Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uffinfix | Structured version Visualization version GIF version |
Description: An ultrafilter containing a finite element is fixed. (Contributed by Jeff Hankins, 5-Dec-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
uffinfix | ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ∈ 𝐹 ∧ 𝑆 ∈ Fin) → ∃𝑥 ∈ 𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ufilfil 23036 | . . 3 ⊢ (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋)) | |
2 | filfinnfr 23009 | . . 3 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑆 ∈ 𝐹 ∧ 𝑆 ∈ Fin) → ∩ 𝐹 ≠ ∅) | |
3 | 1, 2 | syl3an1 1161 | . 2 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ∈ 𝐹 ∧ 𝑆 ∈ Fin) → ∩ 𝐹 ≠ ∅) |
4 | uffix2 23056 | . . 3 ⊢ (𝐹 ∈ (UFil‘𝑋) → (∩ 𝐹 ≠ ∅ ↔ ∃𝑥 ∈ 𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦})) | |
5 | 4 | 3ad2ant1 1131 | . 2 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ∈ 𝐹 ∧ 𝑆 ∈ Fin) → (∩ 𝐹 ≠ ∅ ↔ ∃𝑥 ∈ 𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦})) |
6 | 3, 5 | mpbid 231 | 1 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ∈ 𝐹 ∧ 𝑆 ∈ Fin) → ∃𝑥 ∈ 𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∃wrex 3066 {crab 3069 ∅c0 4261 𝒫 cpw 4538 ∩ cint 4884 ‘cfv 6430 Fincfn 8707 Filcfil 22977 UFilcufil 23031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1o 8281 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-fbas 20575 df-fg 20576 df-fil 22978 df-ufil 23033 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |