Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suppdm Structured version   Visualization version   GIF version

Theorem suppdm 48499
Description: If the range of a function does not contain the zero, the support of the function equals its domain. (Contributed by AV, 20-May-2020.)
Assertion
Ref Expression
suppdm (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑍 ∉ ran 𝐹) → (𝐹 supp 𝑍) = dom 𝐹)

Proof of Theorem suppdm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 suppval1 8145 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ≠ 𝑍})
21adantr 480 . 2 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑍 ∉ ran 𝐹) → (𝐹 supp 𝑍) = {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ≠ 𝑍})
3 df-nel 3030 . . . . . 6 (𝑍 ∉ ran 𝐹 ↔ ¬ 𝑍 ∈ ran 𝐹)
4 fvelrn 7048 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ran 𝐹)
543ad2antl1 1186 . . . . . . . 8 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ran 𝐹)
6 eleq1 2816 . . . . . . . . 9 (𝑍 = (𝐹𝑥) → (𝑍 ∈ ran 𝐹 ↔ (𝐹𝑥) ∈ ran 𝐹))
76eqcoms 2737 . . . . . . . 8 ((𝐹𝑥) = 𝑍 → (𝑍 ∈ ran 𝐹 ↔ (𝐹𝑥) ∈ ran 𝐹))
85, 7syl5ibrcom 247 . . . . . . 7 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑥 ∈ dom 𝐹) → ((𝐹𝑥) = 𝑍𝑍 ∈ ran 𝐹))
98necon3bd 2939 . . . . . 6 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑥 ∈ dom 𝐹) → (¬ 𝑍 ∈ ran 𝐹 → (𝐹𝑥) ≠ 𝑍))
103, 9biimtrid 242 . . . . 5 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑥 ∈ dom 𝐹) → (𝑍 ∉ ran 𝐹 → (𝐹𝑥) ≠ 𝑍))
1110impancom 451 . . . 4 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑍 ∉ ran 𝐹) → (𝑥 ∈ dom 𝐹 → (𝐹𝑥) ≠ 𝑍))
1211ralrimiv 3124 . . 3 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑍 ∉ ran 𝐹) → ∀𝑥 ∈ dom 𝐹(𝐹𝑥) ≠ 𝑍)
13 rabid2 3439 . . 3 (dom 𝐹 = {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ≠ 𝑍} ↔ ∀𝑥 ∈ dom 𝐹(𝐹𝑥) ≠ 𝑍)
1412, 13sylibr 234 . 2 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑍 ∉ ran 𝐹) → dom 𝐹 = {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ≠ 𝑍})
152, 14eqtr4d 2767 1 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑍 ∉ ran 𝐹) → (𝐹 supp 𝑍) = dom 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wnel 3029  wral 3044  {crab 3405  dom cdm 5638  ran crn 5639  Fun wfun 6505  cfv 6511  (class class class)co 7387   supp csupp 8139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-supp 8140
This theorem is referenced by:  elbigolo1  48546
  Copyright terms: Public domain W3C validator