Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > suppdm | Structured version Visualization version GIF version |
Description: If the range of a function does not contain the zero, the support of the function equals its domain. (Contributed by AV, 20-May-2020.) |
Ref | Expression |
---|---|
suppdm | ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑍 ∉ ran 𝐹) → (𝐹 supp 𝑍) = dom 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppval1 7875 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) ≠ 𝑍}) | |
2 | 1 | adantr 484 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑍 ∉ ran 𝐹) → (𝐹 supp 𝑍) = {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) ≠ 𝑍}) |
3 | df-nel 3040 | . . . . . 6 ⊢ (𝑍 ∉ ran 𝐹 ↔ ¬ 𝑍 ∈ ran 𝐹) | |
4 | fvelrn 6867 | . . . . . . . . 9 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) | |
5 | 4 | 3ad2antl1 1186 | . . . . . . . 8 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) |
6 | eleq1 2821 | . . . . . . . . 9 ⊢ (𝑍 = (𝐹‘𝑥) → (𝑍 ∈ ran 𝐹 ↔ (𝐹‘𝑥) ∈ ran 𝐹)) | |
7 | 6 | eqcoms 2747 | . . . . . . . 8 ⊢ ((𝐹‘𝑥) = 𝑍 → (𝑍 ∈ ran 𝐹 ↔ (𝐹‘𝑥) ∈ ran 𝐹)) |
8 | 5, 7 | syl5ibrcom 250 | . . . . . . 7 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ dom 𝐹) → ((𝐹‘𝑥) = 𝑍 → 𝑍 ∈ ran 𝐹)) |
9 | 8 | necon3bd 2949 | . . . . . 6 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ dom 𝐹) → (¬ 𝑍 ∈ ran 𝐹 → (𝐹‘𝑥) ≠ 𝑍)) |
10 | 3, 9 | syl5bi 245 | . . . . 5 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ dom 𝐹) → (𝑍 ∉ ran 𝐹 → (𝐹‘𝑥) ≠ 𝑍)) |
11 | 10 | impancom 455 | . . . 4 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑍 ∉ ran 𝐹) → (𝑥 ∈ dom 𝐹 → (𝐹‘𝑥) ≠ 𝑍)) |
12 | 11 | ralrimiv 3096 | . . 3 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑍 ∉ ran 𝐹) → ∀𝑥 ∈ dom 𝐹(𝐹‘𝑥) ≠ 𝑍) |
13 | rabid2 3285 | . . 3 ⊢ (dom 𝐹 = {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) ≠ 𝑍} ↔ ∀𝑥 ∈ dom 𝐹(𝐹‘𝑥) ≠ 𝑍) | |
14 | 12, 13 | sylibr 237 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑍 ∉ ran 𝐹) → dom 𝐹 = {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) ≠ 𝑍}) |
15 | 2, 14 | eqtr4d 2777 | 1 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑍 ∉ ran 𝐹) → (𝐹 supp 𝑍) = dom 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ≠ wne 2935 ∉ wnel 3039 ∀wral 3054 {crab 3058 dom cdm 5535 ran crn 5536 Fun wfun 6344 ‘cfv 6350 (class class class)co 7183 supp csupp 7869 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pr 5306 ax-un 7492 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3402 df-sbc 3686 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-br 5041 df-opab 5103 df-id 5439 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-iota 6308 df-fun 6352 df-fn 6353 df-fv 6358 df-ov 7186 df-oprab 7187 df-mpo 7188 df-supp 7870 |
This theorem is referenced by: elbigolo1 45485 |
Copyright terms: Public domain | W3C validator |