| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgfiss | Structured version Visualization version GIF version | ||
| Description: If a subbase is included into a topology, so is the generated topology. (Contributed by FL, 20-Apr-2012.) (Proof shortened by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| tgfiss | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → (topGen‘(fi‘𝐴)) ⊆ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fiss 9314 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → (fi‘𝐴) ⊆ (fi‘𝐽)) | |
| 2 | fitop 22821 | . . . . 5 ⊢ (𝐽 ∈ Top → (fi‘𝐽) = 𝐽) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → (fi‘𝐽) = 𝐽) |
| 4 | 1, 3 | sseqtrd 3966 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → (fi‘𝐴) ⊆ 𝐽) |
| 5 | tgss 22889 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (fi‘𝐴) ⊆ 𝐽) → (topGen‘(fi‘𝐴)) ⊆ (topGen‘𝐽)) | |
| 6 | 4, 5 | syldan 591 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → (topGen‘(fi‘𝐴)) ⊆ (topGen‘𝐽)) |
| 7 | tgtop 22894 | . . 3 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | |
| 8 | 7 | adantr 480 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → (topGen‘𝐽) = 𝐽) |
| 9 | 6, 8 | sseqtrd 3966 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → (topGen‘(fi‘𝐴)) ⊆ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ‘cfv 6487 ficfi 9300 topGenctg 17347 Topctop 22814 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-om 7803 df-1o 8391 df-2o 8392 df-en 8876 df-fin 8879 df-fi 9301 df-topgen 17353 df-top 22815 |
| This theorem is referenced by: ordtrest 23123 ordtrest2 23125 lecldbas 23140 xkoptsub 23575 xkopt 23576 ordtrestNEW 33941 ordtrest2NEW 33943 topjoin 36416 |
| Copyright terms: Public domain | W3C validator |