnrm3llem2 48935 |
| Copyright terms: Public domain | W3C validator |