| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > suppdm | Structured version Visualization version GIF version | ||
| Description: If the range of a function does not contain the zero, the support of the function equals its domain. (Contributed by AV, 20-May-2020.) |
| Ref | Expression |
|---|---|
| suppdm | ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑍 ∉ ran 𝐹) → (𝐹 supp 𝑍) = dom 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppval1 8170 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) ≠ 𝑍}) | |
| 2 | 1 | adantr 480 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑍 ∉ ran 𝐹) → (𝐹 supp 𝑍) = {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) ≠ 𝑍}) |
| 3 | df-nel 3038 | . . . . . 6 ⊢ (𝑍 ∉ ran 𝐹 ↔ ¬ 𝑍 ∈ ran 𝐹) | |
| 4 | fvelrn 7071 | . . . . . . . . 9 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) | |
| 5 | 4 | 3ad2antl1 1186 | . . . . . . . 8 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) |
| 6 | eleq1 2823 | . . . . . . . . 9 ⊢ (𝑍 = (𝐹‘𝑥) → (𝑍 ∈ ran 𝐹 ↔ (𝐹‘𝑥) ∈ ran 𝐹)) | |
| 7 | 6 | eqcoms 2744 | . . . . . . . 8 ⊢ ((𝐹‘𝑥) = 𝑍 → (𝑍 ∈ ran 𝐹 ↔ (𝐹‘𝑥) ∈ ran 𝐹)) |
| 8 | 5, 7 | syl5ibrcom 247 | . . . . . . 7 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ dom 𝐹) → ((𝐹‘𝑥) = 𝑍 → 𝑍 ∈ ran 𝐹)) |
| 9 | 8 | necon3bd 2947 | . . . . . 6 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ dom 𝐹) → (¬ 𝑍 ∈ ran 𝐹 → (𝐹‘𝑥) ≠ 𝑍)) |
| 10 | 3, 9 | biimtrid 242 | . . . . 5 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ dom 𝐹) → (𝑍 ∉ ran 𝐹 → (𝐹‘𝑥) ≠ 𝑍)) |
| 11 | 10 | impancom 451 | . . . 4 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑍 ∉ ran 𝐹) → (𝑥 ∈ dom 𝐹 → (𝐹‘𝑥) ≠ 𝑍)) |
| 12 | 11 | ralrimiv 3132 | . . 3 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑍 ∉ ran 𝐹) → ∀𝑥 ∈ dom 𝐹(𝐹‘𝑥) ≠ 𝑍) |
| 13 | rabid2 3454 | . . 3 ⊢ (dom 𝐹 = {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) ≠ 𝑍} ↔ ∀𝑥 ∈ dom 𝐹(𝐹‘𝑥) ≠ 𝑍) | |
| 14 | 12, 13 | sylibr 234 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑍 ∉ ran 𝐹) → dom 𝐹 = {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) ≠ 𝑍}) |
| 15 | 2, 14 | eqtr4d 2774 | 1 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑍 ∉ ran 𝐹) → (𝐹 supp 𝑍) = dom 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∉ wnel 3037 ∀wral 3052 {crab 3420 dom cdm 5659 ran crn 5660 Fun wfun 6530 ‘cfv 6536 (class class class)co 7410 supp csupp 8164 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-supp 8165 |
| This theorem is referenced by: elbigolo1 48517 |
| Copyright terms: Public domain | W3C validator |