Proof of Theorem isarchi2
Step | Hyp | Ref
| Expression |
1 | | isarchi2.b |
. . . 4
⊢ 𝐵 = (Base‘𝑊) |
2 | | isarchi2.0 |
. . . 4
⊢ 0 =
(0g‘𝑊) |
3 | | eqid 2737 |
. . . 4
⊢
(⋘‘𝑊) =
(⋘‘𝑊) |
4 | 1, 2, 3 | isarchi 31155 |
. . 3
⊢ (𝑊 ∈ Toset → (𝑊 ∈ Archi ↔
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥(⋘‘𝑊)𝑦)) |
5 | 4 | adantr 484 |
. 2
⊢ ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥(⋘‘𝑊)𝑦)) |
6 | | simpl1l 1226 |
. . . . . . . 8
⊢ ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ Toset) |
7 | | simpl1r 1227 |
. . . . . . . . 9
⊢ ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ Mnd) |
8 | | simpr 488 |
. . . . . . . . . 10
⊢ ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
9 | 8 | nnnn0d 12150 |
. . . . . . . . 9
⊢ ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0) |
10 | | simpl2 1194 |
. . . . . . . . 9
⊢ ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ 𝐵) |
11 | | isarchi2.x |
. . . . . . . . . 10
⊢ · =
(.g‘𝑊) |
12 | 1, 11 | mulgnn0cl 18508 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Mnd ∧ 𝑛 ∈ ℕ0
∧ 𝑥 ∈ 𝐵) → (𝑛 · 𝑥) ∈ 𝐵) |
13 | 7, 9, 10, 12 | syl3anc 1373 |
. . . . . . . 8
⊢ ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → (𝑛 · 𝑥) ∈ 𝐵) |
14 | | simpl3 1195 |
. . . . . . . 8
⊢ ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → 𝑦 ∈ 𝐵) |
15 | | isarchi2.l |
. . . . . . . . . 10
⊢ ≤ =
(le‘𝑊) |
16 | | isarchi2.t |
. . . . . . . . . 10
⊢ < =
(lt‘𝑊) |
17 | 1, 15, 16 | tltnle 17928 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Toset ∧ (𝑛 · 𝑥) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑛 · 𝑥) < 𝑦 ↔ ¬ 𝑦 ≤ (𝑛 · 𝑥))) |
18 | 17 | con2bid 358 |
. . . . . . . 8
⊢ ((𝑊 ∈ Toset ∧ (𝑛 · 𝑥) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑦 ≤ (𝑛 · 𝑥) ↔ ¬ (𝑛 · 𝑥) < 𝑦)) |
19 | 6, 13, 14, 18 | syl3anc 1373 |
. . . . . . 7
⊢ ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → (𝑦 ≤ (𝑛 · 𝑥) ↔ ¬ (𝑛 · 𝑥) < 𝑦)) |
20 | 19 | rexbidva 3215 |
. . . . . 6
⊢ (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (∃𝑛 ∈ ℕ 𝑦 ≤ (𝑛 · 𝑥) ↔ ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦)) |
21 | 20 | imbi2d 344 |
. . . . 5
⊢ (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 ≤ (𝑛 · 𝑥)) ↔ ( 0 < 𝑥 → ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦))) |
22 | 1, 2, 11, 16 | isinftm 31154 |
. . . . . . . 8
⊢ ((𝑊 ∈ Toset ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(⋘‘𝑊)𝑦 ↔ ( 0 < 𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦))) |
23 | 22 | notbid 321 |
. . . . . . 7
⊢ ((𝑊 ∈ Toset ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (¬ 𝑥(⋘‘𝑊)𝑦 ↔ ¬ ( 0 < 𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦))) |
24 | | rexnal 3160 |
. . . . . . . . 9
⊢
(∃𝑛 ∈
ℕ ¬ (𝑛 · 𝑥) < 𝑦 ↔ ¬ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦) |
25 | 24 | imbi2i 339 |
. . . . . . . 8
⊢ (( 0 < 𝑥 → ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦) ↔ ( 0 < 𝑥 → ¬ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦)) |
26 | | imnan 403 |
. . . . . . . 8
⊢ (( 0 < 𝑥 → ¬ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦) ↔ ¬ ( 0 < 𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦)) |
27 | 25, 26 | bitr2i 279 |
. . . . . . 7
⊢ (¬ (
0 < 𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦) ↔ ( 0 < 𝑥 → ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦)) |
28 | 23, 27 | bitrdi 290 |
. . . . . 6
⊢ ((𝑊 ∈ Toset ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (¬ 𝑥(⋘‘𝑊)𝑦 ↔ ( 0 < 𝑥 → ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦))) |
29 | 28 | 3adant1r 1179 |
. . . . 5
⊢ (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (¬ 𝑥(⋘‘𝑊)𝑦 ↔ ( 0 < 𝑥 → ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦))) |
30 | 21, 29 | bitr4d 285 |
. . . 4
⊢ (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 ≤ (𝑛 · 𝑥)) ↔ ¬ 𝑥(⋘‘𝑊)𝑦)) |
31 | 30 | 3expb 1122 |
. . 3
⊢ (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 ≤ (𝑛 · 𝑥)) ↔ ¬ 𝑥(⋘‘𝑊)𝑦)) |
32 | 31 | 2ralbidva 3119 |
. 2
⊢ ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) →
(∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 ≤ (𝑛 · 𝑥)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥(⋘‘𝑊)𝑦)) |
33 | 5, 32 | bitr4d 285 |
1
⊢ ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 ≤ (𝑛 · 𝑥)))) |