Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgfiss | Structured version Visualization version GIF version |
Description: If a subbase is included into a topology, so is the generated topology. (Contributed by FL, 20-Apr-2012.) (Proof shortened by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
tgfiss | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → (topGen‘(fi‘𝐴)) ⊆ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fiss 9065 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → (fi‘𝐴) ⊆ (fi‘𝐽)) | |
2 | fitop 21824 | . . . . 5 ⊢ (𝐽 ∈ Top → (fi‘𝐽) = 𝐽) | |
3 | 2 | adantr 484 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → (fi‘𝐽) = 𝐽) |
4 | 1, 3 | sseqtrd 3956 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → (fi‘𝐴) ⊆ 𝐽) |
5 | tgss 21892 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (fi‘𝐴) ⊆ 𝐽) → (topGen‘(fi‘𝐴)) ⊆ (topGen‘𝐽)) | |
6 | 4, 5 | syldan 594 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → (topGen‘(fi‘𝐴)) ⊆ (topGen‘𝐽)) |
7 | tgtop 21897 | . . 3 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | |
8 | 7 | adantr 484 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → (topGen‘𝐽) = 𝐽) |
9 | 6, 8 | sseqtrd 3956 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → (topGen‘(fi‘𝐴)) ⊆ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2111 ⊆ wss 3881 ‘cfv 6398 ficfi 9051 topGenctg 16970 Topctop 21817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3423 df-sbc 3710 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-pss 3900 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-tp 4561 df-op 4563 df-uni 4835 df-int 4875 df-br 5069 df-opab 5131 df-mpt 5151 df-tr 5177 df-id 5470 df-eprel 5475 df-po 5483 df-so 5484 df-fr 5524 df-we 5526 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-ord 6234 df-on 6235 df-lim 6236 df-suc 6237 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-om 7664 df-1o 8223 df-er 8412 df-en 8648 df-fin 8651 df-fi 9052 df-topgen 16976 df-top 21818 |
This theorem is referenced by: ordtrest 22126 ordtrest2 22128 lecldbas 22143 xkoptsub 22578 xkopt 22579 ordtrestNEW 31612 ordtrest2NEW 31614 topjoin 34320 |
Copyright terms: Public domain | W3C validator |