![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trlsonistrl | Structured version Visualization version GIF version |
Description: A trail between two vertices is a trail. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 7-Jan-2021.) |
Ref | Expression |
---|---|
trlsonistrl | ⊢ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 → 𝐹(Trails‘𝐺)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | 1 | trlsonprop 28485 | . 2 ⊢ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ 𝐹(Trails‘𝐺)𝑃))) |
3 | simp3r 1203 | . 2 ⊢ (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ 𝐹(Trails‘𝐺)𝑃)) → 𝐹(Trails‘𝐺)𝑃) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 → 𝐹(Trails‘𝐺)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 ∈ wcel 2107 Vcvv 3444 class class class wbr 5104 ‘cfv 6494 (class class class)co 7352 Vtxcvtx 27776 WalksOncwlkson 28374 Trailsctrls 28467 TrailsOnctrlson 28468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2709 ax-rep 5241 ax-sep 5255 ax-nul 5262 ax-pow 5319 ax-pr 5383 ax-un 7665 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2888 df-ne 2943 df-ral 3064 df-rex 3073 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3739 df-csb 3855 df-dif 3912 df-un 3914 df-in 3916 df-ss 3926 df-nul 4282 df-if 4486 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4865 df-iun 4955 df-br 5105 df-opab 5167 df-mpt 5188 df-id 5530 df-xp 5638 df-rel 5639 df-cnv 5640 df-co 5641 df-dm 5642 df-rn 5643 df-res 5644 df-ima 5645 df-iota 6446 df-fun 6496 df-fn 6497 df-f 6498 df-f1 6499 df-fo 6500 df-f1o 6501 df-fv 6502 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7914 df-2nd 7915 df-trlson 28470 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |