![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrestr | Structured version Visualization version GIF version |
Description: Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
Ref | Expression |
---|---|
elrestr | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐴 ∈ 𝐽) → (𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . . 4 ⊢ (𝐴 ∩ 𝑆) = (𝐴 ∩ 𝑆) | |
2 | ineq1 4206 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∩ 𝑆) = (𝐴 ∩ 𝑆)) | |
3 | 2 | rspceeqv 3634 | . . . 4 ⊢ ((𝐴 ∈ 𝐽 ∧ (𝐴 ∩ 𝑆) = (𝐴 ∩ 𝑆)) → ∃𝑥 ∈ 𝐽 (𝐴 ∩ 𝑆) = (𝑥 ∩ 𝑆)) |
4 | 1, 3 | mpan2 690 | . . 3 ⊢ (𝐴 ∈ 𝐽 → ∃𝑥 ∈ 𝐽 (𝐴 ∩ 𝑆) = (𝑥 ∩ 𝑆)) |
5 | elrest 17373 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ((𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆) ↔ ∃𝑥 ∈ 𝐽 (𝐴 ∩ 𝑆) = (𝑥 ∩ 𝑆))) | |
6 | 4, 5 | imbitrrid 245 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝐴 ∈ 𝐽 → (𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆))) |
7 | 6 | 3impia 1118 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐴 ∈ 𝐽) → (𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∃wrex 3071 ∩ cin 3948 (class class class)co 7409 ↾t crest 17366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-rest 17368 |
This theorem is referenced by: firest 17378 restbas 22662 tgrest 22663 resttopon 22665 restcld 22676 restfpw 22683 neitr 22684 restntr 22686 ordtrest 22706 cnrest 22789 lmss 22802 connsubclo 22928 restnlly 22986 islly2 22988 cldllycmp 22999 lly1stc 23000 kgenss 23047 xkococnlem 23163 xkoinjcn 23191 qtoprest 23221 trfbas2 23347 trfil1 23390 trfil2 23391 fgtr 23394 trfg 23395 uzrest 23401 trufil 23414 flimrest 23487 cnextcn 23571 trust 23734 restutop 23742 trcfilu 23799 cfiluweak 23800 xrsmopn 24328 zdis 24332 xrge0tsms 24350 cnheibor 24471 cfilres 24813 lhop2 25532 psercn 25938 xrlimcnp 26473 xrge0tsmsd 32209 ordtrestNEW 32901 pnfneige0 32931 lmxrge0 32932 rrhre 33001 cvmscld 34264 cvmopnlem 34269 cvmliftmolem1 34272 poimirlem30 36518 subspopn 36620 iocopn 44233 icoopn 44238 limcresiooub 44358 limcresioolb 44359 fourierdlem32 44855 fourierdlem33 44856 fourierdlem48 44870 fourierdlem49 44871 i0oii 47552 io1ii 47553 iscnrm3llem2 47583 |
Copyright terms: Public domain | W3C validator |