| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponmax | Structured version Visualization version GIF version | ||
| Description: The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| toponmax | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toponuni 22801 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | |
| 2 | topontop 22800 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) | |
| 3 | eqid 2729 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | 3 | topopn 22793 | . . 3 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
| 5 | 2, 4 | syl 17 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → ∪ 𝐽 ∈ 𝐽) |
| 6 | 1, 5 | eqeltrd 2828 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∪ cuni 4871 ‘cfv 6511 Topctop 22780 TopOnctopon 22797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-top 22781 df-topon 22798 |
| This theorem is referenced by: topgele 22817 eltpsg 22830 en2top 22872 resttopon 23048 ordtrest 23089 ordtrest2lem 23090 ordtrest2 23091 lmfval 23119 cnpfval 23121 iscn 23122 iscnp 23124 lmbrf 23147 cncls 23161 cnconst2 23170 cnrest2 23173 cndis 23178 cnindis 23179 cnpdis 23180 lmfss 23183 lmres 23187 lmff 23188 ist1-3 23236 connsuba 23307 unconn 23316 kgenval 23422 elkgen 23423 kgentopon 23425 pttoponconst 23484 tx1cn 23496 tx2cn 23497 ptcls 23503 xkoccn 23506 txlm 23535 cnmpt2res 23564 xkoinjcn 23574 qtoprest 23604 ordthmeolem 23688 pt1hmeo 23693 xkocnv 23701 flimclslem 23871 flfval 23877 flfnei 23878 isflf 23880 flfcnp 23891 txflf 23893 supnfcls 23907 fclscf 23912 fclscmp 23917 fcfval 23920 isfcf 23921 uffcfflf 23926 cnpfcf 23928 mopnm 24332 isxms2 24336 prdsxmslem2 24417 bcth2 25230 dvmptid 25861 dvmptc 25862 dvtaylp 26278 taylthlem1 26281 taylthlem2 26282 taylthlem2OLD 26283 pige3ALT 26429 dvcxp1 26649 cxpcn3 26658 ordtrestNEW 33911 ordtrest2NEWlem 33912 ordtrest2NEW 33913 topjoin 36353 areacirclem1 37702 |
| Copyright terms: Public domain | W3C validator |