| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrestr | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
| Ref | Expression |
|---|---|
| elrestr | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐴 ∈ 𝐽) → (𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (𝐴 ∩ 𝑆) = (𝐴 ∩ 𝑆) | |
| 2 | ineq1 4166 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∩ 𝑆) = (𝐴 ∩ 𝑆)) | |
| 3 | 2 | rspceeqv 3602 | . . . 4 ⊢ ((𝐴 ∈ 𝐽 ∧ (𝐴 ∩ 𝑆) = (𝐴 ∩ 𝑆)) → ∃𝑥 ∈ 𝐽 (𝐴 ∩ 𝑆) = (𝑥 ∩ 𝑆)) |
| 4 | 1, 3 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ 𝐽 → ∃𝑥 ∈ 𝐽 (𝐴 ∩ 𝑆) = (𝑥 ∩ 𝑆)) |
| 5 | elrest 17349 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ((𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆) ↔ ∃𝑥 ∈ 𝐽 (𝐴 ∩ 𝑆) = (𝑥 ∩ 𝑆))) | |
| 6 | 4, 5 | imbitrrid 246 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝐴 ∈ 𝐽 → (𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆))) |
| 7 | 6 | 3impia 1117 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐴 ∈ 𝐽) → (𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∩ cin 3904 (class class class)co 7353 ↾t crest 17342 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-rest 17344 |
| This theorem is referenced by: firest 17354 restbas 23061 tgrest 23062 resttopon 23064 restcld 23075 restfpw 23082 neitr 23083 restntr 23085 ordtrest 23105 cnrest 23188 lmss 23201 connsubclo 23327 restnlly 23385 islly2 23387 cldllycmp 23398 lly1stc 23399 kgenss 23446 xkococnlem 23562 xkoinjcn 23590 qtoprest 23620 trfbas2 23746 trfil1 23789 trfil2 23790 fgtr 23793 trfg 23794 uzrest 23800 trufil 23813 flimrest 23886 cnextcn 23970 trust 24133 restutop 24141 trcfilu 24197 cfiluweak 24198 xrsmopn 24717 zdis 24721 xrge0tsms 24739 cnheibor 24870 cfilres 25212 lhop2 25936 psercn 26352 xrlimcnp 26894 xrge0tsmsd 33028 ordtrestNEW 33890 pnfneige0 33920 lmxrge0 33921 rrhre 33990 cvmscld 35248 cvmopnlem 35253 cvmliftmolem1 35256 poimirlem30 37632 subspopn 37734 iocopn 45505 icoopn 45510 limcresiooub 45627 limcresioolb 45628 fourierdlem32 46124 fourierdlem33 46125 fourierdlem48 46139 fourierdlem49 46140 i0oii 48908 io1ii 48909 iscnrm3llem2 48938 |
| Copyright terms: Public domain | W3C validator |