Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrf2 Structured version   Visualization version   GIF version

Theorem ntrf2 41687
Description: The interior function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021.)
Hypotheses
Ref Expression
ntrrn.x 𝑋 = 𝐽
ntrrn.i 𝐼 = (int‘𝐽)
Assertion
Ref Expression
ntrf2 (𝐽 ∈ Top → 𝐼:𝒫 𝑋⟶𝒫 𝑋)

Proof of Theorem ntrf2
StepHypRef Expression
1 ntrrn.x . . 3 𝑋 = 𝐽
2 ntrrn.i . . 3 𝐼 = (int‘𝐽)
31, 2ntrf 41686 . 2 (𝐽 ∈ Top → 𝐼:𝒫 𝑋𝐽)
41toptopon 22047 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
5 topgele 22060 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → ({∅, 𝑋} ⊆ 𝐽𝐽 ⊆ 𝒫 𝑋))
64, 5sylbi 216 . . 3 (𝐽 ∈ Top → ({∅, 𝑋} ⊆ 𝐽𝐽 ⊆ 𝒫 𝑋))
76simprd 495 . 2 (𝐽 ∈ Top → 𝐽 ⊆ 𝒫 𝑋)
83, 7fssd 6614 1 (𝐽 ∈ Top → 𝐼:𝒫 𝑋⟶𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  wss 3891  c0 4261  𝒫 cpw 4538  {cpr 4568   cuni 4844  wf 6426  cfv 6430  Topctop 22023  TopOnctopon 22040  intcnt 22149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-top 22024  df-topon 22041  df-ntr 22152
This theorem is referenced by:  ntrelmap  41688
  Copyright terms: Public domain W3C validator