MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uffinfix Structured version   Visualization version   GIF version

Theorem uffinfix 23935
Description: An ultrafilter containing a finite element is fixed. (Contributed by Jeff Hankins, 5-Dec-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
uffinfix ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆𝐹𝑆 ∈ Fin) → ∃𝑥𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦})
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)

Proof of Theorem uffinfix
StepHypRef Expression
1 ufilfil 23912 . . 3 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
2 filfinnfr 23885 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑆𝐹𝑆 ∈ Fin) → 𝐹 ≠ ∅)
31, 2syl3an1 1164 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆𝐹𝑆 ∈ Fin) → 𝐹 ≠ ∅)
4 uffix2 23932 . . 3 (𝐹 ∈ (UFil‘𝑋) → ( 𝐹 ≠ ∅ ↔ ∃𝑥𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦}))
543ad2ant1 1134 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆𝐹𝑆 ∈ Fin) → ( 𝐹 ≠ ∅ ↔ ∃𝑥𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦}))
63, 5mpbid 232 1 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆𝐹𝑆 ∈ Fin) → ∃𝑥𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wrex 3070  {crab 3436  c0 4333  𝒫 cpw 4600   cint 4946  cfv 6561  Fincfn 8985  Filcfil 23853  UFilcufil 23907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1o 8506  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fbas 21361  df-fg 21362  df-fil 23854  df-ufil 23909
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator