Proof of Theorem isarchi2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | isarchi2.b | . . . 4
⊢ 𝐵 = (Base‘𝑊) | 
| 2 |  | isarchi2.0 | . . . 4
⊢  0 =
(0g‘𝑊) | 
| 3 |  | eqid 2737 | . . . 4
⊢
(⋘‘𝑊) =
(⋘‘𝑊) | 
| 4 | 1, 2, 3 | isarchi 33189 | . . 3
⊢ (𝑊 ∈ Toset → (𝑊 ∈ Archi ↔
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥(⋘‘𝑊)𝑦)) | 
| 5 | 4 | adantr 480 | . 2
⊢ ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥(⋘‘𝑊)𝑦)) | 
| 6 |  | simpl1l 1225 | . . . . . . . 8
⊢ ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ Toset) | 
| 7 |  | isarchi2.x | . . . . . . . . 9
⊢  · =
(.g‘𝑊) | 
| 8 |  | simpl1r 1226 | . . . . . . . . 9
⊢ ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ Mnd) | 
| 9 |  | simpr 484 | . . . . . . . . . 10
⊢ ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) | 
| 10 | 9 | nnnn0d 12587 | . . . . . . . . 9
⊢ ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0) | 
| 11 |  | simpl2 1193 | . . . . . . . . 9
⊢ ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ 𝐵) | 
| 12 | 1, 7, 8, 10, 11 | mulgnn0cld 19113 | . . . . . . . 8
⊢ ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → (𝑛 · 𝑥) ∈ 𝐵) | 
| 13 |  | simpl3 1194 | . . . . . . . 8
⊢ ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → 𝑦 ∈ 𝐵) | 
| 14 |  | isarchi2.l | . . . . . . . . . 10
⊢  ≤ =
(le‘𝑊) | 
| 15 |  | isarchi2.t | . . . . . . . . . 10
⊢  < =
(lt‘𝑊) | 
| 16 | 1, 14, 15 | tltnle 18467 | . . . . . . . . 9
⊢ ((𝑊 ∈ Toset ∧ (𝑛 · 𝑥) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑛 · 𝑥) < 𝑦 ↔ ¬ 𝑦 ≤ (𝑛 · 𝑥))) | 
| 17 | 16 | con2bid 354 | . . . . . . . 8
⊢ ((𝑊 ∈ Toset ∧ (𝑛 · 𝑥) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑦 ≤ (𝑛 · 𝑥) ↔ ¬ (𝑛 · 𝑥) < 𝑦)) | 
| 18 | 6, 12, 13, 17 | syl3anc 1373 | . . . . . . 7
⊢ ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → (𝑦 ≤ (𝑛 · 𝑥) ↔ ¬ (𝑛 · 𝑥) < 𝑦)) | 
| 19 | 18 | rexbidva 3177 | . . . . . 6
⊢ (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (∃𝑛 ∈ ℕ 𝑦 ≤ (𝑛 · 𝑥) ↔ ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦)) | 
| 20 | 19 | imbi2d 340 | . . . . 5
⊢ (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 ≤ (𝑛 · 𝑥)) ↔ ( 0 < 𝑥 → ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦))) | 
| 21 | 1, 2, 7, 15 | isinftm 33188 | . . . . . . . 8
⊢ ((𝑊 ∈ Toset ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(⋘‘𝑊)𝑦 ↔ ( 0 < 𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦))) | 
| 22 | 21 | notbid 318 | . . . . . . 7
⊢ ((𝑊 ∈ Toset ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (¬ 𝑥(⋘‘𝑊)𝑦 ↔ ¬ ( 0 < 𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦))) | 
| 23 |  | rexnal 3100 | . . . . . . . . 9
⊢
(∃𝑛 ∈
ℕ ¬ (𝑛 · 𝑥) < 𝑦 ↔ ¬ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦) | 
| 24 | 23 | imbi2i 336 | . . . . . . . 8
⊢ (( 0 < 𝑥 → ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦) ↔ ( 0 < 𝑥 → ¬ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦)) | 
| 25 |  | imnan 399 | . . . . . . . 8
⊢ (( 0 < 𝑥 → ¬ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦) ↔ ¬ ( 0 < 𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦)) | 
| 26 | 24, 25 | bitr2i 276 | . . . . . . 7
⊢ (¬ (
0 < 𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦) ↔ ( 0 < 𝑥 → ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦)) | 
| 27 | 22, 26 | bitrdi 287 | . . . . . 6
⊢ ((𝑊 ∈ Toset ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (¬ 𝑥(⋘‘𝑊)𝑦 ↔ ( 0 < 𝑥 → ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦))) | 
| 28 | 27 | 3adant1r 1178 | . . . . 5
⊢ (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (¬ 𝑥(⋘‘𝑊)𝑦 ↔ ( 0 < 𝑥 → ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦))) | 
| 29 | 20, 28 | bitr4d 282 | . . . 4
⊢ (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 ≤ (𝑛 · 𝑥)) ↔ ¬ 𝑥(⋘‘𝑊)𝑦)) | 
| 30 | 29 | 3expb 1121 | . . 3
⊢ (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 ≤ (𝑛 · 𝑥)) ↔ ¬ 𝑥(⋘‘𝑊)𝑦)) | 
| 31 | 30 | 2ralbidva 3219 | . 2
⊢ ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) →
(∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 ≤ (𝑛 · 𝑥)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥(⋘‘𝑊)𝑦)) | 
| 32 | 5, 31 | bitr4d 282 | 1
⊢ ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 ≤ (𝑛 · 𝑥)))) |