![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrf2 | Structured version Visualization version GIF version |
Description: The interior function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021.) |
Ref | Expression |
---|---|
ntrrn.x | ⊢ 𝑋 = ∪ 𝐽 |
ntrrn.i | ⊢ 𝐼 = (int‘𝐽) |
Ref | Expression |
---|---|
ntrf2 | ⊢ (𝐽 ∈ Top → 𝐼:𝒫 𝑋⟶𝒫 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrrn.x | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | ntrrn.i | . . 3 ⊢ 𝐼 = (int‘𝐽) | |
3 | 1, 2 | ntrf 44087 | . 2 ⊢ (𝐽 ∈ Top → 𝐼:𝒫 𝑋⟶𝐽) |
4 | 1 | toptopon 22946 | . . . 4 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
5 | topgele 22959 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ({∅, 𝑋} ⊆ 𝐽 ∧ 𝐽 ⊆ 𝒫 𝑋)) | |
6 | 4, 5 | sylbi 217 | . . 3 ⊢ (𝐽 ∈ Top → ({∅, 𝑋} ⊆ 𝐽 ∧ 𝐽 ⊆ 𝒫 𝑋)) |
7 | 6 | simprd 495 | . 2 ⊢ (𝐽 ∈ Top → 𝐽 ⊆ 𝒫 𝑋) |
8 | 3, 7 | fssd 6766 | 1 ⊢ (𝐽 ∈ Top → 𝐼:𝒫 𝑋⟶𝒫 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 {cpr 4650 ∪ cuni 4931 ⟶wf 6571 ‘cfv 6575 Topctop 22922 TopOnctopon 22939 intcnt 23048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-top 22923 df-topon 22940 df-ntr 23051 |
This theorem is referenced by: ntrelmap 44089 |
Copyright terms: Public domain | W3C validator |