|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > elrestr | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) | 
| Ref | Expression | 
|---|---|
| elrestr | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐴 ∈ 𝐽) → (𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ (𝐴 ∩ 𝑆) = (𝐴 ∩ 𝑆) | |
| 2 | ineq1 4212 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∩ 𝑆) = (𝐴 ∩ 𝑆)) | |
| 3 | 2 | rspceeqv 3644 | . . . 4 ⊢ ((𝐴 ∈ 𝐽 ∧ (𝐴 ∩ 𝑆) = (𝐴 ∩ 𝑆)) → ∃𝑥 ∈ 𝐽 (𝐴 ∩ 𝑆) = (𝑥 ∩ 𝑆)) | 
| 4 | 1, 3 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ 𝐽 → ∃𝑥 ∈ 𝐽 (𝐴 ∩ 𝑆) = (𝑥 ∩ 𝑆)) | 
| 5 | elrest 17473 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ((𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆) ↔ ∃𝑥 ∈ 𝐽 (𝐴 ∩ 𝑆) = (𝑥 ∩ 𝑆))) | |
| 6 | 4, 5 | imbitrrid 246 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝐴 ∈ 𝐽 → (𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆))) | 
| 7 | 6 | 3impia 1117 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐴 ∈ 𝐽) → (𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∃wrex 3069 ∩ cin 3949 (class class class)co 7432 ↾t crest 17466 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-rest 17468 | 
| This theorem is referenced by: firest 17478 restbas 23167 tgrest 23168 resttopon 23170 restcld 23181 restfpw 23188 neitr 23189 restntr 23191 ordtrest 23211 cnrest 23294 lmss 23307 connsubclo 23433 restnlly 23491 islly2 23493 cldllycmp 23504 lly1stc 23505 kgenss 23552 xkococnlem 23668 xkoinjcn 23696 qtoprest 23726 trfbas2 23852 trfil1 23895 trfil2 23896 fgtr 23899 trfg 23900 uzrest 23906 trufil 23919 flimrest 23992 cnextcn 24076 trust 24239 restutop 24247 trcfilu 24304 cfiluweak 24305 xrsmopn 24835 zdis 24839 xrge0tsms 24857 cnheibor 24988 cfilres 25331 lhop2 26055 psercn 26471 xrlimcnp 27012 xrge0tsmsd 33066 ordtrestNEW 33921 pnfneige0 33951 lmxrge0 33952 rrhre 34023 cvmscld 35279 cvmopnlem 35284 cvmliftmolem1 35287 poimirlem30 37658 subspopn 37760 iocopn 45538 icoopn 45543 limcresiooub 45662 limcresioolb 45663 fourierdlem32 46159 fourierdlem33 46160 fourierdlem48 46174 fourierdlem49 46175 i0oii 48824 io1ii 48825 iscnrm3llem2 48854 | 
| Copyright terms: Public domain | W3C validator |