| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrestr | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
| Ref | Expression |
|---|---|
| elrestr | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐴 ∈ 𝐽) → (𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . 4 ⊢ (𝐴 ∩ 𝑆) = (𝐴 ∩ 𝑆) | |
| 2 | ineq1 4162 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∩ 𝑆) = (𝐴 ∩ 𝑆)) | |
| 3 | 2 | rspceeqv 3596 | . . . 4 ⊢ ((𝐴 ∈ 𝐽 ∧ (𝐴 ∩ 𝑆) = (𝐴 ∩ 𝑆)) → ∃𝑥 ∈ 𝐽 (𝐴 ∩ 𝑆) = (𝑥 ∩ 𝑆)) |
| 4 | 1, 3 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ 𝐽 → ∃𝑥 ∈ 𝐽 (𝐴 ∩ 𝑆) = (𝑥 ∩ 𝑆)) |
| 5 | elrest 17335 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ((𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆) ↔ ∃𝑥 ∈ 𝐽 (𝐴 ∩ 𝑆) = (𝑥 ∩ 𝑆))) | |
| 6 | 4, 5 | imbitrrid 246 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝐴 ∈ 𝐽 → (𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆))) |
| 7 | 6 | 3impia 1117 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐴 ∈ 𝐽) → (𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 ∩ cin 3897 (class class class)co 7354 ↾t crest 17328 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-rest 17330 |
| This theorem is referenced by: firest 17340 restbas 23076 tgrest 23077 resttopon 23079 restcld 23090 restfpw 23097 neitr 23098 restntr 23100 ordtrest 23120 cnrest 23203 lmss 23216 connsubclo 23342 restnlly 23400 islly2 23402 cldllycmp 23413 lly1stc 23414 kgenss 23461 xkococnlem 23577 xkoinjcn 23605 qtoprest 23635 trfbas2 23761 trfil1 23804 trfil2 23805 fgtr 23808 trfg 23809 uzrest 23815 trufil 23828 flimrest 23901 cnextcn 23985 trust 24147 restutop 24155 trcfilu 24211 cfiluweak 24212 xrsmopn 24731 zdis 24735 xrge0tsms 24753 cnheibor 24884 cfilres 25226 lhop2 25950 psercn 26366 xrlimcnp 26908 xrge0tsmsd 33051 ordtrestNEW 33957 pnfneige0 33987 lmxrge0 33988 rrhre 34057 cvmscld 35340 cvmopnlem 35345 cvmliftmolem1 35348 poimirlem30 37713 subspopn 37815 iocopn 45647 icoopn 45652 limcresiooub 45767 limcresioolb 45768 fourierdlem32 46264 fourierdlem33 46265 fourierdlem48 46279 fourierdlem49 46280 i0oii 49047 io1ii 49048 iscnrm3llem2 49077 |
| Copyright terms: Public domain | W3C validator |