| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponmax | Structured version Visualization version GIF version | ||
| Description: The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| toponmax | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toponuni 22827 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | |
| 2 | topontop 22826 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) | |
| 3 | eqid 2731 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | 3 | topopn 22819 | . . 3 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
| 5 | 2, 4 | syl 17 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → ∪ 𝐽 ∈ 𝐽) |
| 6 | 1, 5 | eqeltrd 2831 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∪ cuni 4859 ‘cfv 6481 Topctop 22806 TopOnctopon 22823 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-top 22807 df-topon 22824 |
| This theorem is referenced by: topgele 22843 eltpsg 22856 en2top 22898 resttopon 23074 ordtrest 23115 ordtrest2lem 23116 ordtrest2 23117 lmfval 23145 cnpfval 23147 iscn 23148 iscnp 23150 lmbrf 23173 cncls 23187 cnconst2 23196 cnrest2 23199 cndis 23204 cnindis 23205 cnpdis 23206 lmfss 23209 lmres 23213 lmff 23214 ist1-3 23262 connsuba 23333 unconn 23342 kgenval 23448 elkgen 23449 kgentopon 23451 pttoponconst 23510 tx1cn 23522 tx2cn 23523 ptcls 23529 xkoccn 23532 txlm 23561 cnmpt2res 23590 xkoinjcn 23600 qtoprest 23630 ordthmeolem 23714 pt1hmeo 23719 xkocnv 23727 flimclslem 23897 flfval 23903 flfnei 23904 isflf 23906 flfcnp 23917 txflf 23919 supnfcls 23933 fclscf 23938 fclscmp 23943 fcfval 23946 isfcf 23947 uffcfflf 23952 cnpfcf 23954 mopnm 24357 isxms2 24361 prdsxmslem2 24442 bcth2 25255 dvmptid 25886 dvmptc 25887 dvtaylp 26303 taylthlem1 26306 taylthlem2 26307 taylthlem2OLD 26308 pige3ALT 26454 dvcxp1 26674 cxpcn3 26683 ordtrestNEW 33929 ordtrest2NEWlem 33930 ordtrest2NEW 33931 topjoin 36398 areacirclem1 37747 |
| Copyright terms: Public domain | W3C validator |