| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponmax | Structured version Visualization version GIF version | ||
| Description: The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| toponmax | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toponuni 22817 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | |
| 2 | topontop 22816 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) | |
| 3 | eqid 2729 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | 3 | topopn 22809 | . . 3 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
| 5 | 2, 4 | syl 17 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → ∪ 𝐽 ∈ 𝐽) |
| 6 | 1, 5 | eqeltrd 2828 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∪ cuni 4861 ‘cfv 6486 Topctop 22796 TopOnctopon 22813 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-top 22797 df-topon 22814 |
| This theorem is referenced by: topgele 22833 eltpsg 22846 en2top 22888 resttopon 23064 ordtrest 23105 ordtrest2lem 23106 ordtrest2 23107 lmfval 23135 cnpfval 23137 iscn 23138 iscnp 23140 lmbrf 23163 cncls 23177 cnconst2 23186 cnrest2 23189 cndis 23194 cnindis 23195 cnpdis 23196 lmfss 23199 lmres 23203 lmff 23204 ist1-3 23252 connsuba 23323 unconn 23332 kgenval 23438 elkgen 23439 kgentopon 23441 pttoponconst 23500 tx1cn 23512 tx2cn 23513 ptcls 23519 xkoccn 23522 txlm 23551 cnmpt2res 23580 xkoinjcn 23590 qtoprest 23620 ordthmeolem 23704 pt1hmeo 23709 xkocnv 23717 flimclslem 23887 flfval 23893 flfnei 23894 isflf 23896 flfcnp 23907 txflf 23909 supnfcls 23923 fclscf 23928 fclscmp 23933 fcfval 23936 isfcf 23937 uffcfflf 23942 cnpfcf 23944 mopnm 24348 isxms2 24352 prdsxmslem2 24433 bcth2 25246 dvmptid 25877 dvmptc 25878 dvtaylp 26294 taylthlem1 26297 taylthlem2 26298 taylthlem2OLD 26299 pige3ALT 26445 dvcxp1 26665 cxpcn3 26674 ordtrestNEW 33887 ordtrest2NEWlem 33888 ordtrest2NEW 33889 topjoin 36338 areacirclem1 37687 |
| Copyright terms: Public domain | W3C validator |