Proof of Theorem isarchi2
| Step | Hyp | Ref
| Expression |
| 1 | | isarchi2.b |
. . . 4
⊢ 𝐵 = (Base‘𝑊) |
| 2 | | isarchi2.0 |
. . . 4
⊢ 0 =
(0g‘𝑊) |
| 3 | | eqid 2735 |
. . . 4
⊢
(⋘‘𝑊) =
(⋘‘𝑊) |
| 4 | 1, 2, 3 | isarchi 33180 |
. . 3
⊢ (𝑊 ∈ Toset → (𝑊 ∈ Archi ↔
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥(⋘‘𝑊)𝑦)) |
| 5 | 4 | adantr 480 |
. 2
⊢ ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥(⋘‘𝑊)𝑦)) |
| 6 | | simpl1l 1225 |
. . . . . . . 8
⊢ ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ Toset) |
| 7 | | isarchi2.x |
. . . . . . . . 9
⊢ · =
(.g‘𝑊) |
| 8 | | simpl1r 1226 |
. . . . . . . . 9
⊢ ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ Mnd) |
| 9 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
| 10 | 9 | nnnn0d 12562 |
. . . . . . . . 9
⊢ ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0) |
| 11 | | simpl2 1193 |
. . . . . . . . 9
⊢ ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ 𝐵) |
| 12 | 1, 7, 8, 10, 11 | mulgnn0cld 19078 |
. . . . . . . 8
⊢ ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → (𝑛 · 𝑥) ∈ 𝐵) |
| 13 | | simpl3 1194 |
. . . . . . . 8
⊢ ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → 𝑦 ∈ 𝐵) |
| 14 | | isarchi2.l |
. . . . . . . . . 10
⊢ ≤ =
(le‘𝑊) |
| 15 | | isarchi2.t |
. . . . . . . . . 10
⊢ < =
(lt‘𝑊) |
| 16 | 1, 14, 15 | tltnle 18432 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Toset ∧ (𝑛 · 𝑥) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑛 · 𝑥) < 𝑦 ↔ ¬ 𝑦 ≤ (𝑛 · 𝑥))) |
| 17 | 16 | con2bid 354 |
. . . . . . . 8
⊢ ((𝑊 ∈ Toset ∧ (𝑛 · 𝑥) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑦 ≤ (𝑛 · 𝑥) ↔ ¬ (𝑛 · 𝑥) < 𝑦)) |
| 18 | 6, 12, 13, 17 | syl3anc 1373 |
. . . . . . 7
⊢ ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → (𝑦 ≤ (𝑛 · 𝑥) ↔ ¬ (𝑛 · 𝑥) < 𝑦)) |
| 19 | 18 | rexbidva 3162 |
. . . . . 6
⊢ (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (∃𝑛 ∈ ℕ 𝑦 ≤ (𝑛 · 𝑥) ↔ ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦)) |
| 20 | 19 | imbi2d 340 |
. . . . 5
⊢ (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 ≤ (𝑛 · 𝑥)) ↔ ( 0 < 𝑥 → ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦))) |
| 21 | 1, 2, 7, 15 | isinftm 33179 |
. . . . . . . 8
⊢ ((𝑊 ∈ Toset ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(⋘‘𝑊)𝑦 ↔ ( 0 < 𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦))) |
| 22 | 21 | notbid 318 |
. . . . . . 7
⊢ ((𝑊 ∈ Toset ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (¬ 𝑥(⋘‘𝑊)𝑦 ↔ ¬ ( 0 < 𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦))) |
| 23 | | rexnal 3089 |
. . . . . . . . 9
⊢
(∃𝑛 ∈
ℕ ¬ (𝑛 · 𝑥) < 𝑦 ↔ ¬ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦) |
| 24 | 23 | imbi2i 336 |
. . . . . . . 8
⊢ (( 0 < 𝑥 → ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦) ↔ ( 0 < 𝑥 → ¬ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦)) |
| 25 | | imnan 399 |
. . . . . . . 8
⊢ (( 0 < 𝑥 → ¬ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦) ↔ ¬ ( 0 < 𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦)) |
| 26 | 24, 25 | bitr2i 276 |
. . . . . . 7
⊢ (¬ (
0 < 𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦) ↔ ( 0 < 𝑥 → ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦)) |
| 27 | 22, 26 | bitrdi 287 |
. . . . . 6
⊢ ((𝑊 ∈ Toset ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (¬ 𝑥(⋘‘𝑊)𝑦 ↔ ( 0 < 𝑥 → ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦))) |
| 28 | 27 | 3adant1r 1178 |
. . . . 5
⊢ (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (¬ 𝑥(⋘‘𝑊)𝑦 ↔ ( 0 < 𝑥 → ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦))) |
| 29 | 20, 28 | bitr4d 282 |
. . . 4
⊢ (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 ≤ (𝑛 · 𝑥)) ↔ ¬ 𝑥(⋘‘𝑊)𝑦)) |
| 30 | 29 | 3expb 1120 |
. . 3
⊢ (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 ≤ (𝑛 · 𝑥)) ↔ ¬ 𝑥(⋘‘𝑊)𝑦)) |
| 31 | 30 | 2ralbidva 3203 |
. 2
⊢ ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) →
(∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 ≤ (𝑛 · 𝑥)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥(⋘‘𝑊)𝑦)) |
| 32 | 5, 31 | bitr4d 282 |
1
⊢ ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 ≤ (𝑛 · 𝑥)))) |