Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suppdm Structured version   Visualization version   GIF version

Theorem suppdm 48432
Description: If the range of a function does not contain the zero, the support of the function equals its domain. (Contributed by AV, 20-May-2020.)
Assertion
Ref Expression
suppdm (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑍 ∉ ran 𝐹) → (𝐹 supp 𝑍) = dom 𝐹)

Proof of Theorem suppdm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 suppval1 8192 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ≠ 𝑍})
21adantr 480 . 2 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑍 ∉ ran 𝐹) → (𝐹 supp 𝑍) = {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ≠ 𝑍})
3 df-nel 3046 . . . . . 6 (𝑍 ∉ ran 𝐹 ↔ ¬ 𝑍 ∈ ran 𝐹)
4 fvelrn 7095 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ran 𝐹)
543ad2antl1 1185 . . . . . . . 8 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ran 𝐹)
6 eleq1 2828 . . . . . . . . 9 (𝑍 = (𝐹𝑥) → (𝑍 ∈ ran 𝐹 ↔ (𝐹𝑥) ∈ ran 𝐹))
76eqcoms 2744 . . . . . . . 8 ((𝐹𝑥) = 𝑍 → (𝑍 ∈ ran 𝐹 ↔ (𝐹𝑥) ∈ ran 𝐹))
85, 7syl5ibrcom 247 . . . . . . 7 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑥 ∈ dom 𝐹) → ((𝐹𝑥) = 𝑍𝑍 ∈ ran 𝐹))
98necon3bd 2953 . . . . . 6 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑥 ∈ dom 𝐹) → (¬ 𝑍 ∈ ran 𝐹 → (𝐹𝑥) ≠ 𝑍))
103, 9biimtrid 242 . . . . 5 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑥 ∈ dom 𝐹) → (𝑍 ∉ ran 𝐹 → (𝐹𝑥) ≠ 𝑍))
1110impancom 451 . . . 4 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑍 ∉ ran 𝐹) → (𝑥 ∈ dom 𝐹 → (𝐹𝑥) ≠ 𝑍))
1211ralrimiv 3144 . . 3 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑍 ∉ ran 𝐹) → ∀𝑥 ∈ dom 𝐹(𝐹𝑥) ≠ 𝑍)
13 rabid2 3469 . . 3 (dom 𝐹 = {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ≠ 𝑍} ↔ ∀𝑥 ∈ dom 𝐹(𝐹𝑥) ≠ 𝑍)
1412, 13sylibr 234 . 2 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑍 ∉ ran 𝐹) → dom 𝐹 = {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ≠ 𝑍})
152, 14eqtr4d 2779 1 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑍 ∉ ran 𝐹) → (𝐹 supp 𝑍) = dom 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  wnel 3045  wral 3060  {crab 3435  dom cdm 5684  ran crn 5685  Fun wfun 6554  cfv 6560  (class class class)co 7432   supp csupp 8186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-supp 8187
This theorem is referenced by:  elbigolo1  48483
  Copyright terms: Public domain W3C validator