![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrf2 | Structured version Visualization version GIF version |
Description: The interior function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021.) |
Ref | Expression |
---|---|
ntrrn.x | ⊢ 𝑋 = ∪ 𝐽 |
ntrrn.i | ⊢ 𝐼 = (int‘𝐽) |
Ref | Expression |
---|---|
ntrf2 | ⊢ (𝐽 ∈ Top → 𝐼:𝒫 𝑋⟶𝒫 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrrn.x | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | ntrrn.i | . . 3 ⊢ 𝐼 = (int‘𝐽) | |
3 | 1, 2 | ntrf 44129 | . 2 ⊢ (𝐽 ∈ Top → 𝐼:𝒫 𝑋⟶𝐽) |
4 | 1 | toptopon 22948 | . . . 4 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
5 | topgele 22961 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ({∅, 𝑋} ⊆ 𝐽 ∧ 𝐽 ⊆ 𝒫 𝑋)) | |
6 | 4, 5 | sylbi 217 | . . 3 ⊢ (𝐽 ∈ Top → ({∅, 𝑋} ⊆ 𝐽 ∧ 𝐽 ⊆ 𝒫 𝑋)) |
7 | 6 | simprd 495 | . 2 ⊢ (𝐽 ∈ Top → 𝐽 ⊆ 𝒫 𝑋) |
8 | 3, 7 | fssd 6761 | 1 ⊢ (𝐽 ∈ Top → 𝐼:𝒫 𝑋⟶𝒫 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3966 ∅c0 4342 𝒫 cpw 4608 {cpr 4636 ∪ cuni 4915 ⟶wf 6565 ‘cfv 6569 Topctop 22924 TopOnctopon 22941 intcnt 23050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-top 22925 df-topon 22942 df-ntr 23053 |
This theorem is referenced by: ntrelmap 44131 |
Copyright terms: Public domain | W3C validator |