![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > toponmax | Structured version Visualization version GIF version |
Description: The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
toponmax | β’ (π½ β (TopOnβπ΅) β π΅ β π½) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toponuni 22636 | . 2 β’ (π½ β (TopOnβπ΅) β π΅ = βͺ π½) | |
2 | topontop 22635 | . . 3 β’ (π½ β (TopOnβπ΅) β π½ β Top) | |
3 | eqid 2730 | . . . 4 β’ βͺ π½ = βͺ π½ | |
4 | 3 | topopn 22628 | . . 3 β’ (π½ β Top β βͺ π½ β π½) |
5 | 2, 4 | syl 17 | . 2 β’ (π½ β (TopOnβπ΅) β βͺ π½ β π½) |
6 | 1, 5 | eqeltrd 2831 | 1 β’ (π½ β (TopOnβπ΅) β π΅ β π½) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2104 βͺ cuni 4907 βcfv 6542 Topctop 22615 TopOnctopon 22632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6494 df-fun 6544 df-fv 6550 df-top 22616 df-topon 22633 |
This theorem is referenced by: topgele 22652 eltpsg 22665 eltpsgOLD 22666 en2top 22708 resttopon 22885 ordtrest 22926 ordtrest2lem 22927 ordtrest2 22928 lmfval 22956 cnpfval 22958 iscn 22959 iscnp 22961 lmbrf 22984 cncls 22998 cnconst2 23007 cnrest2 23010 cndis 23015 cnindis 23016 cnpdis 23017 lmfss 23020 lmres 23024 lmff 23025 ist1-3 23073 connsuba 23144 unconn 23153 kgenval 23259 elkgen 23260 kgentopon 23262 pttoponconst 23321 tx1cn 23333 tx2cn 23334 ptcls 23340 xkoccn 23343 txlm 23372 cnmpt2res 23401 xkoinjcn 23411 qtoprest 23441 ordthmeolem 23525 pt1hmeo 23530 xkocnv 23538 flimclslem 23708 flfval 23714 flfnei 23715 isflf 23717 flfcnp 23728 txflf 23730 supnfcls 23744 fclscf 23749 fclscmp 23754 fcfval 23757 isfcf 23758 uffcfflf 23763 cnpfcf 23765 mopnm 24170 isxms2 24174 prdsxmslem2 24258 bcth2 25078 dvmptid 25709 dvmptc 25710 dvtaylp 26118 taylthlem1 26121 taylthlem2 26122 pige3ALT 26265 dvcxp1 26484 cxpcn3 26492 ordtrestNEW 33199 ordtrest2NEWlem 33200 ordtrest2NEW 33201 topjoin 35553 areacirclem1 36879 |
Copyright terms: Public domain | W3C validator |