MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrestr Structured version   Visualization version   GIF version

Theorem elrestr 17475
Description: Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Assertion
Ref Expression
elrestr ((𝐽𝑉𝑆𝑊𝐴𝐽) → (𝐴𝑆) ∈ (𝐽t 𝑆))

Proof of Theorem elrestr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . 4 (𝐴𝑆) = (𝐴𝑆)
2 ineq1 4221 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑆) = (𝐴𝑆))
32rspceeqv 3645 . . . 4 ((𝐴𝐽 ∧ (𝐴𝑆) = (𝐴𝑆)) → ∃𝑥𝐽 (𝐴𝑆) = (𝑥𝑆))
41, 3mpan2 691 . . 3 (𝐴𝐽 → ∃𝑥𝐽 (𝐴𝑆) = (𝑥𝑆))
5 elrest 17474 . . 3 ((𝐽𝑉𝑆𝑊) → ((𝐴𝑆) ∈ (𝐽t 𝑆) ↔ ∃𝑥𝐽 (𝐴𝑆) = (𝑥𝑆)))
64, 5imbitrrid 246 . 2 ((𝐽𝑉𝑆𝑊) → (𝐴𝐽 → (𝐴𝑆) ∈ (𝐽t 𝑆)))
763impia 1116 1 ((𝐽𝑉𝑆𝑊𝐴𝐽) → (𝐴𝑆) ∈ (𝐽t 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wrex 3068  cin 3962  (class class class)co 7431  t crest 17467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-rest 17469
This theorem is referenced by:  firest  17479  restbas  23182  tgrest  23183  resttopon  23185  restcld  23196  restfpw  23203  neitr  23204  restntr  23206  ordtrest  23226  cnrest  23309  lmss  23322  connsubclo  23448  restnlly  23506  islly2  23508  cldllycmp  23519  lly1stc  23520  kgenss  23567  xkococnlem  23683  xkoinjcn  23711  qtoprest  23741  trfbas2  23867  trfil1  23910  trfil2  23911  fgtr  23914  trfg  23915  uzrest  23921  trufil  23934  flimrest  24007  cnextcn  24091  trust  24254  restutop  24262  trcfilu  24319  cfiluweak  24320  xrsmopn  24848  zdis  24852  xrge0tsms  24870  cnheibor  25001  cfilres  25344  lhop2  26069  psercn  26485  xrlimcnp  27026  xrge0tsmsd  33048  ordtrestNEW  33882  pnfneige0  33912  lmxrge0  33913  rrhre  33984  cvmscld  35258  cvmopnlem  35263  cvmliftmolem1  35266  poimirlem30  37637  subspopn  37739  iocopn  45473  icoopn  45478  limcresiooub  45598  limcresioolb  45599  fourierdlem32  46095  fourierdlem33  46096  fourierdlem48  46110  fourierdlem49  46111  i0oii  48716  io1ii  48717  iscnrm3llem2  48747
  Copyright terms: Public domain W3C validator