![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > toponmax | Structured version Visualization version GIF version |
Description: The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
toponmax | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toponuni 22941 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | |
2 | topontop 22940 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) | |
3 | eqid 2740 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
4 | 3 | topopn 22933 | . . 3 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
5 | 2, 4 | syl 17 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → ∪ 𝐽 ∈ 𝐽) |
6 | 1, 5 | eqeltrd 2844 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∪ cuni 4931 ‘cfv 6573 Topctop 22920 TopOnctopon 22937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-top 22921 df-topon 22938 |
This theorem is referenced by: topgele 22957 eltpsg 22970 eltpsgOLD 22971 en2top 23013 resttopon 23190 ordtrest 23231 ordtrest2lem 23232 ordtrest2 23233 lmfval 23261 cnpfval 23263 iscn 23264 iscnp 23266 lmbrf 23289 cncls 23303 cnconst2 23312 cnrest2 23315 cndis 23320 cnindis 23321 cnpdis 23322 lmfss 23325 lmres 23329 lmff 23330 ist1-3 23378 connsuba 23449 unconn 23458 kgenval 23564 elkgen 23565 kgentopon 23567 pttoponconst 23626 tx1cn 23638 tx2cn 23639 ptcls 23645 xkoccn 23648 txlm 23677 cnmpt2res 23706 xkoinjcn 23716 qtoprest 23746 ordthmeolem 23830 pt1hmeo 23835 xkocnv 23843 flimclslem 24013 flfval 24019 flfnei 24020 isflf 24022 flfcnp 24033 txflf 24035 supnfcls 24049 fclscf 24054 fclscmp 24059 fcfval 24062 isfcf 24063 uffcfflf 24068 cnpfcf 24070 mopnm 24475 isxms2 24479 prdsxmslem2 24563 bcth2 25383 dvmptid 26015 dvmptc 26016 dvtaylp 26430 taylthlem1 26433 taylthlem2 26434 taylthlem2OLD 26435 pige3ALT 26580 dvcxp1 26800 cxpcn3 26809 ordtrestNEW 33867 ordtrest2NEWlem 33868 ordtrest2NEW 33869 topjoin 36331 areacirclem1 37668 |
Copyright terms: Public domain | W3C validator |