| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > filn0 | Structured version Visualization version GIF version | ||
| Description: The empty set is not a filter. Remark below Definition 1 of [BourbakiTop1] p. I.36. (Contributed by FL, 30-Oct-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
| Ref | Expression |
|---|---|
| filn0 | ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | filtop 23809 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐹) | |
| 2 | 1 | ne0d 4322 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ≠ wne 2931 ∅c0 4313 ‘cfv 6541 Filcfil 23799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fv 6549 df-fbas 21323 df-fil 23800 |
| This theorem is referenced by: ufileu 23873 filufint 23874 uffixfr 23877 uffix2 23878 uffixsn 23879 hausflim 23935 fclsval 23962 isfcls 23963 fclsopn 23968 fclsfnflim 23981 filnetlem4 36341 |
| Copyright terms: Public domain | W3C validator |