MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filn0 Structured version   Visualization version   GIF version

Theorem filn0 22036
Description: The empty set is not a filter. Remark below Definition 1 of [BourbakiTop1] p. I.36. (Contributed by FL, 30-Oct-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
filn0 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅)

Proof of Theorem filn0
StepHypRef Expression
1 filtop 22029 . 2 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
21ne0d 4151 1 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2166  wne 2999  c0 4144  cfv 6123  Filcfil 22019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fv 6131  df-fbas 20103  df-fil 22020
This theorem is referenced by:  ufileu  22093  filufint  22094  uffixfr  22097  uffix2  22098  uffixsn  22099  hausflim  22155  fclsval  22182  isfcls  22183  fclsopn  22188  fclsfnflim  22201  filnetlem4  32914
  Copyright terms: Public domain W3C validator