![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > filn0 | Structured version Visualization version GIF version |
Description: The empty set is not a filter. Remark below Definition 1 of [BourbakiTop1] p. I.36. (Contributed by FL, 30-Oct-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
Ref | Expression |
---|---|
filn0 | ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | filtop 23888 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐹) | |
2 | 1 | ne0d 4351 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ≠ wne 2940 ∅c0 4342 ‘cfv 6569 Filcfil 23878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fv 6577 df-fbas 21388 df-fil 23879 |
This theorem is referenced by: ufileu 23952 filufint 23953 uffixfr 23956 uffix2 23957 uffixsn 23958 hausflim 24014 fclsval 24041 isfcls 24042 fclsopn 24047 fclsfnflim 24060 filnetlem4 36376 |
Copyright terms: Public domain | W3C validator |