Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isarchi2 Structured version   Visualization version   GIF version

Theorem isarchi2 32318
Description: Alternative way to express the predicate "𝑊 is Archimedean ", for Tosets. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
isarchi2.b 𝐵 = (Base‘𝑊)
isarchi2.0 0 = (0g𝑊)
isarchi2.x · = (.g𝑊)
isarchi2.l = (le‘𝑊)
isarchi2.t < = (lt‘𝑊)
Assertion
Ref Expression
isarchi2 ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 (𝑛 · 𝑥))))
Distinct variable groups:   𝑥,𝑛,𝑦,𝐵   𝑛,𝑊,𝑥,𝑦
Allowed substitution hints:   < (𝑥,𝑦,𝑛)   · (𝑥,𝑦,𝑛)   (𝑥,𝑦,𝑛)   0 (𝑥,𝑦,𝑛)

Proof of Theorem isarchi2
StepHypRef Expression
1 isarchi2.b . . . 4 𝐵 = (Base‘𝑊)
2 isarchi2.0 . . . 4 0 = (0g𝑊)
3 eqid 2732 . . . 4 (⋘‘𝑊) = (⋘‘𝑊)
41, 2, 3isarchi 32315 . . 3 (𝑊 ∈ Toset → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ¬ 𝑥(⋘‘𝑊)𝑦))
54adantr 481 . 2 ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ¬ 𝑥(⋘‘𝑊)𝑦))
6 simpl1l 1224 . . . . . . . 8 ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ Toset)
7 isarchi2.x . . . . . . . . 9 · = (.g𝑊)
8 simpl1r 1225 . . . . . . . . 9 ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ Mnd)
9 simpr 485 . . . . . . . . . 10 ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
109nnnn0d 12528 . . . . . . . . 9 ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
11 simpl2 1192 . . . . . . . . 9 ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) ∧ 𝑛 ∈ ℕ) → 𝑥𝐵)
121, 7, 8, 10, 11mulgnn0cld 18969 . . . . . . . 8 ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) ∧ 𝑛 ∈ ℕ) → (𝑛 · 𝑥) ∈ 𝐵)
13 simpl3 1193 . . . . . . . 8 ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) ∧ 𝑛 ∈ ℕ) → 𝑦𝐵)
14 isarchi2.l . . . . . . . . . 10 = (le‘𝑊)
15 isarchi2.t . . . . . . . . . 10 < = (lt‘𝑊)
161, 14, 15tltnle 18371 . . . . . . . . 9 ((𝑊 ∈ Toset ∧ (𝑛 · 𝑥) ∈ 𝐵𝑦𝐵) → ((𝑛 · 𝑥) < 𝑦 ↔ ¬ 𝑦 (𝑛 · 𝑥)))
1716con2bid 354 . . . . . . . 8 ((𝑊 ∈ Toset ∧ (𝑛 · 𝑥) ∈ 𝐵𝑦𝐵) → (𝑦 (𝑛 · 𝑥) ↔ ¬ (𝑛 · 𝑥) < 𝑦))
186, 12, 13, 17syl3anc 1371 . . . . . . 7 ((((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) ∧ 𝑛 ∈ ℕ) → (𝑦 (𝑛 · 𝑥) ↔ ¬ (𝑛 · 𝑥) < 𝑦))
1918rexbidva 3176 . . . . . 6 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) → (∃𝑛 ∈ ℕ 𝑦 (𝑛 · 𝑥) ↔ ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦))
2019imbi2d 340 . . . . 5 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) → (( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 (𝑛 · 𝑥)) ↔ ( 0 < 𝑥 → ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦)))
211, 2, 7, 15isinftm 32314 . . . . . . . 8 ((𝑊 ∈ Toset ∧ 𝑥𝐵𝑦𝐵) → (𝑥(⋘‘𝑊)𝑦 ↔ ( 0 < 𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦)))
2221notbid 317 . . . . . . 7 ((𝑊 ∈ Toset ∧ 𝑥𝐵𝑦𝐵) → (¬ 𝑥(⋘‘𝑊)𝑦 ↔ ¬ ( 0 < 𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦)))
23 rexnal 3100 . . . . . . . . 9 (∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦 ↔ ¬ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦)
2423imbi2i 335 . . . . . . . 8 (( 0 < 𝑥 → ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦) ↔ ( 0 < 𝑥 → ¬ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦))
25 imnan 400 . . . . . . . 8 (( 0 < 𝑥 → ¬ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦) ↔ ¬ ( 0 < 𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦))
2624, 25bitr2i 275 . . . . . . 7 (¬ ( 0 < 𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛 · 𝑥) < 𝑦) ↔ ( 0 < 𝑥 → ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦))
2722, 26bitrdi 286 . . . . . 6 ((𝑊 ∈ Toset ∧ 𝑥𝐵𝑦𝐵) → (¬ 𝑥(⋘‘𝑊)𝑦 ↔ ( 0 < 𝑥 → ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦)))
28273adant1r 1177 . . . . 5 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) → (¬ 𝑥(⋘‘𝑊)𝑦 ↔ ( 0 < 𝑥 → ∃𝑛 ∈ ℕ ¬ (𝑛 · 𝑥) < 𝑦)))
2920, 28bitr4d 281 . . . 4 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑥𝐵𝑦𝐵) → (( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 (𝑛 · 𝑥)) ↔ ¬ 𝑥(⋘‘𝑊)𝑦))
30293expb 1120 . . 3 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → (( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 (𝑛 · 𝑥)) ↔ ¬ 𝑥(⋘‘𝑊)𝑦))
31302ralbidva 3216 . 2 ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 (𝑛 · 𝑥)) ↔ ∀𝑥𝐵𝑦𝐵 ¬ 𝑥(⋘‘𝑊)𝑦))
325, 31bitr4d 281 1 ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 (𝑛 · 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3061  wrex 3070   class class class wbr 5147  cfv 6540  (class class class)co 7405  cn 12208  Basecbs 17140  lecple 17200  0gc0g 17381  ltcplt 18257  Tosetctos 18365  Mndcmnd 18621  .gcmg 18944  cinftm 32309  Archicarchi 32310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-seq 13963  df-0g 17383  df-proset 18244  df-poset 18262  df-plt 18279  df-toset 18366  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mulg 18945  df-inftm 32311  df-archi 32312
This theorem is referenced by:  submarchi  32319  isarchi3  32320  archirng  32321
  Copyright terms: Public domain W3C validator