MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrestr Structured version   Visualization version   GIF version

Theorem elrestr 16696
Description: Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Assertion
Ref Expression
elrestr ((𝐽𝑉𝑆𝑊𝐴𝐽) → (𝐴𝑆) ∈ (𝐽t 𝑆))

Proof of Theorem elrestr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . . 4 (𝐴𝑆) = (𝐴𝑆)
2 ineq1 4180 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑆) = (𝐴𝑆))
32rspceeqv 3637 . . . 4 ((𝐴𝐽 ∧ (𝐴𝑆) = (𝐴𝑆)) → ∃𝑥𝐽 (𝐴𝑆) = (𝑥𝑆))
41, 3mpan2 689 . . 3 (𝐴𝐽 → ∃𝑥𝐽 (𝐴𝑆) = (𝑥𝑆))
5 elrest 16695 . . 3 ((𝐽𝑉𝑆𝑊) → ((𝐴𝑆) ∈ (𝐽t 𝑆) ↔ ∃𝑥𝐽 (𝐴𝑆) = (𝑥𝑆)))
64, 5syl5ibr 248 . 2 ((𝐽𝑉𝑆𝑊) → (𝐴𝐽 → (𝐴𝑆) ∈ (𝐽t 𝑆)))
763impia 1113 1 ((𝐽𝑉𝑆𝑊𝐴𝐽) → (𝐴𝑆) ∈ (𝐽t 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wrex 3139  cin 3934  (class class class)co 7150  t crest 16688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-rest 16690
This theorem is referenced by:  firest  16700  restbas  21760  tgrest  21761  resttopon  21763  restcld  21774  restfpw  21781  neitr  21782  restntr  21784  ordtrest  21804  cnrest  21887  lmss  21900  connsubclo  22026  restnlly  22084  islly2  22086  cldllycmp  22097  lly1stc  22098  kgenss  22145  xkococnlem  22261  xkoinjcn  22289  qtoprest  22319  trfbas2  22445  trfil1  22488  trfil2  22489  fgtr  22492  trfg  22493  uzrest  22499  trufil  22512  flimrest  22585  cnextcn  22669  trust  22832  restutop  22840  trcfilu  22897  cfiluweak  22898  xrsmopn  23414  zdis  23418  xrge0tsms  23436  cnheibor  23553  cfilres  23893  lhop2  24606  psercn  25008  xrlimcnp  25540  xrge0tsmsd  30687  ordtrestNEW  31159  pnfneige0  31189  lmxrge0  31190  rrhre  31257  cvmscld  32515  cvmopnlem  32520  cvmliftmolem1  32523  poimirlem30  34916  subspopn  35021  iocopn  41789  icoopn  41794  limcresiooub  41916  limcresioolb  41917  fourierdlem32  42418  fourierdlem33  42419  fourierdlem48  42433  fourierdlem49  42434
  Copyright terms: Public domain W3C validator