| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponmax | Structured version Visualization version GIF version | ||
| Description: The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| toponmax | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toponuni 22830 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | |
| 2 | topontop 22829 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) | |
| 3 | eqid 2733 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | 3 | topopn 22822 | . . 3 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
| 5 | 2, 4 | syl 17 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → ∪ 𝐽 ∈ 𝐽) |
| 6 | 1, 5 | eqeltrd 2833 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ∪ cuni 4858 ‘cfv 6486 Topctop 22809 TopOnctopon 22826 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-top 22810 df-topon 22827 |
| This theorem is referenced by: topgele 22846 eltpsg 22859 en2top 22901 resttopon 23077 ordtrest 23118 ordtrest2lem 23119 ordtrest2 23120 lmfval 23148 cnpfval 23150 iscn 23151 iscnp 23153 lmbrf 23176 cncls 23190 cnconst2 23199 cnrest2 23202 cndis 23207 cnindis 23208 cnpdis 23209 lmfss 23212 lmres 23216 lmff 23217 ist1-3 23265 connsuba 23336 unconn 23345 kgenval 23451 elkgen 23452 kgentopon 23454 pttoponconst 23513 tx1cn 23525 tx2cn 23526 ptcls 23532 xkoccn 23535 txlm 23564 cnmpt2res 23593 xkoinjcn 23603 qtoprest 23633 ordthmeolem 23717 pt1hmeo 23722 xkocnv 23730 flimclslem 23900 flfval 23906 flfnei 23907 isflf 23909 flfcnp 23920 txflf 23922 supnfcls 23936 fclscf 23941 fclscmp 23946 fcfval 23949 isfcf 23950 uffcfflf 23955 cnpfcf 23957 mopnm 24360 isxms2 24364 prdsxmslem2 24445 bcth2 25258 dvmptid 25889 dvmptc 25890 dvtaylp 26306 taylthlem1 26309 taylthlem2 26310 taylthlem2OLD 26311 pige3ALT 26457 dvcxp1 26677 cxpcn3 26686 ordtrestNEW 33955 ordtrest2NEWlem 33956 ordtrest2NEW 33957 topjoin 36430 areacirclem1 37768 |
| Copyright terms: Public domain | W3C validator |