![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > suppdm | Structured version Visualization version GIF version |
Description: If the range of a function does not contain the zero, the support of the function equals its domain. (Contributed by AV, 20-May-2020.) |
Ref | Expression |
---|---|
suppdm | ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑍 ∉ ran 𝐹) → (𝐹 supp 𝑍) = dom 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppval1 8207 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) ≠ 𝑍}) | |
2 | 1 | adantr 480 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑍 ∉ ran 𝐹) → (𝐹 supp 𝑍) = {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) ≠ 𝑍}) |
3 | df-nel 3053 | . . . . . 6 ⊢ (𝑍 ∉ ran 𝐹 ↔ ¬ 𝑍 ∈ ran 𝐹) | |
4 | fvelrn 7110 | . . . . . . . . 9 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) | |
5 | 4 | 3ad2antl1 1185 | . . . . . . . 8 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) |
6 | eleq1 2832 | . . . . . . . . 9 ⊢ (𝑍 = (𝐹‘𝑥) → (𝑍 ∈ ran 𝐹 ↔ (𝐹‘𝑥) ∈ ran 𝐹)) | |
7 | 6 | eqcoms 2748 | . . . . . . . 8 ⊢ ((𝐹‘𝑥) = 𝑍 → (𝑍 ∈ ran 𝐹 ↔ (𝐹‘𝑥) ∈ ran 𝐹)) |
8 | 5, 7 | syl5ibrcom 247 | . . . . . . 7 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ dom 𝐹) → ((𝐹‘𝑥) = 𝑍 → 𝑍 ∈ ran 𝐹)) |
9 | 8 | necon3bd 2960 | . . . . . 6 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ dom 𝐹) → (¬ 𝑍 ∈ ran 𝐹 → (𝐹‘𝑥) ≠ 𝑍)) |
10 | 3, 9 | biimtrid 242 | . . . . 5 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ dom 𝐹) → (𝑍 ∉ ran 𝐹 → (𝐹‘𝑥) ≠ 𝑍)) |
11 | 10 | impancom 451 | . . . 4 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑍 ∉ ran 𝐹) → (𝑥 ∈ dom 𝐹 → (𝐹‘𝑥) ≠ 𝑍)) |
12 | 11 | ralrimiv 3151 | . . 3 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑍 ∉ ran 𝐹) → ∀𝑥 ∈ dom 𝐹(𝐹‘𝑥) ≠ 𝑍) |
13 | rabid2 3478 | . . 3 ⊢ (dom 𝐹 = {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) ≠ 𝑍} ↔ ∀𝑥 ∈ dom 𝐹(𝐹‘𝑥) ≠ 𝑍) | |
14 | 12, 13 | sylibr 234 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑍 ∉ ran 𝐹) → dom 𝐹 = {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) ≠ 𝑍}) |
15 | 2, 14 | eqtr4d 2783 | 1 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑍 ∉ ran 𝐹) → (𝐹 supp 𝑍) = dom 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∉ wnel 3052 ∀wral 3067 {crab 3443 dom cdm 5700 ran crn 5701 Fun wfun 6567 ‘cfv 6573 (class class class)co 7448 supp csupp 8201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-supp 8202 |
This theorem is referenced by: elbigolo1 48291 |
Copyright terms: Public domain | W3C validator |