![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > toponmax | Structured version Visualization version GIF version |
Description: The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
toponmax | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toponuni 22936 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | |
2 | topontop 22935 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) | |
3 | eqid 2735 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
4 | 3 | topopn 22928 | . . 3 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
5 | 2, 4 | syl 17 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → ∪ 𝐽 ∈ 𝐽) |
6 | 1, 5 | eqeltrd 2839 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∪ cuni 4912 ‘cfv 6563 Topctop 22915 TopOnctopon 22932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-top 22916 df-topon 22933 |
This theorem is referenced by: topgele 22952 eltpsg 22965 eltpsgOLD 22966 en2top 23008 resttopon 23185 ordtrest 23226 ordtrest2lem 23227 ordtrest2 23228 lmfval 23256 cnpfval 23258 iscn 23259 iscnp 23261 lmbrf 23284 cncls 23298 cnconst2 23307 cnrest2 23310 cndis 23315 cnindis 23316 cnpdis 23317 lmfss 23320 lmres 23324 lmff 23325 ist1-3 23373 connsuba 23444 unconn 23453 kgenval 23559 elkgen 23560 kgentopon 23562 pttoponconst 23621 tx1cn 23633 tx2cn 23634 ptcls 23640 xkoccn 23643 txlm 23672 cnmpt2res 23701 xkoinjcn 23711 qtoprest 23741 ordthmeolem 23825 pt1hmeo 23830 xkocnv 23838 flimclslem 24008 flfval 24014 flfnei 24015 isflf 24017 flfcnp 24028 txflf 24030 supnfcls 24044 fclscf 24049 fclscmp 24054 fcfval 24057 isfcf 24058 uffcfflf 24063 cnpfcf 24065 mopnm 24470 isxms2 24474 prdsxmslem2 24558 bcth2 25378 dvmptid 26010 dvmptc 26011 dvtaylp 26427 taylthlem1 26430 taylthlem2 26431 taylthlem2OLD 26432 pige3ALT 26577 dvcxp1 26797 cxpcn3 26806 ordtrestNEW 33882 ordtrest2NEWlem 33883 ordtrest2NEW 33884 topjoin 36348 areacirclem1 37695 |
Copyright terms: Public domain | W3C validator |