MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgfiss Structured version   Visualization version   GIF version

Theorem tgfiss 22977
Description: If a subbase is included into a topology, so is the generated topology. (Contributed by FL, 20-Apr-2012.) (Proof shortened by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
tgfiss ((𝐽 ∈ Top ∧ 𝐴𝐽) → (topGen‘(fi‘𝐴)) ⊆ 𝐽)

Proof of Theorem tgfiss
StepHypRef Expression
1 fiss 9463 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (fi‘𝐴) ⊆ (fi‘𝐽))
2 fitop 22885 . . . . 5 (𝐽 ∈ Top → (fi‘𝐽) = 𝐽)
32adantr 479 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (fi‘𝐽) = 𝐽)
41, 3sseqtrd 4019 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (fi‘𝐴) ⊆ 𝐽)
5 tgss 22954 . . 3 ((𝐽 ∈ Top ∧ (fi‘𝐴) ⊆ 𝐽) → (topGen‘(fi‘𝐴)) ⊆ (topGen‘𝐽))
64, 5syldan 589 . 2 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (topGen‘(fi‘𝐴)) ⊆ (topGen‘𝐽))
7 tgtop 22959 . . 3 (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽)
87adantr 479 . 2 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (topGen‘𝐽) = 𝐽)
96, 8sseqtrd 4019 1 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (topGen‘(fi‘𝐴)) ⊆ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wss 3946  cfv 6553  ficfi 9449  topGenctg 17447  Topctop 22878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5579  df-eprel 5585  df-po 5593  df-so 5594  df-fr 5636  df-we 5638  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-ord 6378  df-on 6379  df-lim 6380  df-suc 6381  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-om 7876  df-1o 8495  df-2o 8496  df-en 8974  df-fin 8977  df-fi 9450  df-topgen 17453  df-top 22879
This theorem is referenced by:  ordtrest  23189  ordtrest2  23191  lecldbas  23206  xkoptsub  23641  xkopt  23642  ordtrestNEW  33692  ordtrest2NEW  33694  topjoin  36025
  Copyright terms: Public domain W3C validator