Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isarchi2 Structured version   Visualization version   GIF version

Theorem isarchi2 31158
Description: Alternative way to express the predicate "𝑊 is Archimedean ", for Tosets. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
isarchi2.b 𝐵 = (Base‘𝑊)
isarchi2.0 0 = (0g𝑊)
isarchi2.x · = (.g𝑊)
isarchi2.l = (le‘𝑊)
isarchi2.t < = (lt‘𝑊)
Assertion
Ref Expression
isarchi2 ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 (𝑛 · 𝑥))))
Distinct variable groups:   𝑥,𝑛,𝑦,𝐵   𝑛,𝑊,𝑥,𝑦
Allowed substitution hints:   < (𝑥,𝑦,𝑛)   · (𝑥,𝑦,𝑛)   (𝑥,𝑦,𝑛)   0 (𝑥,𝑦,𝑛)

Proof of Theorem isarchi2
StepHypRef Expression
1 isarchi2.b . . . 4 𝐵 = (Base‘𝑊)
2 isarchi2.0 . . . 4 0 = (0g𝑊)
3 eqid 2737 . . . 4 (⋘‘𝑊) = (⋘‘𝑊)
41, 2, 3isarchi 31155 . . 3 (𝑊 ∈ Toset → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ¬ 𝑥(⋘‘𝑊)𝑦))
54adantr 484 . 2 ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ¬ 𝑥(⋘‘𝑊)𝑦))
6 simpl1l 1226 . . . . . . . 8 ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ Toset)
7 simpl1r 1227 . . . . . . . . 9 ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ Mnd)
8 simpr 488 . . . . . . . . . 10 ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
98nnnn0d 12150 . . . . . . . . 9 ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
10 simpl2 1194 . . . . . . . . 9 ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) ∧ 𝑛 ∈ ℕ) → 𝑥𝐵)
11 isarchi2.x . . . . . . . . . 10 · = (.g𝑊)
121, 11mulgnn0cl 18508 . . . . . . . . 9 ((𝑊 ∈ Mnd ∧ 𝑛 ∈ ℕ0𝑥𝐵) → (𝑛 · 𝑥) ∈ 𝐵)
137, 9, 10, 12syl3anc 1373 . . . . . . . 8 ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) ∧ 𝑛 ∈ ℕ) → (𝑛 · 𝑥) ∈ 𝐵)
14 simpl3 1195 . . . . . . . 8 ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) ∧ 𝑛 ∈ ℕ) → 𝑦𝐵)
15 isarchi2.l . . . . . . . . . 10 = (le‘𝑊)
16 isarchi2.t . . . . . . . . . 10 < = (lt‘𝑊)
171, 15, 16tltnle 17928 . . . . . . . . 9 ((𝑊 ∈ Toset ∧ (𝑛 · 𝑥) ∈ 𝐵𝑦𝐵) → ((𝑛 · 𝑥) < 𝑦 ↔ ¬ 𝑦 (𝑛 · 𝑥)))
1817con2bid 358 . . . . . . . 8 ((𝑊 ∈ Toset ∧ (𝑛 · 𝑥) ∈ 𝐵𝑦𝐵) → (𝑦 (𝑛 · 𝑥) ↔ ¬ (𝑛 · 𝑥) < 𝑦))
196, 13, 14, 18syl3anc 1373 . . . . . . 7 ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) ∧ 𝑛 ∈ ℕ) → (𝑦 (𝑛 · 𝑥) ↔ ¬ (𝑛 · 𝑥) < 𝑦))
2019rexbidva 3215 . . . . . 6 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) → (∃𝑛 ∈ ℕ 𝑦 (𝑛 · 𝑥) ↔ ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦))
2120imbi2d 344 . . . . 5 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) → (( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 (𝑛 · 𝑥)) ↔ ( 0 < 𝑥 → ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦)))
221, 2, 11, 16isinftm 31154 . . . . . . . 8 ((𝑊 ∈ Toset ∧ 𝑥𝐵𝑦𝐵) → (𝑥(⋘‘𝑊)𝑦 ↔ ( 0 < 𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦)))
2322notbid 321 . . . . . . 7 ((𝑊 ∈ Toset ∧ 𝑥𝐵𝑦𝐵) → (¬ 𝑥(⋘‘𝑊)𝑦 ↔ ¬ ( 0 < 𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦)))
24 rexnal 3160 . . . . . . . . 9 (∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦 ↔ ¬ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦)
2524imbi2i 339 . . . . . . . 8 (( 0 < 𝑥 → ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦) ↔ ( 0 < 𝑥 → ¬ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦))
26 imnan 403 . . . . . . . 8 (( 0 < 𝑥 → ¬ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦) ↔ ¬ ( 0 < 𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦))
2725, 26bitr2i 279 . . . . . . 7 (¬ ( 0 < 𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦) ↔ ( 0 < 𝑥 → ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦))
2823, 27bitrdi 290 . . . . . 6 ((𝑊 ∈ Toset ∧ 𝑥𝐵𝑦𝐵) → (¬ 𝑥(⋘‘𝑊)𝑦 ↔ ( 0 < 𝑥 → ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦)))
29283adant1r 1179 . . . . 5 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) → (¬ 𝑥(⋘‘𝑊)𝑦 ↔ ( 0 < 𝑥 → ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦)))
3021, 29bitr4d 285 . . . 4 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) → (( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 (𝑛 · 𝑥)) ↔ ¬ 𝑥(⋘‘𝑊)𝑦))
31303expb 1122 . . 3 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → (( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 (𝑛 · 𝑥)) ↔ ¬ 𝑥(⋘‘𝑊)𝑦))
32312ralbidva 3119 . 2 ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 (𝑛 · 𝑥)) ↔ ∀𝑥𝐵𝑦𝐵 ¬ 𝑥(⋘‘𝑊)𝑦))
335, 32bitr4d 285 1 ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 (𝑛 · 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061  wrex 3062   class class class wbr 5053  cfv 6380  (class class class)co 7213  cn 11830  0cn0 12090  Basecbs 16760  lecple 16809  0gc0g 16944  ltcplt 17815  Tosetctos 17922  Mndcmnd 18173  .gcmg 18488  cinftm 31149  Archicarchi 31150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096  df-seq 13575  df-0g 16946  df-proset 17802  df-poset 17820  df-plt 17836  df-toset 17923  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mulg 18489  df-inftm 31151  df-archi 31152
This theorem is referenced by:  submarchi  31159  isarchi3  31160  archirng  31161
  Copyright terms: Public domain W3C validator