Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrf2 Structured version   Visualization version   GIF version

Theorem ntrf2 44106
Description: The interior function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021.)
Hypotheses
Ref Expression
ntrrn.x 𝑋 = 𝐽
ntrrn.i 𝐼 = (int‘𝐽)
Assertion
Ref Expression
ntrf2 (𝐽 ∈ Top → 𝐼:𝒫 𝑋⟶𝒫 𝑋)

Proof of Theorem ntrf2
StepHypRef Expression
1 ntrrn.x . . 3 𝑋 = 𝐽
2 ntrrn.i . . 3 𝐼 = (int‘𝐽)
31, 2ntrf 44105 . 2 (𝐽 ∈ Top → 𝐼:𝒫 𝑋𝐽)
41toptopon 22810 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
5 topgele 22823 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → ({∅, 𝑋} ⊆ 𝐽𝐽 ⊆ 𝒫 𝑋))
64, 5sylbi 217 . . 3 (𝐽 ∈ Top → ({∅, 𝑋} ⊆ 𝐽𝐽 ⊆ 𝒫 𝑋))
76simprd 495 . 2 (𝐽 ∈ Top → 𝐽 ⊆ 𝒫 𝑋)
83, 7fssd 6707 1 (𝐽 ∈ Top → 𝐼:𝒫 𝑋⟶𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3916  c0 4298  𝒫 cpw 4565  {cpr 4593   cuni 4873  wf 6509  cfv 6513  Topctop 22786  TopOnctopon 22803  intcnt 22910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-top 22787  df-topon 22804  df-ntr 22913
This theorem is referenced by:  ntrelmap  44107
  Copyright terms: Public domain W3C validator