| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponmax | Structured version Visualization version GIF version | ||
| Description: The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| toponmax | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toponuni 22852 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | |
| 2 | topontop 22851 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) | |
| 3 | eqid 2735 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | 3 | topopn 22844 | . . 3 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
| 5 | 2, 4 | syl 17 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → ∪ 𝐽 ∈ 𝐽) |
| 6 | 1, 5 | eqeltrd 2834 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∪ cuni 4883 ‘cfv 6531 Topctop 22831 TopOnctopon 22848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-top 22832 df-topon 22849 |
| This theorem is referenced by: topgele 22868 eltpsg 22881 en2top 22923 resttopon 23099 ordtrest 23140 ordtrest2lem 23141 ordtrest2 23142 lmfval 23170 cnpfval 23172 iscn 23173 iscnp 23175 lmbrf 23198 cncls 23212 cnconst2 23221 cnrest2 23224 cndis 23229 cnindis 23230 cnpdis 23231 lmfss 23234 lmres 23238 lmff 23239 ist1-3 23287 connsuba 23358 unconn 23367 kgenval 23473 elkgen 23474 kgentopon 23476 pttoponconst 23535 tx1cn 23547 tx2cn 23548 ptcls 23554 xkoccn 23557 txlm 23586 cnmpt2res 23615 xkoinjcn 23625 qtoprest 23655 ordthmeolem 23739 pt1hmeo 23744 xkocnv 23752 flimclslem 23922 flfval 23928 flfnei 23929 isflf 23931 flfcnp 23942 txflf 23944 supnfcls 23958 fclscf 23963 fclscmp 23968 fcfval 23971 isfcf 23972 uffcfflf 23977 cnpfcf 23979 mopnm 24383 isxms2 24387 prdsxmslem2 24468 bcth2 25282 dvmptid 25913 dvmptc 25914 dvtaylp 26330 taylthlem1 26333 taylthlem2 26334 taylthlem2OLD 26335 pige3ALT 26481 dvcxp1 26701 cxpcn3 26710 ordtrestNEW 33952 ordtrest2NEWlem 33953 ordtrest2NEW 33954 topjoin 36383 areacirclem1 37732 |
| Copyright terms: Public domain | W3C validator |