Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > suppdm | Structured version Visualization version GIF version |
Description: If the range of a function does not contain the zero, the support of the function equals its domain. (Contributed by AV, 20-May-2020.) |
Ref | Expression |
---|---|
suppdm | ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑍 ∉ ran 𝐹) → (𝐹 supp 𝑍) = dom 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppval1 7954 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) ≠ 𝑍}) | |
2 | 1 | adantr 480 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑍 ∉ ran 𝐹) → (𝐹 supp 𝑍) = {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) ≠ 𝑍}) |
3 | df-nel 3049 | . . . . . 6 ⊢ (𝑍 ∉ ran 𝐹 ↔ ¬ 𝑍 ∈ ran 𝐹) | |
4 | fvelrn 6936 | . . . . . . . . 9 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) | |
5 | 4 | 3ad2antl1 1183 | . . . . . . . 8 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) |
6 | eleq1 2826 | . . . . . . . . 9 ⊢ (𝑍 = (𝐹‘𝑥) → (𝑍 ∈ ran 𝐹 ↔ (𝐹‘𝑥) ∈ ran 𝐹)) | |
7 | 6 | eqcoms 2746 | . . . . . . . 8 ⊢ ((𝐹‘𝑥) = 𝑍 → (𝑍 ∈ ran 𝐹 ↔ (𝐹‘𝑥) ∈ ran 𝐹)) |
8 | 5, 7 | syl5ibrcom 246 | . . . . . . 7 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ dom 𝐹) → ((𝐹‘𝑥) = 𝑍 → 𝑍 ∈ ran 𝐹)) |
9 | 8 | necon3bd 2956 | . . . . . 6 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ dom 𝐹) → (¬ 𝑍 ∈ ran 𝐹 → (𝐹‘𝑥) ≠ 𝑍)) |
10 | 3, 9 | syl5bi 241 | . . . . 5 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ dom 𝐹) → (𝑍 ∉ ran 𝐹 → (𝐹‘𝑥) ≠ 𝑍)) |
11 | 10 | impancom 451 | . . . 4 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑍 ∉ ran 𝐹) → (𝑥 ∈ dom 𝐹 → (𝐹‘𝑥) ≠ 𝑍)) |
12 | 11 | ralrimiv 3106 | . . 3 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑍 ∉ ran 𝐹) → ∀𝑥 ∈ dom 𝐹(𝐹‘𝑥) ≠ 𝑍) |
13 | rabid2 3307 | . . 3 ⊢ (dom 𝐹 = {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) ≠ 𝑍} ↔ ∀𝑥 ∈ dom 𝐹(𝐹‘𝑥) ≠ 𝑍) | |
14 | 12, 13 | sylibr 233 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑍 ∉ ran 𝐹) → dom 𝐹 = {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) ≠ 𝑍}) |
15 | 2, 14 | eqtr4d 2781 | 1 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑍 ∉ ran 𝐹) → (𝐹 supp 𝑍) = dom 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∉ wnel 3048 ∀wral 3063 {crab 3067 dom cdm 5580 ran crn 5581 Fun wfun 6412 ‘cfv 6418 (class class class)co 7255 supp csupp 7948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-supp 7949 |
This theorem is referenced by: elbigolo1 45791 |
Copyright terms: Public domain | W3C validator |