| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponmax | Structured version Visualization version GIF version | ||
| Description: The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| toponmax | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toponuni 22808 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | |
| 2 | topontop 22807 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) | |
| 3 | eqid 2730 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | 3 | topopn 22800 | . . 3 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
| 5 | 2, 4 | syl 17 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → ∪ 𝐽 ∈ 𝐽) |
| 6 | 1, 5 | eqeltrd 2829 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∪ cuni 4874 ‘cfv 6514 Topctop 22787 TopOnctopon 22804 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-top 22788 df-topon 22805 |
| This theorem is referenced by: topgele 22824 eltpsg 22837 en2top 22879 resttopon 23055 ordtrest 23096 ordtrest2lem 23097 ordtrest2 23098 lmfval 23126 cnpfval 23128 iscn 23129 iscnp 23131 lmbrf 23154 cncls 23168 cnconst2 23177 cnrest2 23180 cndis 23185 cnindis 23186 cnpdis 23187 lmfss 23190 lmres 23194 lmff 23195 ist1-3 23243 connsuba 23314 unconn 23323 kgenval 23429 elkgen 23430 kgentopon 23432 pttoponconst 23491 tx1cn 23503 tx2cn 23504 ptcls 23510 xkoccn 23513 txlm 23542 cnmpt2res 23571 xkoinjcn 23581 qtoprest 23611 ordthmeolem 23695 pt1hmeo 23700 xkocnv 23708 flimclslem 23878 flfval 23884 flfnei 23885 isflf 23887 flfcnp 23898 txflf 23900 supnfcls 23914 fclscf 23919 fclscmp 23924 fcfval 23927 isfcf 23928 uffcfflf 23933 cnpfcf 23935 mopnm 24339 isxms2 24343 prdsxmslem2 24424 bcth2 25237 dvmptid 25868 dvmptc 25869 dvtaylp 26285 taylthlem1 26288 taylthlem2 26289 taylthlem2OLD 26290 pige3ALT 26436 dvcxp1 26656 cxpcn3 26665 ordtrestNEW 33918 ordtrest2NEWlem 33919 ordtrest2NEW 33920 topjoin 36360 areacirclem1 37709 |
| Copyright terms: Public domain | W3C validator |