MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrestr Structured version   Visualization version   GIF version

Theorem elrestr 17139
Description: Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Assertion
Ref Expression
elrestr ((𝐽𝑉𝑆𝑊𝐴𝐽) → (𝐴𝑆) ∈ (𝐽t 𝑆))

Proof of Theorem elrestr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (𝐴𝑆) = (𝐴𝑆)
2 ineq1 4139 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑆) = (𝐴𝑆))
32rspceeqv 3575 . . . 4 ((𝐴𝐽 ∧ (𝐴𝑆) = (𝐴𝑆)) → ∃𝑥𝐽 (𝐴𝑆) = (𝑥𝑆))
41, 3mpan2 688 . . 3 (𝐴𝐽 → ∃𝑥𝐽 (𝐴𝑆) = (𝑥𝑆))
5 elrest 17138 . . 3 ((𝐽𝑉𝑆𝑊) → ((𝐴𝑆) ∈ (𝐽t 𝑆) ↔ ∃𝑥𝐽 (𝐴𝑆) = (𝑥𝑆)))
64, 5syl5ibr 245 . 2 ((𝐽𝑉𝑆𝑊) → (𝐴𝐽 → (𝐴𝑆) ∈ (𝐽t 𝑆)))
763impia 1116 1 ((𝐽𝑉𝑆𝑊𝐴𝐽) → (𝐴𝑆) ∈ (𝐽t 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  cin 3886  (class class class)co 7275  t crest 17131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-rest 17133
This theorem is referenced by:  firest  17143  restbas  22309  tgrest  22310  resttopon  22312  restcld  22323  restfpw  22330  neitr  22331  restntr  22333  ordtrest  22353  cnrest  22436  lmss  22449  connsubclo  22575  restnlly  22633  islly2  22635  cldllycmp  22646  lly1stc  22647  kgenss  22694  xkococnlem  22810  xkoinjcn  22838  qtoprest  22868  trfbas2  22994  trfil1  23037  trfil2  23038  fgtr  23041  trfg  23042  uzrest  23048  trufil  23061  flimrest  23134  cnextcn  23218  trust  23381  restutop  23389  trcfilu  23446  cfiluweak  23447  xrsmopn  23975  zdis  23979  xrge0tsms  23997  cnheibor  24118  cfilres  24460  lhop2  25179  psercn  25585  xrlimcnp  26118  xrge0tsmsd  31317  ordtrestNEW  31871  pnfneige0  31901  lmxrge0  31902  rrhre  31971  cvmscld  33235  cvmopnlem  33240  cvmliftmolem1  33243  poimirlem30  35807  subspopn  35910  iocopn  43058  icoopn  43063  limcresiooub  43183  limcresioolb  43184  fourierdlem32  43680  fourierdlem33  43681  fourierdlem48  43695  fourierdlem49  43696  i0oii  46213  io1ii  46214  iscnrm3llem2  46244
  Copyright terms: Public domain W3C validator