Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > toponmax | Structured version Visualization version GIF version |
Description: The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
toponmax | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toponuni 21971 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | |
2 | topontop 21970 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) | |
3 | eqid 2738 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
4 | 3 | topopn 21963 | . . 3 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
5 | 2, 4 | syl 17 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → ∪ 𝐽 ∈ 𝐽) |
6 | 1, 5 | eqeltrd 2839 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∪ cuni 4836 ‘cfv 6418 Topctop 21950 TopOnctopon 21967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-top 21951 df-topon 21968 |
This theorem is referenced by: topgele 21987 eltpsg 22000 eltpsgOLD 22001 en2top 22043 resttopon 22220 ordtrest 22261 ordtrest2lem 22262 ordtrest2 22263 lmfval 22291 cnpfval 22293 iscn 22294 iscnp 22296 lmbrf 22319 cncls 22333 cnconst2 22342 cnrest2 22345 cndis 22350 cnindis 22351 cnpdis 22352 lmfss 22355 lmres 22359 lmff 22360 ist1-3 22408 connsuba 22479 unconn 22488 kgenval 22594 elkgen 22595 kgentopon 22597 pttoponconst 22656 tx1cn 22668 tx2cn 22669 ptcls 22675 xkoccn 22678 txlm 22707 cnmpt2res 22736 xkoinjcn 22746 qtoprest 22776 ordthmeolem 22860 pt1hmeo 22865 xkocnv 22873 flimclslem 23043 flfval 23049 flfnei 23050 isflf 23052 flfcnp 23063 txflf 23065 supnfcls 23079 fclscf 23084 fclscmp 23089 fcfval 23092 isfcf 23093 uffcfflf 23098 cnpfcf 23100 mopnm 23505 isxms2 23509 prdsxmslem2 23591 bcth2 24399 dvmptid 25026 dvmptc 25027 dvtaylp 25434 taylthlem1 25437 taylthlem2 25438 pige3ALT 25581 dvcxp1 25798 cxpcn3 25806 ordtrestNEW 31773 ordtrest2NEWlem 31774 ordtrest2NEW 31775 topjoin 34481 areacirclem1 35792 |
Copyright terms: Public domain | W3C validator |